• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetometer calibration algorithm based on ellipsoid constraint①

    2015-04-17 07:24:47DongMingjie董明杰
    High Technology Letters 2015年4期

    Dong Mingjie (董明杰

    (Robotics Institute, Beijing University of Aeronautics and Astronautics, Beijing 100191, P.R.China)

    ?

    Magnetometer calibration algorithm based on ellipsoid constraint①

    Dong Mingjie (董明杰②

    (Robotics Institute, Beijing University of Aeronautics and Astronautics, Beijing 100191, P.R.China)

    Calibration of magnetometer is an essential part to obtain high measurement precision. However, the existing calibration methods are basically the calibration of all attitudes, which means tough work when the magnetometer is applied in strapdown inertial navigation system (SINS). So a quick, easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers. In this paper, the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference. During the process, a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference. Then the algorithm is tested by mimic experiment. The result shows that measurement precision is improved after the calibration, and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us, and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.

    calibration, magnetometer, ellipsoid constraint, strapdown inertial navigation system (SINS)

    0 Introduction

    Magnetometer is widely used in the navigation system. It measures the geomagnetic information by its sensitive ness to the magnetic fields. It is low in cost and small in size, and meanwhile, it is easy to be integrated. Magnetometer is often used to form a small attitude measurement unit with other sensors, such as accelerometer and gyroscope, to measure the direction. Nowadays, it has become an important composition of the attitude measurement unit, and is widely used in unmanned aerial vehicle, mobile robot, submarine and satellite, etc. However, it is easy for the local geomagnetic field to produce distortion for being affected by external magnetic field, which can result in the error between the measured direction and the actual geographical direction. Of course, the installation structure of the magnetometer and different electronic circuits can also result in the error. Therefore, it is very necessary to calibrate the magnetometer before using it to improve its precision[1-4].

    Many people have researched the problem in academia. Some scholars use EKF (extended Kalman filter) to estimate the zero bias and the calibration factors of the magnetometers[5], and propose the UKF (unscented Kalman filter) method for magnetometer calibration[6]. By comparing with the EKF method, it comes to the conclusion that the UKF is more efficient. Some academics have done a lot of research work on the calibration of the alignment error of the magnetometer, the calibration factor error of the soft magnetic interference and the zero offset of the hard magnetic interference using the improved two-step estimation algorithm, and the validity of the algorithm is verified in a small UAV (unmanned aerial vehicle)[7]. Some academic researches on the error correction of the three-axis magnetometer utilizing the neural network algorithm[8], the precision of the magnetometer after calibration is improved. However, the parameters obtained through neural network training are easy to spread under different environmental samples. Some academics calibrate the magnetometer using the constrained least squares algorithm given the feature that the interference magnetometer measurements can be simplified into the ellipse[9]. The MTi products of the Xsens Company on the market are also using the least squares method to calibrate the magnetometers at present[10]. However, the existing calibration methods are basically the calibration of all attitudes[11-14], which means tough work when the magnetometer is applied in SINS. So it is of very practical significance to suggest a quick, easy and effective calibration algorithm. Given the idea, a calibration algorithm is prosed to calibrate hard magnetic interference and soft magnetic interference of the magnetometer based on the ellipsoid constraint. In this paper, the measuring principle and error characteristic of the magnetometer are analysed, and the calibration algorithm is proposed based on ellipsoid constraint. Finally the algorithm through mimic and actual experiments is tested and verify the validity of the algorithm is verified.

    1 Principle and error analysis of magnetometer

    1.1 Measurment Principle of the Magnetometer

    The magnetometer works through induction of the geomagnetic field. The geomagnetic field is a vector field, and its intensity can be decomposed into three components, the north, the east and the vertically downward direction.

    It is assumed that the magnetic field intensity in the horizontal plane projection is H, and there is an angle between H and geographical north direction, which is called magnetic declination and indicated by the letter shown in Fig.1. Therefore the north-south direction of the compass points is the geomagnetic north and south, which has a deviation with the geographic north and south direction, the deviation is called magnetic deviation. The magnetic heading is defined as the angle between the horizontal plane projections of the carrier’s vertical axis with the local magnetic meridian when the magnetometer works on the carrier. The three-axis magnetometer measures the components of the longitudinal axis, transverse axis, and vertical axis to be Hx, Hyand Hzrespectively. Hence, the projections of the geomagnetic intensity on the geographical coordinate system and the carrier coordinate system can be presented by the transformation matrix between the two coordinates.

    (1)

    where, H0is the horizontal component of the magnetic field, α is magnetic inclination, ψ is yaw angle, θ is pitch angle, γ is roll angle. The angle calculation formula is got:

    (2)

    Fig.1 Magnetometer measurement model

    1.2 Error Analysis of the Magnetometer

    There are many measurement errors during the process of the magnetometer measurement, generally divided into manufacturing error, installation error, attitude signal error and compass deviation. The manufacturing error is related to many factors, mainly manifests in three aspects. The first is the zero error which is caused for the reason that the zero point of the sensor, analog circuit and A/D converter is not zero. The second is the sensitivity error caused by different sensor sensitivities. The third is orthogonal error, which is caused for the reason that the three sensor measuring axes cannot be mutually perpendicular completely during the manufacturing process. The installation error is caused for the reason that we cannot guarantee that the three axes of the sensor are parallel to the longitudinal, transverse and vertical axis of the carrier respectively. The attitude signal error is due to the signal error of the pitch angle and the inclination angle. Although it does not belong to the magnetic heading system, it can result in the heading error when it is involved in the navigation position calculating. Compass deviation is due to the influence of the ferromagnetic materials around the magnetic sensor. It is a specific error during the heading measurement using geomagnetic field, which can be divided into the hard magnetic material interference error and the soft material interference error. Soft magnetic materials get magnetism after magnetized by the magnetic field for it has no magnetism itself. And its magnetism varies along with the variation of the strength and the relative direction of the geomagnetic field. The direction of the force of the soft magnetic material on the magnetometer is related to the mutual position between the soft iron and the magnetometer, and its strength is related to soft iron material, soft iron attitude, the exciting magnetic field and the distance between the soft iron and the magnetometer. The hard magnetic material is the permanent magnet on the carrier, whose strength and direction are fixed and has no change along with the course and the latitude. The hard iron on the carrier is from DC (direct current), permanent magnet and the motor, etc. Thus it is apparent that calibration is an essential procedure in order to measure precision of the magnetometer.

    The magnetometer calibration can be divided into the factory calibration and the field calibration. There can be non-orthogonal error and installation error during the installation of the three-axis magnetometer. Meanwhile, there can also be zero deviation and calibration factor error due to the manufacturing factors. All these errors need software compensation through the factory calibration. The field calibration is to reduce the effects the carrier and surrounding magnetic field have on the magnetometer, and to improve its measurement precision. For the magnetometer parameter obtained by the factory calibration is stable, and the magnetic properties are not the same when magnetometer is used in a different environment, it is very necessary to compensate various magnetic interferences through the field calibration.

    2 Field calibration algorithm

    2.1 Calibration model

    The main consideration of the field calibration is the hard magnetic interference and the soft magnetic interference the magnetometer gets from the field environment. The hard magnetic material on the carrier is equivalent to a permanent magnet, whose strength is a vector with fixed magnitude and direction. There may be many hard magnetic materials around the sensors with different magnetic strength and direction. But the projection component of the synthetic magnetic field from these hard magnetic materials on the three-axis magnetic sensor is the same regardless of the changes of the carrier attitude, for the sensors and the hard magnetic materials are all fixed on the carrier. In other word, the error caused by the hard magnetic material interference is a constant error. Unlike the hard magnetic material, the soft magnetic material doses not produce magnetic field. But it will influence the magnetic field around it after being magnetized, and the strength and direction it influences is related to the environment magnetic field and the property of the soft magnetic material. From the electromagnetism knowledge, ferromagnetic material can be magnetized to produce magnetic moment under the action of external magnetic field, and the vector sum of the magnetic moment per unit volume is the magnetization strength vector, whose magnetic moment strength is proportional to the strength of the external magnetic field. For paramagnetic, the direction of the magnetic moment is to the external magnetic field, while for diamagnetic, the direction is to the opposite direction of the external magnetic field. Therefore, the inductive magnetic field of the carrier is not only related to the strength of the external magnetic field, but also related to the direction of the external magnetic field. To sum up, the relationship between the real value of the geomagnetic field and the measurement value from the magnetic sensor can be expressed as

    (3)

    where, H is the magnetic vector, the direction of the geomagnetic field somewhere on the earth usually can be obtained from sea chart or map, and it can be regarded as uniform in a certain range. The letter is the constant deviation caused by hard magnetic material interference, that is the measurement noise of the magnetometer, and the letter is the calibration factor matrix of the soft magnetic interference field, and its value can be described as

    (4)

    where, βijis the induction coefficient of soft magnetic interference of field, i and j indicates x, y, z, βijrepresents the induced magnetic field component of the i direction of the carrier on the jth direction of the magnetic sensors, in other words, it means the increasing or decreasing coefficient of the magnetic field strength in the ith direction for the reason of the soft magnetic interference.

    2.2 Field calibration algorithm

    For the state of the interference magnetic field at some point, a hypothesis is widely used now. That is, the vertex of the total geomagnetic field can draw a sphere with the variation of the sensor attitude in the condition without interference magnetic field. For a carrier with its attitude all-round changes, when there is hard magnetic effect, the interference is equivalent to adding a fixed value on the measurement of the sensor, which can create a bias of the sphere model with the original offset. However, when there is soft magnetic effect, the deformation of the sphere model occurs and can be approximate to an ellipsoid, for the strength of the induced magnetic field is different under different attitude. Namely the effect the induced magnetic field has on the geomagnetic measurement can be thought as an ellipsoid which is drawn by the synthetic vector vertex with the three components the sensor measures, shown in Fig.2.

    Fig.2 Measurement with external magnetic interference

    According to the above content, Eq.(3) can be rewritten as

    (5)

    (6)

    Eq.(5) can be thought as an elliptic equation, namely the measurement of the magnetometer is in an ellipsoid, and therefore, the field calibration algorithm of the magnetometer is put forward based on ellipsoid constraint. Eq.(5) can be expanded as

    (7)

    which is the coefficient of the matrix.

    (8)

    Here, Eq.(7) can be further written in a matrix form,

    (9)

    where, the vector can be defined as:

    (10)

    If vector p is already known, then the correlation coefficient aijcan be got according to the corresponding relation of elements in Eq.(10).

    (11)

    (12)

    (13)

    Eq.(13) can be simplified as a matrix form:

    (14)

    Value p can be estimated by the least squares algorithm:

    (15)

    3 Simulation and field experiment

    3.1 Simulation

    At first, simulation is used to verify the algorithm. It is assumed that the ideal measurement value of the three-axis magnetometer is on the unit sphere, the parameter change caused by the hard magnetic interference is b, and the parameter change caused by the soft magnetic interference is A after the field magnetic interference.

    (16)

    At the same time, the noise with its variance value 0.05 is superimposed on the measurement value. Zhen we carries on the simulation, the result of the ideal situation compared with the interference situation is shown in Fig.3

    Fig.3 Comparison between measured and ideal value before calibration

    After that, the proposed algorithm based on the ellipsoid constraint is used to calibrate the magnetometer, the parameters is

    (17)

    The measurement value after calibration is very close to the ideal value, shown in Fig.4

    Fig.4 Comparison between measured and ideal value after calibration

    3.2 Field calibration experiment and the results

    Our experiment platform is an underwater robot designed by our laboratory. At first, IMU (inertial measurement unit) is installed with magnetometer (Fig.5) in the control cabin of the underwater robot (Fig.6), and then the data of the magnetometer can be collected. As we all know, the magnetometer needs to be rotated by 360 degrees around the three-axis direction in the process of calibrating the magnetometer using traditional calibration algorithm, especially, the magnetometer needs to be kept in the three orthogonal planes during the rotation, which may be easy to calibrate a single magnetometer, but it is not convenient to conduct the calibration experiment for the whole underwater robot. Yet such calibration operation requirements are not needed using the ellipsoid constraint algorithm, all we need to do is to collect the data of 3-D attitude rotating part. The calibration process is simple and the efficiency of calibration is raised, as shown in Fig.7.

    Fig.5 IMU with magnetometer

    Fig.6 Underwater robot

    Fig.7 3-D data of field calibration

    The data of the three-axis magnetometer obtained before calibration is shown in Fig.8

    Fig.8 Field measurement data before calibration

    Then the magnetometer is calibrated, and the results got through the calibration algorithm is as

    (18)

    The data of the three-axis magnetometer obtained after calibration is shown in Fig.9.

    In order to see more intuitively, the magnetic strength data before calibration is compared with the data after calibration, as shown in Fig.10

    From Fig.10, it can been seen that the measurement value after calibration of the magnetometer is improved dramatically.

    Fig.9 Field measurement data after calibration

    Fig.10 Strength value comparison before and after calibration

    4 Conclusions

    In this paper, a quick, easy and effective algorithm is introduced to calibrate the magnetometer based on ellipsoid constraint. After analyzing the measuring principle and error characteristic, the calibration problem to ellipsoid fitting problem is coverted based on the characteristic of the hard magnetic interference and the soft magnetic interference, and the calibration algorithm is proposed based on the ellipsoid constraint. After simulation and actual field experiment with the underwater robot, the validity of the algorithm is verified. Compared with the traditional calibration algorithm, this algorithm is much easier, and more suitable for application in SINS. It can not only improve the calibration efficiency, but also improve the measurement precision of the magnetometer.

    [ 1] Dorveaux E, Vissière D, Martin A P, et al. Iterative calibration method for inertial and magnetic sensors. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 2009. 8296-8303

    [ 2] Genovese V, Sabatini A M. Differential compassing helps human-robot teams navigate in magnetically disturbed environments. IEEE Sensors,2006,6(5):1045-1046

    [ 3] Bijker J, Steyn W. Kalman filter configurations for a low-cost loosely integrated inertial navigation system on an airship.Control Engineering Practice, 2008,16(12):1509-1518

    [ 4] Lyon D H. A military perpective on small unmanned aerial vehicles. IEEE Instrum entation and Measurement Magazine, 2008,7(3):27-31

    [ 5] Guo P, Qiu H, Yang Y. The soft iron and hard iron calibration method using extended Kalman filter for attitude and heading reference system. In: Proceedings of the IEEE Position Location Navigation Symposium, Monterey, USA, 2008. 1167-1174

    [ 6] Crassidis J L, Lai K L, Harman R R. Real-time-attitude-independent three-axis magnetometer calibration. Journal of Guidance, control and dynamics, 2005, 28(1): 115-120

    [ 7] Wu Y L, Wang T M, Liang J H. In-suit error calibration of three-axis magnetometer for unmanned aerial vehicle. Acta Aeronautica et Astronautica Sinica,2011, 32(2):330-336

    [ 8] Wu D H, Huang S L, Zhao W. Research on correction of tri-axial magnetometer based on FLANN. Chinese Journal o f Scientific Instrument, 2009,30(3):449 -453 (In Chinese)

    [ 9] Fang J C, Sun H W, Cao J J, et al. A novel calibration method of magnetic compass based on ellipsoid fitting. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2053-2061

    [10] Xsens Technologies, Available. http://www.xsens.com: Xsens, 2014

    [11] Koo W, Sung S, Lee Y J. Error calibration of magnetometer using nonlinear integrated filter model with inertial sensors. IEEE Transactions on Magnetic, 2009,45(6):2740-2743

    [12] Egziabher D G, Elkaim G H, Powell J D, et al. Calibration of strapdown magnetometers in magnetic field domain. Journal of Aerospace Engineering,2006,19(2):87-102

    [13] Foster C C, Elkaim G H. Extension of a two-step calibration methodology to include nonorthogonal sensor axes. IEEE Transactions on Aerospace and Electronic Systems, 2008,44(3):1070-1078

    [14] Jurman D, Jankovec M, Kamnik R, et al. Calibration and data fusion solution for the miniature attitude and heading reference system. Sensors and Actuators A, Physical, 2007,138(2):411-420

    Dong Mingjie, born in 1989, he is pursuing the Ph.D. degree in the Mechatronic Engineering in Beijing University of Aeronautics and Astronautics. He received the Bachelor degree in Material Forming and Control Engineering from Beijing University of Aeronautics and Astronautics in 2012. His research interests include embedded electronmechanical control and control of robot.

    10.3772/j.issn.1006-6748.2015.04.005

    ①Supported by the National High Technology Research and Development Programme of China (No. 2011AA04201).

    ②To whom correspondence should be addressed. E-mail: dongmj@buaa.edu.cn Received on May 17, 2014, Chou Wusheng, Fang Bin

    中文字幕制服av| 欧美精品亚洲一区二区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 久久久精品免费免费高清| 亚洲精品一二三| 久久久精品免费免费高清| 久久久水蜜桃国产精品网| 亚洲中文av在线| 五月开心婷婷网| 一区福利在线观看| 欧美日韩av久久| av片东京热男人的天堂| 黄色女人牲交| aaaaa片日本免费| 在线免费观看的www视频| 亚洲欧美激情在线| 黄色怎么调成土黄色| 免费在线观看黄色视频的| 午夜福利,免费看| 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 欧美日韩瑟瑟在线播放| 亚洲欧美激情在线| 日本五十路高清| 十八禁高潮呻吟视频| 午夜福利欧美成人| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| av免费在线观看网站| 国产一区有黄有色的免费视频| 视频区欧美日本亚洲| 国产精品偷伦视频观看了| 老司机午夜福利在线观看视频| 男男h啪啪无遮挡| 一区二区三区激情视频| 亚洲成人国产一区在线观看| 一级片免费观看大全| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 嫩草影视91久久| 99在线人妻在线中文字幕 | 亚洲精品在线美女| 亚洲久久久国产精品| 国产成人影院久久av| 美女扒开内裤让男人捅视频| 女性被躁到高潮视频| 亚洲成人免费av在线播放| 国产免费现黄频在线看| 女人精品久久久久毛片| 国产亚洲精品一区二区www | 国产精品一区二区免费欧美| 不卡一级毛片| 黄片小视频在线播放| 久久精品91无色码中文字幕| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 日本一区二区免费在线视频| 丁香六月欧美| 国产亚洲精品第一综合不卡| 成在线人永久免费视频| 首页视频小说图片口味搜索| 在线十欧美十亚洲十日本专区| 村上凉子中文字幕在线| 高清黄色对白视频在线免费看| 大码成人一级视频| 一二三四在线观看免费中文在| 亚洲国产看品久久| 欧美日韩成人在线一区二区| xxxhd国产人妻xxx| www.自偷自拍.com| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 女人久久www免费人成看片| 久久久国产成人免费| 我的亚洲天堂| 日本黄色视频三级网站网址 | 亚洲国产欧美网| 亚洲 国产 在线| 90打野战视频偷拍视频| 亚洲精品乱久久久久久| 亚洲国产精品合色在线| 精品视频人人做人人爽| 午夜福利在线观看吧| www.精华液| 精品福利观看| 一本一本久久a久久精品综合妖精| 十八禁人妻一区二区| 成人影院久久| netflix在线观看网站| 日本黄色视频三级网站网址 | 久久精品亚洲精品国产色婷小说| 涩涩av久久男人的天堂| 久久久久久久久久久久大奶| 淫妇啪啪啪对白视频| 亚洲成人免费电影在线观看| 成人免费观看视频高清| x7x7x7水蜜桃| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 91成人精品电影| 一夜夜www| 人妻久久中文字幕网| 激情在线观看视频在线高清 | 亚洲 欧美一区二区三区| 中文字幕制服av| 黑丝袜美女国产一区| 亚洲免费av在线视频| 一本大道久久a久久精品| 亚洲第一av免费看| 国产av又大| 欧美最黄视频在线播放免费 | 国产不卡一卡二| 日韩人妻精品一区2区三区| 国产人伦9x9x在线观看| 不卡一级毛片| 亚洲精品中文字幕一二三四区| 高清av免费在线| 在线观看66精品国产| 免费在线观看完整版高清| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 国产不卡一卡二| 高清毛片免费观看视频网站 | 色婷婷久久久亚洲欧美| 亚洲av美国av| 极品人妻少妇av视频| 成人永久免费在线观看视频| 亚洲av美国av| 久久精品国产99精品国产亚洲性色 | 中文字幕高清在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 男女之事视频高清在线观看| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 国产高清videossex| 超碰97精品在线观看| 露出奶头的视频| 精品欧美一区二区三区在线| 身体一侧抽搐| 久久人妻熟女aⅴ| 午夜成年电影在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 国产高清videossex| 成人av一区二区三区在线看| 大型av网站在线播放| 国产高清国产精品国产三级| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 看片在线看免费视频| 动漫黄色视频在线观看| 啦啦啦免费观看视频1| 美女高潮到喷水免费观看| 他把我摸到了高潮在线观看| 色在线成人网| 校园春色视频在线观看| www.精华液| 亚洲av成人一区二区三| 麻豆成人av在线观看| 国产又爽黄色视频| 免费高清在线观看日韩| 国产精品美女特级片免费视频播放器 | 69av精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 午夜日韩欧美国产| 久久精品熟女亚洲av麻豆精品| 十八禁人妻一区二区| 国产成人精品久久二区二区免费| 欧美激情 高清一区二区三区| tocl精华| 国产亚洲精品一区二区www | 久久久国产精品麻豆| 一边摸一边抽搐一进一小说 | 欧美在线黄色| 黄频高清免费视频| 夜夜夜夜夜久久久久| 9191精品国产免费久久| 精品电影一区二区在线| 久久中文看片网| 亚洲五月婷婷丁香| 久久久久精品国产欧美久久久| a级毛片黄视频| 精品国产一区二区三区四区第35| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 亚洲精品粉嫩美女一区| 国产人伦9x9x在线观看| 国产又爽黄色视频| x7x7x7水蜜桃| 身体一侧抽搐| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 亚洲av成人av| 多毛熟女@视频| 午夜视频精品福利| 又大又爽又粗| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| 黑人猛操日本美女一级片| ponron亚洲| 最近最新中文字幕大全免费视频| 我的亚洲天堂| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区 | 一级片免费观看大全| 国产成人免费无遮挡视频| 美女午夜性视频免费| 久久香蕉激情| 在线观看66精品国产| 国产一区二区三区在线臀色熟女 | 在线观看免费视频日本深夜| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色 | 午夜老司机福利片| 久久久精品区二区三区| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 80岁老熟妇乱子伦牲交| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 后天国语完整版免费观看| 国产精品久久久久成人av| 亚洲av成人av| 成人18禁高潮啪啪吃奶动态图| 村上凉子中文字幕在线| 美女 人体艺术 gogo| av免费在线观看网站| 国产精品自产拍在线观看55亚洲 | 色94色欧美一区二区| 法律面前人人平等表现在哪些方面| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 久久精品国产综合久久久| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 欧美日韩瑟瑟在线播放| 精品国产乱码久久久久久男人| 久久热在线av| 日韩欧美一区视频在线观看| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 国产亚洲精品久久久久5区| 亚洲欧美日韩高清在线视频| 亚洲精品久久成人aⅴ小说| bbb黄色大片| 久久国产精品影院| 在线看a的网站| 一级毛片高清免费大全| 天堂动漫精品| 亚洲欧洲精品一区二区精品久久久| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 热re99久久国产66热| 亚洲av美国av| 最新美女视频免费是黄的| 啦啦啦免费观看视频1| 美女 人体艺术 gogo| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 九色亚洲精品在线播放| 国产精品久久久久久人妻精品电影| 看黄色毛片网站| 亚洲第一青青草原| 黑人猛操日本美女一级片| tube8黄色片| 亚洲人成电影免费在线| 成人av一区二区三区在线看| 又大又爽又粗| 国产精品98久久久久久宅男小说| а√天堂www在线а√下载 | 男女下面插进去视频免费观看| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 亚洲视频免费观看视频| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 老司机午夜十八禁免费视频| 久久久久久久国产电影| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 黑人操中国人逼视频| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色 | 自拍欧美九色日韩亚洲蝌蚪91| 精品电影一区二区在线| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 成人手机av| 午夜激情av网站| а√天堂www在线а√下载 | 桃红色精品国产亚洲av| 在线观看66精品国产| 大型av网站在线播放| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 亚洲一码二码三码区别大吗| 亚洲国产精品合色在线| 国产成人精品久久二区二区91| 9191精品国产免费久久| 国产男女超爽视频在线观看| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 国产1区2区3区精品| 天堂动漫精品| 欧美最黄视频在线播放免费 | 丝袜美腿诱惑在线| 黑人操中国人逼视频| av有码第一页| 亚洲成人手机| 90打野战视频偷拍视频| netflix在线观看网站| 国产精品免费一区二区三区在线 | 波多野结衣av一区二区av| 18禁黄网站禁片午夜丰满| 女同久久另类99精品国产91| 超色免费av| av免费在线观看网站| 久久精品国产亚洲av高清一级| 欧美最黄视频在线播放免费 | 国产亚洲精品久久久久5区| 精品国产国语对白av| 久久久久精品人妻al黑| 日日爽夜夜爽网站| 黄色视频不卡| 窝窝影院91人妻| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看| 亚洲av美国av| 国产精品一区二区免费欧美| 天堂√8在线中文| xxx96com| 日本精品一区二区三区蜜桃| 精品久久久久久久久久免费视频 | 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 午夜影院日韩av| 亚洲精华国产精华精| 黄色毛片三级朝国网站| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 一级毛片精品| 一区福利在线观看| 一进一出抽搐动态| 一二三四在线观看免费中文在| 国产精品自产拍在线观看55亚洲 | 免费观看a级毛片全部| 精品少妇久久久久久888优播| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯 | 久久精品熟女亚洲av麻豆精品| a在线观看视频网站| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 久久久精品区二区三区| 国产伦人伦偷精品视频| 看免费av毛片| 精品一品国产午夜福利视频| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 90打野战视频偷拍视频| av天堂久久9| 亚洲国产毛片av蜜桃av| 久久九九热精品免费| 国产免费男女视频| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 两个人免费观看高清视频| 妹子高潮喷水视频| 在线观看免费午夜福利视频| 午夜免费成人在线视频| 久久草成人影院| 美女午夜性视频免费| 国产男女内射视频| 国产精品久久久人人做人人爽| 国产高清videossex| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 国产一区二区三区综合在线观看| 午夜日韩欧美国产| 日本a在线网址| 激情在线观看视频在线高清 | 欧美日韩黄片免| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 999精品在线视频| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区mp4| 视频在线观看一区二区三区| 丝袜在线中文字幕| aaaaa片日本免费| 欧美av亚洲av综合av国产av| 黑人猛操日本美女一级片| 亚洲精品一二三| 黄色怎么调成土黄色| 国产亚洲欧美在线一区二区| 欧美日韩国产mv在线观看视频| 国产伦人伦偷精品视频| 黄色成人免费大全| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区精品| av天堂在线播放| 精品欧美一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 一区福利在线观看| 人人澡人人妻人| 国产一区二区三区综合在线观看| 韩国av一区二区三区四区| 51午夜福利影视在线观看| 亚洲一区中文字幕在线| 一夜夜www| 国产亚洲精品一区二区www | 国产激情久久老熟女| 美女视频免费永久观看网站| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 久久精品熟女亚洲av麻豆精品| 两人在一起打扑克的视频| 身体一侧抽搐| 18在线观看网站| 国产精品99久久99久久久不卡| 国内毛片毛片毛片毛片毛片| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | 女人被狂操c到高潮| 亚洲国产看品久久| 9色porny在线观看| 精品久久久久久久毛片微露脸| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 天天躁狠狠躁夜夜躁狠狠躁| 国产人伦9x9x在线观看| av有码第一页| 女性被躁到高潮视频| 日韩大码丰满熟妇| 自线自在国产av| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 免费一级毛片在线播放高清视频 | 国产午夜精品久久久久久| 美国免费a级毛片| av网站免费在线观看视频| 在线观看www视频免费| 黄色片一级片一级黄色片| 精品亚洲成a人片在线观看| 美女扒开内裤让男人捅视频| 亚洲av成人av| 欧美乱色亚洲激情| a在线观看视频网站| 大型黄色视频在线免费观看| av网站在线播放免费| 久久天堂一区二区三区四区| 成人精品一区二区免费| а√天堂www在线а√下载 | 久久久久久亚洲精品国产蜜桃av| 少妇被粗大的猛进出69影院| 黄色毛片三级朝国网站| 久久99一区二区三区| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区| 美女午夜性视频免费| 欧美久久黑人一区二区| 亚洲av电影在线进入| 手机成人av网站| 国产精品成人在线| videos熟女内射| 国产片内射在线| 在线天堂中文资源库| 精品久久久精品久久久| 又大又爽又粗| av天堂在线播放| 国产精品欧美亚洲77777| 捣出白浆h1v1| 高清欧美精品videossex| 久久精品成人免费网站| 999久久久国产精品视频| 精品午夜福利视频在线观看一区| 免费在线观看完整版高清| 精品国产国语对白av| 日韩人妻精品一区2区三区| 中文字幕制服av| 成熟少妇高潮喷水视频| 99在线人妻在线中文字幕 | 桃红色精品国产亚洲av| 国产男靠女视频免费网站| 亚洲精品国产色婷婷电影| 成年人免费黄色播放视频| 99国产精品一区二区三区| 国产精品偷伦视频观看了| 新久久久久国产一级毛片| 国产精品 欧美亚洲| 美女高潮到喷水免费观看| 成年人午夜在线观看视频| 两性夫妻黄色片| 婷婷成人精品国产| 后天国语完整版免费观看| 18禁观看日本| 精品国产一区二区久久| 好男人电影高清在线观看| 精品国产一区二区久久| 亚洲成人免费av在线播放| 免费在线观看亚洲国产| 久久亚洲精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 波多野结衣av一区二区av| 在线av久久热| 嫩草影视91久久| 久久这里只有精品19| 乱人伦中国视频| 国产亚洲欧美98| 亚洲国产毛片av蜜桃av| 成年女人毛片免费观看观看9 | 午夜亚洲福利在线播放| 国产免费男女视频| 亚洲av熟女| 黄色成人免费大全| 高清毛片免费观看视频网站 | 超碰成人久久| 交换朋友夫妻互换小说| 又紧又爽又黄一区二区| 一区二区三区精品91| 久久婷婷成人综合色麻豆| 国产成人av教育| 天天影视国产精品| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 亚洲精品国产区一区二| 免费不卡黄色视频| 免费看a级黄色片| 欧美成人免费av一区二区三区 | 嫁个100分男人电影在线观看| 女人被躁到高潮嗷嗷叫费观| 夫妻午夜视频| 大陆偷拍与自拍| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 亚洲av成人av| 亚洲色图av天堂| 精品久久久久久电影网| 日韩欧美一区二区三区在线观看 | 国产精品九九99| 黄色成人免费大全| 国产色视频综合| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 国产精品久久久av美女十八| 国产片内射在线| 日韩欧美免费精品| 免费在线观看影片大全网站| www.精华液| 天天添夜夜摸| 不卡一级毛片| www.精华液| 天天添夜夜摸| 国产精品久久久久久精品古装| 99久久综合精品五月天人人| 亚洲中文av在线| 一边摸一边做爽爽视频免费| 中文字幕色久视频| 五月开心婷婷网| 国产亚洲精品久久久久久毛片 | 亚洲,欧美精品.| 757午夜福利合集在线观看| bbb黄色大片| 黄片小视频在线播放| 亚洲国产精品合色在线| 美女 人体艺术 gogo| 午夜福利,免费看| 曰老女人黄片| 免费不卡黄色视频| 老汉色av国产亚洲站长工具| 曰老女人黄片| e午夜精品久久久久久久| 老汉色av国产亚洲站长工具| 黄色成人免费大全| 久久久国产成人精品二区 | 日本wwww免费看| 1024香蕉在线观看| 岛国在线观看网站| x7x7x7水蜜桃| 精品人妻熟女毛片av久久网站| 欧美不卡视频在线免费观看 | 免费日韩欧美在线观看| 久99久视频精品免费| 国产91精品成人一区二区三区| 热99国产精品久久久久久7|