• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-stage DOA estimation method for passive radar based on sparse representation①

    2015-04-17 07:17:17LiuNanSongWenlong
    High Technology Letters 2015年4期

    Liu Nan (劉 楠), Song Wenlong

    (College of Mechanical and Electronic Engineering, Northeast Forestry University, Harbin 150040, P.R.China)

    ?

    Two-stage DOA estimation method for passive radar based on sparse representation①

    Liu Nan (劉 楠), Song Wenlong②

    (College of Mechanical and Electronic Engineering, Northeast Forestry University, Harbin 150040, P.R.China)

    In a GPS illuminator based passive radar system, estimation of direction of arriving (DOA) of multiple targets is a difficult problem due to strong interference. A two-stage method combining extensive cancellation algorithm (ECA) and sparse representation is proposed. In the first stage, ECA algorithm is used to eliminate the direct-path and multi-path interference. In the second stage, sparse representation of improved weight constraints based on L1 norm is adopted to estimate DOA and suppress the interference. Simulation results show that the proposed method can effectively estimate DOA in low computation complexity without estimating the disturbance parameter.

    passive radar, GPS illuminator, direction of arriving (DOA), extensive cancellation algorithm, sparse representation

    0 Introduction

    Passive radar is a radar system which exploits external non cooperative transmitter as the illuminator, receives signals reflected from the target, and extracts the source bearing, speed and other parameters[1]. GPS has the characteristics of all-weather, anti-interference and real-time, and the idea of using reflected signals from GPS for the passive radar, becomes a hotspot recently[2]. However, weak echo signal through an echo channel is inevitable interfered by direct wave, multipath signal and clutter sidelobe. How to make the direction of arriving (DOA) estimation of multiple targets in the interference has become an important content which must be solved.

    To detect the multiple targets when applying interference suppression, many approaches have been presented. In Ref.[3], the method for interference suppression is accurate to dispose direct wave and multipath because of estimating the parameter of each disturbance, but it can not deal with echo sidelobe interference. The extensive cancellation algorithm (ECA)[4]progressively detects the strongest delayed and frequency shifted replicas of the direct signal and removes its effects on the received signal without parameter estimation, although the technique can not estimate direction. MUSIC-like[5]method uses a subspace

    method of direction estimation which is more than the number of array element, applies fourth order cumulating matrix with high computational complexity. In Ref.[6], Sparse represents a signal processing theory as a rising thought system, can use high order accumulated to estimate DOA.

    A two-stage DOA estimation method is proposed in this work. In the first stage, ECA is applied to remove the direct wave and mulipath interference. In the second stage, a sparse DOA estimation model is constructed with improved L1 norm as sparse constraint conditions. And the equilibrium constraint is applied to restrain the residual echo sidelobe jamming and decrease the computation complexity. The paper is organized as follows. Section 1 describes a system model and reference scenario. Section 2 derives an improved reweighted L1 norm sparse model and problem formulation. Section 3 describes the proposed algorithm as a processing procedure. Theoretical results are supported by numerical simulations, see Section 4. Finally the conclusions are drawn in Section 5.

    1 System model

    The system model is shown in Fig.1. In the figure, L is a base line, RTis the distance between the target and the radiation source, RRis the distance between the target and the receiver. α is the angle between the GPS satellite and ground, γ is the angle between the target and the receiver, θ is the angle betweenL and RR, v is the projection from target to ground with angle bisector φ.

    Fig.1 Space system model

    The ambiguity function is

    (1)

    where, RR0, v0, τ0and fd0are the distance, speed, time delay and Doppler frequency shift of the initial target respectively. The receiving station is composed of reference channel and echo channel[7]. The reference channel uses standard GPS receivers to collect the direct signal. In the echo channel, the weak target echoes are embedded in the background of strong direct signal, multipath targets and multi target sidelobe jamming. In the echo channel, down conversion to an intermediate frequency is processed after amplification and filter. The two-stage DOA estimation method is proposed. In the first stage, ECA algorithm is used to eliminate the direct interference and multipath interference using time domain interference cancellation and zero Doppler subsidence. In the second stage, multi objective DOA estimation is completed in low SNR using L1 Norm as a constraint condition.

    2 Two-stage DOA estimation

    2.1 ECA algorithm

    Different from the conventional interference suppression method, the signal from base station is projected onto orthogonal subspace with base station direct wave and time delay expansion space by ECA algorithm, instead of estimating interference parameter. In the ECA algorithm, segmented cancellation can eliminate not only direct wave and multipath interference of zero frequency, but also near zero frequency clutter. Consequently, in the first stage ECA algorithm is adopted to suppress direct wave and multipath interference.

    In echo channel, the target echoes are submerged in the background including target echo, direct wave interference, multipath interference and other noises. The signal in the echo channel is

    (2)

    where, the first part is direct wave interference, the second part is multipath interference, the third part is target echo signal, and the last part is other noise in the channel. Suppose that in the two-dimensional correlation unit of R distance, the strongest reflected signal is k distance, then the delay reference array is

    sref-k(t)=s(t)·D·F

    (3)

    where, D={dij} is Delay matrix, F is Doppler frequency shift matrix with P frequency points. The projection operator M is calculated by associative array sref-K(t). The target echo is projected to the interference space orthogonal subspaces by projection operator. And then echo is

    ssur-E(t)=ssur(t)·[I-M(MHM)-1MH]

    (4)

    (5)

    2.2 DOA estimation sparse representation

    MUSIC-like method is proposed in Ref.[8] for multiple targets in a range-Doppler unit, which uses all four order comulation and subspace for direction finding. But this method requires information redundancy and high computation to coherent processing. Sparse representation for DOA estimation does not need signal coherence, therefore sparse representation is chosen for high accuracy and few snapshots. When the relationship between number of antenna array elements P and target number satisfied P≥uN0ln(N/N0), it is defined that the target space is a sparse structure[9]. Using sparse reconstruction, DOA of multiple target is accurately estimated with low computation complexity. The vectorization procedure of Eq.(5) is represented as

    y=vec(ssur-E(τ, fd))=Aβ+n

    (6)

    where vec(·) is vector processing, y is the processed signal, β is a scalar matrix, A is a coefficient matrix whose components are [ejπsinθi…ejpπsinθi]T. It is known that under appropriate conditions, it is possible to solve Eq.(6) with a sparsity constraint as follows:

    (7)

    (8)

    where, diagonal matrix ω whose component is

    (9)

    where, δ is threshold value, large coefficient will be more than δ, α controls the degree of the adjustment, η is impact factor of weight. By adjusting the above parameters, Eq.(9) can be applied to balance the constraint value with the goal of recovering sparse signal in low SNR.

    3 Algorithm descriptions

    Step 1: construct matrix A using ECA method according to Eq.(8)

    Step 5: update α,η;

    Step 6: k=k+1;

    In the iterative process, the duality gap, gradient vector and Hesse matrix of the cost function O(L) is applied to determine the searching direction, dual gap is applied to determine the termination condition, and finally liner echo search algorithm is adopted to determine the optimal step size.

    4 Computer simulation and complexity analysis

    In order to analyze the performance, GPS signal is constructed as a radiation source in a range-Doppler unit, assuming SNR is -20dB, and the DOA of two goals is -1° and 5° respectively. Fig.2 shows the direction estimation result. Fig.3 shows the reconstruction probability of 5° goal while 1° goals remains the same. As shown in the figure, the correct rate is more than 98% when two goals are 5.1° apart. Fig.4 shows the probability estimation of two goals when SNR changes. It is obvious that this method can process target detection with SNR greater than -30dB. Fig.5 shows the correct rate when gradually adjusting the array element number and remaining SNR the same. As shown in the figure, DOA estimation accuracy is higher when

    Fig.2 DOA result

    Fig.3 Relationship between DOA estimation accuracy and correct rate

    Fig.4 Relationship between SNR and correct rate

    Fig.5 Relationship between the number of array element and correct rate

    the number of array element is lager than 10 because of spatial sparsity.

    In simulation, 8 multipath interferences appear in the region of 0~30km, with SINR of 50dB. The distance, Doppler shift , DOA and SNR of 4 targets are:

    (20km, 1MHz, 20°, -8.04dB),(40km, 3MHz, 50°,-10.07dB),(70km,2MHz,80°,-17.28dB),(80km, -2MHz, 100°, -23.92dB). Fig.6 shows the range-Doppler correlation before processing interference suppression. As shown in Fig.6, target echo can not be detected because of channel interference. Fig.7 is zero Doppler section after ECA algorithm. ECA can eliminate interference within 10km to 60km. Fig.8 shows the contour of 2D correlation after processing ECA method for suppressing the direct wave and multipath in the region of 0~100km. Fig.9 shows the better effect detection after sparse representation. As shown in Fig.10, MSE(mean square error) of the method in this paper and Candes method is lower than that of MUSIC-like method. Fig.11 shows that the probability of resolution in this paper is higher than Candes method and MUSIC-like method. As shown in Fig.12, the RMSE (root mean square error) is stable when the threshold is less. When the threshold is greater than 0.3, RMSE increases for over constraint of much weight value.

    Fig.6 Correlation before cancellation

    Fig.7 Zero Doppler section after ECA

    Fig.8 2D correlation after ECA

    Fig.9 2D correlation after sparse representation

    Fig.10 Mean square error curve

    Assuming that array antenna with M element receives L snapshots, the complexity is O(LM3) in ECA algorithm and O(N3logN) in sparse reconstruction. The total complexity is O(LM3+N3logN). MUSIC-like method needs a number of multiplications and additions, whose order of complexity is O(M10+LM4+NM4). Therefore the complexity is lower based on sparse reconstruction.

    Fig.11 Resolution probability curve

    Fig.12 Relationship between threshold and RMSE

    5 Conclusion

    By analyzing interference factors of GPS for passive radar system, a DOA estimation based on improved weight L1 norm constraints is proposed. In the first stage ECA method can eliminate the direct and multipath interference. In the second stage, by adjusting the weight, DOA estimate accuracy is high in low SNR with less computation complexity.

    Reference

    [ 1] Radmard M, Karbasi S M. MIMO PCL in a single frequency network. Microwaves, Radar and Remote Sensing Symposium, 2011, 25(8) 280-283

    [ 2] Idris A N, Suldi A M. Effect of radio frequency interference (RFI) on the Global Positioning System (GPS) signals. Signal Processing and its Applications, 2013, 3(10):199-204

    [ 3] He D B, Wang X G. A study on passive radar target location using GPS signal. Gnss World of China, 2011,4(1):20-22

    [ 4] Colone F, O’Hagan D W, Lombardo P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Transaction on Aerospace and Electronic Systems, 2009, 45(2):692-722

    [ 5] Akkar S. MUSIC like algorithms for fast direction of arrival estimation. Advanced Technologies for Signal and Image Processing (ATSIP), 2014,3(10): 550-554

    [ 6] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509

    [ 7] Wan L L, Zuo W H. Research on interference mitigation of GPS-based passive radar. Electronic Design Engineering, 2011,19(8):103-110

    [ 8] Shan Z L, Ji F, Wei G. Extention Music-like Algorithm for DOA Estimation with more Sources than Sensors. Nanjing, China: Neural Networks & Signal Processing, 2003.14-17

    [ 9] Julazadeh A. Classification based on sparse representation and Euclidian distance. Neural Networks, 2012, 10(3):11-16

    [10] Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30

    Liu Nan, born in 1980. She received his Ph.D degrees in Information and Communications Engineering Department of Harbin Engineering University in 2007. She also received his B.S. and M.S. degrees from Harbin Institute of Technology University in 2002 and 2004 respectively. Her research interests include the radio navigation and radar system.

    10.3772/j.issn.1006-6748.2015.04.013

    ①Supported by the National Natural Science Foundation of China (No. 31270757), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110062110002) and the Fundamental Research Funds for the Central Universities (No. 2572014EB03, DL13BB16).

    ②To whom correspondence should be addressed. E-mail: wlsong139@126.com Received on Oct. 11, 2014, Dong Guanghui

    日本猛色少妇xxxxx猛交久久| 精品熟女少妇av免费看| 亚洲av国产av综合av卡| 777米奇影视久久| 日本爱情动作片www.在线观看| 熟女人妻精品中文字幕| 又黄又爽又刺激的免费视频.| 麻豆成人av视频| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 日本欧美国产在线视频| 午夜精品国产一区二区电影 | av国产免费在线观看| 国产精品爽爽va在线观看网站| 国产老妇伦熟女老妇高清| 尤物成人国产欧美一区二区三区| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 亚洲精品自拍成人| 亚洲欧美精品专区久久| 色哟哟·www| 国模一区二区三区四区视频| 乱码一卡2卡4卡精品| 精品酒店卫生间| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 韩国av在线不卡| 欧美潮喷喷水| 2022亚洲国产成人精品| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 人人妻人人看人人澡| 成人毛片60女人毛片免费| 97超视频在线观看视频| 亚洲国产色片| 另类亚洲欧美激情| av在线观看视频网站免费| a级毛片免费高清观看在线播放| 精品久久久精品久久久| 尤物成人国产欧美一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲国产av新网站| av卡一久久| 亚洲av不卡在线观看| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 嫩草影院精品99| 午夜激情福利司机影院| 人人妻人人爽人人添夜夜欢视频 | 小蜜桃在线观看免费完整版高清| 欧美亚洲 丝袜 人妻 在线| 综合色av麻豆| 麻豆乱淫一区二区| 免费大片黄手机在线观看| 国产真实伦视频高清在线观看| 亚洲av电影在线观看一区二区三区 | 国产v大片淫在线免费观看| 91狼人影院| 日本与韩国留学比较| 99九九线精品视频在线观看视频| 久热久热在线精品观看| 亚洲色图av天堂| 日韩伦理黄色片| 亚洲色图综合在线观看| 国产久久久一区二区三区| 亚洲经典国产精华液单| 久久久久久久久大av| 一区二区三区免费毛片| 日韩视频在线欧美| 亚洲一区二区三区欧美精品 | 亚洲精品一二三| 国产黄色免费在线视频| 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 91aial.com中文字幕在线观看| 一级二级三级毛片免费看| 国产中年淑女户外野战色| 精品一区二区三卡| 亚洲性久久影院| 秋霞伦理黄片| 校园人妻丝袜中文字幕| 男插女下体视频免费在线播放| 天堂俺去俺来也www色官网| 蜜桃亚洲精品一区二区三区| 欧美一级a爱片免费观看看| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 精品午夜福利在线看| 久久精品久久精品一区二区三区| 亚洲成人久久爱视频| 日本三级黄在线观看| 久久久久国产网址| 色网站视频免费| 久久精品国产自在天天线| 国产男女内射视频| 欧美成人一区二区免费高清观看| 特大巨黑吊av在线直播| 男人添女人高潮全过程视频| 国产探花极品一区二区| 国产男女超爽视频在线观看| 99热国产这里只有精品6| 国产男女内射视频| 美女xxoo啪啪120秒动态图| 嫩草影院精品99| 一区二区三区免费毛片| 亚洲欧美日韩另类电影网站 | 91久久精品国产一区二区成人| 亚洲成人久久爱视频| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆| 五月玫瑰六月丁香| 性色av一级| 亚洲国产日韩一区二区| 最近最新中文字幕免费大全7| 禁无遮挡网站| 中文资源天堂在线| 亚洲精品成人久久久久久| 性插视频无遮挡在线免费观看| av黄色大香蕉| 日韩av在线免费看完整版不卡| 在线观看国产h片| 免费看日本二区| 五月开心婷婷网| 久久久久久久久大av| 色婷婷久久久亚洲欧美| 欧美日本视频| 免费av毛片视频| 毛片女人毛片| 国产伦理片在线播放av一区| 亚洲伊人久久精品综合| 丝袜脚勾引网站| 97超碰精品成人国产| 亚洲精品日韩av片在线观看| 毛片一级片免费看久久久久| 成人一区二区视频在线观看| 街头女战士在线观看网站| 国精品久久久久久国模美| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 免费黄频网站在线观看国产| www.色视频.com| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 亚洲色图av天堂| 亚洲自偷自拍三级| 一级av片app| .国产精品久久| 中文精品一卡2卡3卡4更新| 在线免费十八禁| 熟女av电影| av免费观看日本| 日韩欧美精品免费久久| 秋霞伦理黄片| 国产伦精品一区二区三区视频9| 禁无遮挡网站| 内射极品少妇av片p| 又大又黄又爽视频免费| 亚洲成人久久爱视频| 搞女人的毛片| 午夜激情久久久久久久| 日本黄色片子视频| 国产精品一区二区在线观看99| 国产成人精品婷婷| 久久久久久久大尺度免费视频| av福利片在线观看| 色哟哟·www| 91精品国产九色| 插逼视频在线观看| 欧美性猛交╳xxx乱大交人| 蜜桃久久精品国产亚洲av| 欧美xxⅹ黑人| av国产精品久久久久影院| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 亚洲va在线va天堂va国产| 日韩欧美一区视频在线观看 | 欧美精品人与动牲交sv欧美| 亚洲国产精品成人综合色| 国产一区有黄有色的免费视频| 1000部很黄的大片| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频 | 真实男女啪啪啪动态图| 日韩欧美精品v在线| 亚洲婷婷狠狠爱综合网| 熟女av电影| www.色视频.com| 最近的中文字幕免费完整| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| av福利片在线观看| 我要看日韩黄色一级片| 日本一本二区三区精品| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 欧美老熟妇乱子伦牲交| 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| videos熟女内射| 亚洲精品乱码久久久久久按摩| 欧美zozozo另类| 成人欧美大片| 国产精品一及| 18禁动态无遮挡网站| av.在线天堂| 18禁在线播放成人免费| 中文字幕人妻熟人妻熟丝袜美| 久久久亚洲精品成人影院| 免费观看无遮挡的男女| 亚洲欧美成人精品一区二区| 大码成人一级视频| 亚洲精品一区蜜桃| av国产免费在线观看| 亚洲国产色片| 全区人妻精品视频| 国精品久久久久久国模美| 欧美潮喷喷水| 少妇人妻 视频| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 国产男女内射视频| tube8黄色片| 国产午夜精品久久久久久一区二区三区| 最后的刺客免费高清国语| 亚洲精品一二三| 高清日韩中文字幕在线| 中文字幕免费在线视频6| 午夜福利网站1000一区二区三区| 亚洲色图综合在线观看| 少妇的逼水好多| 草草在线视频免费看| 最近2019中文字幕mv第一页| 国产免费福利视频在线观看| 王馨瑶露胸无遮挡在线观看| 特级一级黄色大片| 自拍欧美九色日韩亚洲蝌蚪91 | a级毛色黄片| 免费观看av网站的网址| 亚洲国产精品成人综合色| 欧美变态另类bdsm刘玥| av国产免费在线观看| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说 | 欧美潮喷喷水| 亚州av有码| 欧美 日韩 精品 国产| 交换朋友夫妻互换小说| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 中国国产av一级| av在线老鸭窝| 国产精品av视频在线免费观看| a级毛色黄片| 国产成人精品久久久久久| 丝袜美腿在线中文| 国产精品99久久久久久久久| 亚洲精品国产色婷婷电影| av线在线观看网站| 亚洲精品成人久久久久久| 国产黄色视频一区二区在线观看| 人妻夜夜爽99麻豆av| 六月丁香七月| 亚洲国产精品999| 一级片'在线观看视频| 国产精品久久久久久久久免| 国产黄频视频在线观看| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 春色校园在线视频观看| 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| av又黄又爽大尺度在线免费看| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| 夜夜爽夜夜爽视频| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 国产精品国产三级专区第一集| 国内精品宾馆在线| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 日韩国内少妇激情av| 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站 | 国产成人a∨麻豆精品| 午夜免费观看性视频| 99热网站在线观看| 国产久久久一区二区三区| 精品人妻视频免费看| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 国产片特级美女逼逼视频| 在线a可以看的网站| 欧美zozozo另类| 伦精品一区二区三区| 久久久国产一区二区| 亚洲精品国产av蜜桃| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品电影小说 | 免费观看在线日韩| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 国产亚洲av片在线观看秒播厂| 日韩精品有码人妻一区| 内地一区二区视频在线| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 少妇人妻一区二区三区视频| 国产精品一二三区在线看| 男的添女的下面高潮视频| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 男插女下体视频免费在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲色图综合在线观看| 岛国毛片在线播放| 亚洲国产精品成人综合色| 十八禁网站网址无遮挡 | 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 少妇人妻久久综合中文| 亚洲国产精品国产精品| 成人国产麻豆网| 在线亚洲精品国产二区图片欧美 | 真实男女啪啪啪动态图| 亚州av有码| 在线观看人妻少妇| 黑人高潮一二区| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 晚上一个人看的免费电影| 国产真实伦视频高清在线观看| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 国产中年淑女户外野战色| 久久精品人妻少妇| 国产乱来视频区| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 亚洲电影在线观看av| 丰满少妇做爰视频| 久久女婷五月综合色啪小说 | 内射极品少妇av片p| 久久综合国产亚洲精品| 国产成人freesex在线| 午夜免费鲁丝| 九草在线视频观看| 亚洲婷婷狠狠爱综合网| 国产熟女欧美一区二区| 国产精品熟女久久久久浪| 熟女电影av网| 在现免费观看毛片| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 国产 精品1| 日韩人妻高清精品专区| 亚洲欧美日韩另类电影网站 | 草草在线视频免费看| 免费黄网站久久成人精品| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 26uuu在线亚洲综合色| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 亚洲久久久久久中文字幕| 亚洲av成人精品一二三区| 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件| 99久久人妻综合| 少妇人妻 视频| av线在线观看网站| 亚洲av免费在线观看| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 亚洲人成网站在线观看播放| 听说在线观看完整版免费高清| 日韩在线高清观看一区二区三区| 日本av手机在线免费观看| 久久久久国产网址| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 狂野欧美激情性bbbbbb| 亚洲成人精品中文字幕电影| 久久久久久久国产电影| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品一区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 最近最新中文字幕大全电影3| 各种免费的搞黄视频| 天堂网av新在线| 九色成人免费人妻av| 欧美潮喷喷水| 美女xxoo啪啪120秒动态图| 一个人看视频在线观看www免费| av在线播放精品| 国产精品.久久久| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线 | 97在线人人人人妻| 五月玫瑰六月丁香| 人人妻人人看人人澡| 欧美一区二区亚洲| 国产黄片美女视频| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 国产综合懂色| 久久精品综合一区二区三区| 搞女人的毛片| 欧美xxxx黑人xx丫x性爽| 免费观看av网站的网址| 狂野欧美白嫩少妇大欣赏| 国产精品偷伦视频观看了| 国产精品蜜桃在线观看| www.色视频.com| 免费少妇av软件| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 大片免费播放器 马上看| 国产高清不卡午夜福利| 在线免费十八禁| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 美女国产视频在线观看| 精品一区二区三卡| 搡老乐熟女国产| 国产一区二区三区综合在线观看 | 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 午夜免费观看性视频| 国产精品女同一区二区软件| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线 | 日韩欧美一区视频在线观看 | 精品人妻视频免费看| 色视频www国产| 又大又黄又爽视频免费| av在线老鸭窝| 亚洲最大成人av| 免费大片黄手机在线观看| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 少妇丰满av| 丝袜喷水一区| 激情五月婷婷亚洲| 少妇高潮的动态图| 日韩亚洲欧美综合| 国产亚洲5aaaaa淫片| 亚洲精品国产av蜜桃| 18禁裸乳无遮挡动漫免费视频 | 免费观看性生交大片5| av天堂中文字幕网| 精品人妻熟女av久视频| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 亚洲av男天堂| a级一级毛片免费在线观看| 日本av手机在线免费观看| 大陆偷拍与自拍| 午夜爱爱视频在线播放| 亚洲精品成人久久久久久| 在线观看人妻少妇| 久久久精品欧美日韩精品| 少妇高潮的动态图| 亚洲国产色片| 日本午夜av视频| 国产大屁股一区二区在线视频| 亚洲国产欧美人成| 国产毛片a区久久久久| 日本欧美国产在线视频| 黄片无遮挡物在线观看| 伊人久久国产一区二区| a级毛片免费高清观看在线播放| 天天一区二区日本电影三级| 国内精品宾馆在线| 日韩欧美精品v在线| 亚洲天堂国产精品一区在线| 久久ye,这里只有精品| 国产白丝娇喘喷水9色精品| 日韩亚洲欧美综合| 亚洲精品日韩av片在线观看| 国产 一区 欧美 日韩| 国产视频首页在线观看| 一个人看的www免费观看视频| 麻豆成人午夜福利视频| 欧美日韩精品成人综合77777| 国产色爽女视频免费观看| 搡老乐熟女国产| 国产精品一区二区在线观看99| 简卡轻食公司| 最新中文字幕久久久久| 秋霞伦理黄片| 在线观看免费高清a一片| 亚洲欧美一区二区三区黑人 | 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 成人综合一区亚洲| 综合色丁香网| 成年女人看的毛片在线观看| 美女高潮的动态| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| 中文欧美无线码| 亚洲av男天堂| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 久久ye,这里只有精品| 色视频www国产| 国产精品久久久久久久电影| 国产一区二区亚洲精品在线观看| 久久久久久久国产电影| 中文天堂在线官网| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 国产永久视频网站| 国产黄片视频在线免费观看| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 91精品伊人久久大香线蕉| 国产淫语在线视频| 久久久久精品久久久久真实原创| 高清在线视频一区二区三区| 精品少妇黑人巨大在线播放| 一本色道久久久久久精品综合| 午夜爱爱视频在线播放| 岛国毛片在线播放| 欧美国产精品一级二级三级 | 麻豆精品久久久久久蜜桃| 熟女电影av网| 视频中文字幕在线观看| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| 久久久久网色| 99re6热这里在线精品视频| 丰满人妻一区二区三区视频av| 最近的中文字幕免费完整| 看十八女毛片水多多多| 日韩强制内射视频| 亚洲av在线观看美女高潮| 纵有疾风起免费观看全集完整版| 深爱激情五月婷婷| 日日啪夜夜爽| 免费看a级黄色片| 成年人午夜在线观看视频| 国产精品.久久久| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 成人黄色视频免费在线看| 久久国内精品自在自线图片| kizo精华| 国产男人的电影天堂91| 国产爽快片一区二区三区| 亚洲激情五月婷婷啪啪| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 777米奇影视久久| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 乱系列少妇在线播放| 色综合色国产| 深爱激情五月婷婷| 可以在线观看毛片的网站| 搡女人真爽免费视频火全软件| 热re99久久精品国产66热6| 两个人的视频大全免费| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 久久精品国产自在天天线| 晚上一个人看的免费电影| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 亚洲国产欧美在线一区| 尤物成人国产欧美一区二区三区| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 2022亚洲国产成人精品| 一本久久精品| av福利片在线观看| 一级毛片久久久久久久久女| 精品视频人人做人人爽| 日韩大片免费观看网站| 干丝袜人妻中文字幕| 汤姆久久久久久久影院中文字幕| 国内精品宾馆在线| 天堂中文最新版在线下载 | 一级二级三级毛片免费看| 联通29元200g的流量卡| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 亚洲av二区三区四区| 在线观看国产h片|