• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    2015-04-17 07:25:21LiuYangLiYing
    High Technology Letters 2015年4期

    Liu Yang (劉 洋), Li Ying

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    Liu Yang (劉 洋), Li Ying②

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    This paper presents a low complexity optimized algorithm for design of bilayer lengthened LDPC (BL-LDPC) code for decode-and-forward relay system. The design is performed over the expanded graph of the BL-LDPC code, which consists of the original bilayer graph and the extra added relay-generated parity check bits. To build up our proposed optimized algorithm, we present a modified Gaussian approximation algorithm for the expanded structure of the BL-LDPC code. Then using the proposed optimized algorithm, we find the optimum overall expanded graph of the BL-LDPC code. Simulation results show that the BL-LDPC codes obtained by our proposed optimized algorithm have excellent bit-error-rate performances and small gaps between the convergence thresholds and the theoretical limits when transmitted over the additive white Gaussian noise channels.

    bilayer LDPC codes, relay channel, decode-and-forward, Gaussian approximation,channel capacity

    0 Introduction

    The three-node relay channel was introduced in Ref.[1] and the first capacity results were presented in Ref.[2]. While the capacity of the general relay channel is still unknown, recent years there have been a vast amount of researches on this topic, both in the information theory and coding communities. Among them, one main relay protocol is the decode-and-forward (DF) relay scheme, which is proved to achieve the capacity of the relay channel for certain special cases[2]. The classic DF technique is based on random binning[1], where the relay decodes the source data and provides a re-encoded copy (bin index) of the source message to the destination.

    One of the important researches for practical implementation of a DF relay scheme is the design of practical codes. In this research field, authors in Ref.[3] proposed a novel bilayer LDPC code used in Gaussian relay channel, which was designed to approach the information theoretic limit of the DF scheme. Bilayer LDPC codes consist of two general types called bilayer-expurgated LDPC (BE-LDPC) codes and bilayer-lengthened LDPC (BL-LDPC) codes.

    A bilayer LDPC code consists of one higher rate code optimized for the source-to-relay link as well as one lower rate code optimized for the source-to-destination link. As for BL-LDPC code, the lower rate code is designed first and then the higher rate code is designed by increasing the codeword length while keeping the parameters of the lower rate code unchanged. In other words, designing a BL-LDPC code corresponds to finding a bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-, while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+. More researches on the design of BL-LDPC codes were found in Refs[4-6]. In Ref.[4], the authors designed BL-LDPC codes for the Gaussian relay channel using irregular check degrees. The design of BL-LDPC code for Rayleigh fading relay channels was studied in Ref.[5]. Authors in Ref.[6] proposed a technique to design complexity-optimized BL-LDPC codes. However, these designs are all based on the bilayer graph not on the overall expanded graph of the BL-LDPC codes, which expands with an addition of extra parity check bits from the relay.

    The authors in Ref.[7] first proposed a BL-LDPC code design when joint decoding was performed over the overall expanded graph. The optimization algorithm was based on density evolution, including three steps.

    They first optimized the lower graph of BL-LDPC codes at R-, then fixing the lower graph, optimized the upper graph of BL-LDPC codes so that the bilayer graph of BL-LDPC codes was optimized at R+. In the last stage, they optimized the overall expanded graph at R-by fixing the optimized BL-LDPC code. This three-stage method resulted in a lack of global optimization. Meanwhile, since density evolution algorithm is an infinite-dimensional problem, this optimization algorithm is very much complex.

    In this study, a low complexity algorithm is proposed for the design of the BL-LDPC codes over the overall expanded graph, denoted as expanded BL-LDPC codes. To simplify the process, only the mean of message updates will be tracked, which are supposed to be Gaussian mixtures[8]. Based on this fact, a modified Gaussian approximation for the expanded BL-LDPC codes will be presented. The proposed algorithm aims at optimizing the degree distributions of the lower variable nodes and the upper variable nodes simultaneously. the bit-error-rate (BER) performances of the expanded BL-LDPC codes obtained by the proposed optimization algorithm will be simulated and their decoding thresholds will be calculated using the modified Gaussian approximation. Simulation results show that the proposed expanded BL-LDPC codes are excellent in BER performances and small gaps between the convergence thresholds and the theoretical limits.

    1 Preliminaries

    1.1 DF strategy

    A Gaussian degraded relay channel is shown in Fig.1, where X1and X2denote the transmitted signals from the source and relay while Y and Y1denote the received signals at the destination and relay. The transmission can be defined by

    (1)

    where Z1~N(0,N1) and Z2~N(0,N1+N2) denote Gaussian noises at relay and destination respectively. The power constraints at the source and relay are P1and P2. The overall DF rate at source is

    (2)

    where α is the optimal cooperation factor to maximize the rate. To ensure a successful decoding at the destination, the rate for relay’s codeword X2must satisfy

    (3)

    Please refer to Ref.[2] to review a full DF strategy.

    Fig.1 Gaussian degraded relay channel model

    1.2 Coding for DF

    Based on the DF strategy in Ref.[1], authors in Ref.[3] formulized a general code design problem for the scheme. The code design involves the construction of two codebooks: source codebook X1and relay codebook X2. The relay codebook X2can be constructed as a conventional error-correcting code that guarantees successful decoding at the destination. In contrast, the source codebook X1must be constructed so that it can be decoded successfully at both relay and destination. The source’s codebook needs to be designed at two SNR values. The first SNR value ensures the relay can successfully decode X1at SNR+=αP1/N1while the second SNR value ensures a successful decoding of X1with the help of extra parity bits from the relay at SNR-=αP1/(N1+N2).

    The code construction problem is illustrated in a schematic form shown in Fig.2, where

    (4)

    denote the effective source-to-relay and source-to-destination rates. These two rates are the targeted rates for the bilayer LDPC code design.

    Fig.2 The achievable rates R+, R- and R2 using DF strategy

    2 Expanded BL-LDPC code design

    2.1 Expanded BL-LDPC code description

    The Tanner graph of the BL-LDPC code structure[3]is depicted in Fig.3. It is divided into lower and upper graphs, which have n1and n2variable nodes respectively. Both sets of the variable nodes are connected to k1check nodes. Note that the bilayer graph corresponds to a lengthened version of the lower graph by adding n2variable nodes while keeping k1check nodes fixed. As mentioned above, designing a BL-LDPC code corresponds to finding the bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+.

    Fig.3 Tanner graph of a BL-LDPC code

    In this work, BL-LDPC code design over the overall expanded graph is proposed which consists of the bilayer graph of the BL-LDPC code and the relay-generated parity bits. The overall expanded graph of the BL-LDPC code is depicted in Fig.4, where it adds up k2extra relay-generated parity bits. At this point onwards, the Tanner graph in Fig.4 is refered as an expanded bilayer lengthened LDPC code (EBL-LDPC) and the Tanner graph in Fig.3 as a bilayer lengthened LDPC code (BL-LDPC).

    Fig.4 Tanner graph of an expanded BL-LDPC code

    Note that there are three edge types in Fig.4. The first edge type connects the sets of n1variable nodes and k1check nodes while the second edge type connects n2variable nodes and k1check nodes. The third edge type corresponds to the edges between n2variable nodes and k2extra parity bits. Now define two parameters η1and η2which denote the percentages of the first edge type and the second edge type respectively. It is easy to obtain the following relations.

    (5)

    The conventional design of EBL-LDPC codes can be divided into three stages. In the first stage, optimize the first edge type at R-which represents a good LDPC code for the lower graph of the BL-LDPC code in Fig.3. In the second stage, fixing the first edge type, optimize the second edge type so that the bilayer graph of the BL-LDPC code is a capacity-approaching LDPC code at R+. In the last stage, fixing the optimized BL-LDPC code at R+, search the third edge type in order that the overall expanded graph of the BL-LDPC code is optimized at R-.

    2.2 A modified Gaussian approximation for the EBL-LDPC codes

    In this section, only the mean of message updates is tracked instead of the complete distribution, based on which a modified Gaussian approximation algorithm is presented to design the EBL-LDPC codes over the overall expanded graph.

    (6)

    Hence, the average means of message updates at the n1and n2variable nodes are obtained as follows.

    (7)

    Similarly, working with the message updating rule at the check nodes, it is easy to obtain:

    (8)

    (9)

    Based on Eq.(6), the overall mean of message updates at the variable nodes is defined. This yields to

    (10)

    (11)

    According to Ref.[8], a necessary condition to obtain a successful decoding is given by

    (12)

    Eq.(12) is approximated linearly in λ[i,0,0]and λ[0,j,k], which allows for linear optimization programming.

    2.3 EBL-LDPC code optimization

    The overall expanded BL-LDPC codes can be now optimized. The most powerful algorithm probably consists of optimizing simultaneously n1variable nodes with degree distribution λ[i,0,0]and n2variable nodes with degree distribution λ[0,j,k].

    (13)

    (14)

    From Eq.(13), the following relation can be obtained:

    (15)

    (16)

    subject to:

    (17)

    (18)

    (19)

    A parameter μkis introduced in Ref.[3]. It is slowly increased at each optimization iteration and approaches 1 eventually.

    3 Simulation results

    In this paper, since it is needed to compare the results with those in Ref.[7], only the case of additive white Gaussian noise (AWGN) channel is dealt with.

    Recall that in Ref.[7], using density evolution, the code design starts with optimizing the bilayer graph of the BL-LDPC code at R+=0.7, which takes place in three stages. First, optimize the first edge type using an optimized irregular LDPC code at R-=0.5. Second, fix the optimized first edge type, and design the BL-LDPC code at R+=0.7 by adding n2variable nodes using the second edge type. In the next step, the optimized bilayer graph is fixed and the overall expanded graph is designed at R-=0.5 using the third edge type. They designed the optimized degree distribution (node-perspective) in the right side of Table 1. Denote this code as CODE(Ref). The gaps between the convergence thresholds of CODE(Ref) and the theoretical limits are calculated, denoted by gap+and gap-respectively.

    Table 1 The degree distributions of CODE and CODE(Ref)

    at target rate (R+,R-)=(0.7,0.5)

    For ease of comparison, take an overall code length of 10000 bits and denote this code as CODE. Applying our proposed optimized algorithm, the EBL-LDPC code is designed for (R+,R-)=(0.7,0.5) and then the optimized degree distributions (node-perspective) are given in the left side of Table 1.

    The convergence thresholds of CODE(Ref) are within 0.3266dB and 0.2312dB from the theoretical limits at R+=0.7 and R-=0.5, which are calculated using Gaussian approximation. In comparison, the convergence thresholds of CODE obtained by our proposed algorithm are within 0.3040dB and 0.205dB from the theoretical limits at R+=0.6925 and R-=0.4875. The gaps are slightly smaller than those in Ref.[7]. Although there exists minor rate loss, this is admissible as stated in Ref.[3]. Fig.5 plots the BER performances of these two codes. These curves show that the BER performance of CODE designed by our proposed algorithm is also slightly better than that of CODE(Ref) designed by density evolution. Here, it should be noted that the performance gains are more than the drop in theoretical limits due to the minor rate loss.

    To summarize, compared with the optimization process in Ref.[7], the proposed algorithm has low complexity while maintaining the same optimization accuracy as density evolution. Specially, our optimization algorithm is based on a modified Gaussian approximation which can convert an infinite-dimension problem of density evolution to a one-dimensional problem. By doing this, the complexity can be significantly reduced. Besides, the optimization process in Ref.[7] is divided into three stages which lacks of global optimization. Our algorithm is performed in one step which can optimize the degree distributions λ[i,0,0]and λ[0,j,k]simultaneously and the gaps to the theoretical limits of the proposed codes are smaller.

    Fig.5 Compare the BER performances of CODE with that of CODE(Ref). Solid straight lines represent theoretical limits of CODE; dashed straight lines represent the convergence thresholds of CODE

    4 Conclusion

    In this study, a low complexity optimized algorithm is proposed for the design of BL-LDPC codes over the expanded graph by adding up the extra relay-generated parity check bits. A modified Gaussian approximation algorithm is presented to build up the optimized algorithm and analyze the asymptotic performances. Our proposed algorithm shows that it is possible to optimize the degree distributions of the lower and the upper variable nodes simultaneously. Simulation results show that the BL-LDPC codes obtained by using the proposed low complexity algorithm have slightly better BER performances and smaller gaps to theoretical limits compared with those obtained by density evolution algorithm in Ref.[7].

    Reference

    [1] Thomas M C, Abbas A E G. Capacity theorems for the relay channel. IEEE Transactions on Informactions Theory, 1979, 25(5): 572-584

    [2] Gerhard K, Michael G, Piyush G. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Informactions Theory, 2005, 51(9): 3037-3063

    [3] Peyman R, Wei Y. Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Transactions on Informactions Theory, 2007, 53(10): 3723-3739

    [4] Marwan H A, Jinhong Y, Jun N, et al. Improved bilayer LDPC codes using irregular check node degree distribution. In: Proceedings of IEEE Symposium Information Theory, Toronto, Canada, 2008.141-145

    [5] Osso V, Masoud S. Design of bilayer lengthened LDPC codes for Rayleigh fading relay channels. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems, Baltimore, USA, 2011. 1-5

    [6] Osso V, Masoud S. Design of complexity- optimized bilayer lengthened LDPC codes for relay channels. In: Proceedings of the 49th Annual Allerton Conference Allerton House, Monticello, USA, 2011. 1019-1024

    [7] Azmi M H, Yuan J H. Performance of bilayer-lengthened LDPC codes under joint decoding. In: Proceedings of IEEE Information Theory Workshop, Taormina, Italy, 2009. 163-167

    [8] Chung S Y, Richardson T J, et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Informaction Theory, 2001, 47(2): 657-670

    Liu Yang, born in 1988. She is now studying for a Ph.D degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Xidian University in 2010. Her research interests include the construction of LDPC codes, spatially coupled codes and the design of LDPC codes for relay systems.

    10.3772/j.issn.1006-6748.2015.04.017

    ①Supported by the National Basic Research Program of China (No. 2012CB316100) and the National Natural Science Foundation of China (No. 61072064, 61201140, 61301177).

    ②To whom correspondence should be addressed. E-mail: yli@mail.xidian.edu.cn Received on July 14, 2014, Su Yuping

    热99国产精品久久久久久7| 欧美成狂野欧美在线观看| 亚洲精品粉嫩美女一区| www.自偷自拍.com| 色老头精品视频在线观看| 午夜久久久在线观看| 91国产中文字幕| www.999成人在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品福利观看| 91精品国产国语对白视频| 久久久久精品国产欧美久久久 | 亚洲欧美精品自产自拍| 国产一区有黄有色的免费视频| 少妇粗大呻吟视频| 中国国产av一级| 欧美日韩一级在线毛片| 日韩大码丰满熟妇| 亚洲成av片中文字幕在线观看| 久久久精品免费免费高清| 99久久人妻综合| 日韩 亚洲 欧美在线| 中文字幕精品免费在线观看视频| 国产片内射在线| 一区在线观看完整版| 男女免费视频国产| 日韩三级视频一区二区三区| 欧美精品高潮呻吟av久久| 999久久久精品免费观看国产| www日本在线高清视频| 午夜福利影视在线免费观看| 欧美乱码精品一区二区三区| 久久午夜综合久久蜜桃| 日韩一卡2卡3卡4卡2021年| 嫁个100分男人电影在线观看| 成年美女黄网站色视频大全免费| 91av网站免费观看| 精品乱码久久久久久99久播| 国产日韩欧美在线精品| 秋霞在线观看毛片| 水蜜桃什么品种好| 国产片内射在线| 亚洲精品国产色婷婷电影| 国产高清videossex| av网站在线播放免费| 国产欧美日韩一区二区精品| 日韩大码丰满熟妇| 亚洲一码二码三码区别大吗| 香蕉丝袜av| 日韩视频在线欧美| 老司机靠b影院| 97人妻天天添夜夜摸| 欧美日韩国产mv在线观看视频| 国产日韩一区二区三区精品不卡| 中文字幕色久视频| 日韩有码中文字幕| 这个男人来自地球电影免费观看| 高清黄色对白视频在线免费看| 亚洲精品中文字幕一二三四区 | 久久国产精品男人的天堂亚洲| 男人舔女人的私密视频| 蜜桃国产av成人99| 水蜜桃什么品种好| 美国免费a级毛片| 久久综合国产亚洲精品| 搡老乐熟女国产| bbb黄色大片| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美一区二区综合| a级片在线免费高清观看视频| 午夜影院在线不卡| 天天躁夜夜躁狠狠躁躁| 黄网站色视频无遮挡免费观看| 丝袜脚勾引网站| 亚洲欧美日韩高清在线视频 | cao死你这个sao货| 99精国产麻豆久久婷婷| 90打野战视频偷拍视频| 欧美午夜高清在线| 日韩精品免费视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 超碰97精品在线观看| 国产日韩欧美视频二区| 在线 av 中文字幕| 午夜91福利影院| 黄色毛片三级朝国网站| 国产男女内射视频| 大码成人一级视频| 性少妇av在线| 18禁黄网站禁片午夜丰满| 欧美成狂野欧美在线观看| 黄片大片在线免费观看| 最近最新免费中文字幕在线| 亚洲av欧美aⅴ国产| 成在线人永久免费视频| 女人久久www免费人成看片| 久久久精品免费免费高清| 精品一品国产午夜福利视频| 极品少妇高潮喷水抽搐| 丝瓜视频免费看黄片| 少妇粗大呻吟视频| 免费在线观看影片大全网站| 亚洲欧美激情在线| 日韩 亚洲 欧美在线| 九色亚洲精品在线播放| 女人爽到高潮嗷嗷叫在线视频| 男男h啪啪无遮挡| 久久久久久久精品精品| 亚洲欧洲精品一区二区精品久久久| 午夜久久久在线观看| 人妻久久中文字幕网| e午夜精品久久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| bbb黄色大片| 午夜老司机福利片| 亚洲伊人久久精品综合| 中文精品一卡2卡3卡4更新| 国产精品欧美亚洲77777| 午夜久久久在线观看| 夫妻午夜视频| 日本av手机在线免费观看| av电影中文网址| 老熟妇乱子伦视频在线观看 | 免费黄频网站在线观看国产| 18禁观看日本| 飞空精品影院首页| 另类精品久久| 亚洲av成人不卡在线观看播放网 | 亚洲精品日韩在线中文字幕| 国产av又大| 麻豆国产av国片精品| 女警被强在线播放| 国产一区二区在线观看av| 国产成人免费观看mmmm| 在线av久久热| 日韩一卡2卡3卡4卡2021年| 精品国产一区二区三区四区第35| 久久久久久久大尺度免费视频| 成人国产一区最新在线观看| 亚洲全国av大片| 精品亚洲乱码少妇综合久久| 国产在线观看jvid| 午夜福利一区二区在线看| 日韩欧美一区视频在线观看| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 国产成人精品无人区| 最新的欧美精品一区二区| 久9热在线精品视频| 99久久精品国产亚洲精品| 日韩制服骚丝袜av| 最新在线观看一区二区三区| 一本色道久久久久久精品综合| 人妻久久中文字幕网| 精品熟女少妇八av免费久了| 免费观看a级毛片全部| 成人三级做爰电影| 搡老乐熟女国产| 久久国产亚洲av麻豆专区| 在线十欧美十亚洲十日本专区| 国产免费一区二区三区四区乱码| 99国产精品99久久久久| 日韩免费高清中文字幕av| 欧美性长视频在线观看| 欧美激情久久久久久爽电影 | 国产精品九九99| 伊人亚洲综合成人网| 亚洲人成电影免费在线| 夫妻午夜视频| 国产99久久九九免费精品| 50天的宝宝边吃奶边哭怎么回事| 久久99热这里只频精品6学生| 一区二区三区四区激情视频| 亚洲国产欧美网| 欧美国产精品va在线观看不卡| 黄色视频在线播放观看不卡| 亚洲熟女毛片儿| 少妇精品久久久久久久| kizo精华| 亚洲av电影在线进入| 国产成人影院久久av| 精品国产一区二区久久| 男女高潮啪啪啪动态图| 天天躁日日躁夜夜躁夜夜| 国产免费视频播放在线视频| 一级毛片女人18水好多| 欧美久久黑人一区二区| 咕卡用的链子| 女人高潮潮喷娇喘18禁视频| 少妇裸体淫交视频免费看高清 | 亚洲激情五月婷婷啪啪| 精品免费久久久久久久清纯 | av天堂在线播放| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 国产视频一区二区在线看| 欧美 日韩 精品 国产| 精品国产一区二区三区四区第35| 久久天堂一区二区三区四区| 欧美日本中文国产一区发布| 成年人免费黄色播放视频| 99精国产麻豆久久婷婷| 久久99一区二区三区| 最黄视频免费看| 一级毛片精品| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃| 人妻 亚洲 视频| 精品国产一区二区三区久久久樱花| 18在线观看网站| 欧美在线一区亚洲| 99热网站在线观看| 亚洲欧美日韩高清在线视频 | a级毛片黄视频| tube8黄色片| 99re6热这里在线精品视频| 男女边摸边吃奶| 一本色道久久久久久精品综合| 久久99热这里只频精品6学生| 久久久精品区二区三区| 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 欧美精品一区二区免费开放| 中国国产av一级| 少妇 在线观看| 美女午夜性视频免费| 大陆偷拍与自拍| 精品国产一区二区久久| 亚洲精品av麻豆狂野| 建设人人有责人人尽责人人享有的| 99久久人妻综合| 天天影视国产精品| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲综合一区二区三区_| 后天国语完整版免费观看| 日韩一卡2卡3卡4卡2021年| 精品一区在线观看国产| 国产成人a∨麻豆精品| 丰满饥渴人妻一区二区三| 免费少妇av软件| 色94色欧美一区二区| 99精品久久久久人妻精品| a在线观看视频网站| 老司机午夜十八禁免费视频| 高清在线国产一区| 99久久综合免费| 国产精品99久久99久久久不卡| 老汉色∧v一级毛片| 国产欧美日韩一区二区三区在线| 涩涩av久久男人的天堂| 久久久欧美国产精品| 精品国产乱码久久久久久男人| 免费高清在线观看视频在线观看| 狠狠婷婷综合久久久久久88av| 男女之事视频高清在线观看| 亚洲天堂av无毛| 熟女少妇亚洲综合色aaa.| 午夜福利视频精品| 久热爱精品视频在线9| 亚洲少妇的诱惑av| 日本精品一区二区三区蜜桃| 国产免费福利视频在线观看| 亚洲色图 男人天堂 中文字幕| 老司机午夜福利在线观看视频 | 亚洲欧美精品自产自拍| 欧美日韩一级在线毛片| 男女国产视频网站| av电影中文网址| 午夜视频精品福利| 久久久欧美国产精品| 国产亚洲精品久久久久5区| 一区在线观看完整版| 夜夜夜夜夜久久久久| 日本av手机在线免费观看| 国产精品久久久久久精品电影小说| 亚洲专区中文字幕在线| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 中文字幕色久视频| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 99久久人妻综合| 国产在线视频一区二区| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av香蕉五月 | 日本五十路高清| 国产免费现黄频在线看| bbb黄色大片| 亚洲欧洲精品一区二区精品久久久| 高清欧美精品videossex| 国产在线一区二区三区精| 亚洲av日韩精品久久久久久密| 最黄视频免费看| 中国国产av一级| 黄色视频在线播放观看不卡| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 人妻久久中文字幕网| 老司机深夜福利视频在线观看 | 性色av乱码一区二区三区2| 三级毛片av免费| 亚洲av电影在线观看一区二区三区| 99国产精品一区二区三区| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清 | h视频一区二区三区| 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| 中国国产av一级| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 欧美国产精品一级二级三级| 国产在视频线精品| av天堂在线播放| 国产福利在线免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 蜜桃国产av成人99| 男女床上黄色一级片免费看| 国产国语露脸激情在线看| 天天躁日日躁夜夜躁夜夜| 欧美97在线视频| 狠狠狠狠99中文字幕| 亚洲综合色网址| 日韩免费高清中文字幕av| 成年av动漫网址| 精品人妻熟女毛片av久久网站| 最近最新免费中文字幕在线| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 欧美黑人精品巨大| 麻豆国产av国片精品| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 在线看a的网站| 亚洲国产中文字幕在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 成人免费观看视频高清| 日韩大片免费观看网站| 中文字幕高清在线视频| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 亚洲黑人精品在线| 亚洲国产欧美在线一区| 免费在线观看视频国产中文字幕亚洲 | 色婷婷久久久亚洲欧美| 精品少妇黑人巨大在线播放| 色综合欧美亚洲国产小说| 99久久人妻综合| 如日韩欧美国产精品一区二区三区| 在线观看舔阴道视频| 青春草视频在线免费观看| 一区在线观看完整版| 9热在线视频观看99| 亚洲国产精品999| 一进一出抽搐动态| 亚洲自偷自拍图片 自拍| 两个人免费观看高清视频| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看性视频| 国产av又大| 91九色精品人成在线观看| 在线观看免费视频网站a站| 国产精品成人在线| 在线精品无人区一区二区三| 18在线观看网站| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 后天国语完整版免费观看| 人妻人人澡人人爽人人| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 99国产精品一区二区三区| 一本一本久久a久久精品综合妖精| 久久久精品国产亚洲av高清涩受| 下体分泌物呈黄色| 日韩三级视频一区二区三区| 中文字幕色久视频| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花| 国产精品欧美亚洲77777| 亚洲精品国产av蜜桃| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 免费少妇av软件| 一区在线观看完整版| www日本在线高清视频| 久久久久精品人妻al黑| 老司机福利观看| 久久久久久久大尺度免费视频| 亚洲一码二码三码区别大吗| 黄色怎么调成土黄色| 亚洲欧美色中文字幕在线| 青草久久国产| 欧美人与性动交α欧美软件| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 欧美另类亚洲清纯唯美| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 国产高清国产精品国产三级| 韩国精品一区二区三区| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| 亚洲av美国av| 国产免费av片在线观看野外av| 亚洲中文av在线| 老司机午夜福利在线观看视频 | 国产成人精品久久二区二区免费| 久久毛片免费看一区二区三区| e午夜精品久久久久久久| 久久久精品区二区三区| 成年美女黄网站色视频大全免费| 精品少妇久久久久久888优播| 搡老岳熟女国产| 99热国产这里只有精品6| 久久国产精品影院| 久久中文字幕一级| 啦啦啦中文免费视频观看日本| 精品人妻在线不人妻| 女人精品久久久久毛片| 老汉色∧v一级毛片| 国产精品 国内视频| av电影中文网址| 日韩三级视频一区二区三区| 欧美中文综合在线视频| 乱人伦中国视频| 亚洲五月婷婷丁香| 亚洲欧美清纯卡通| 日韩三级视频一区二区三区| 精品一区在线观看国产| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码| 999久久久精品免费观看国产| 日韩欧美免费精品| 久久青草综合色| 久久毛片免费看一区二区三区| 桃花免费在线播放| 老司机靠b影院| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久 | 美女主播在线视频| 水蜜桃什么品种好| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| 日韩欧美一区视频在线观看| 成人国产av品久久久| av不卡在线播放| 性高湖久久久久久久久免费观看| 久久国产精品人妻蜜桃| 一区福利在线观看| 国产麻豆69| 国产亚洲一区二区精品| 99国产精品一区二区蜜桃av | 国产精品 国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久网色| 久久国产精品大桥未久av| 久久青草综合色| 一二三四社区在线视频社区8| 精品一区二区三区av网在线观看 | 美女午夜性视频免费| 午夜激情久久久久久久| 国产真人三级小视频在线观看| 欧美一级毛片孕妇| 亚洲伊人色综图| 69av精品久久久久久 | 午夜久久久在线观看| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 多毛熟女@视频| 亚洲精品国产av蜜桃| 永久免费av网站大全| 免费在线观看日本一区| 午夜影院在线不卡| 两性夫妻黄色片| 无限看片的www在线观看| a级片在线免费高清观看视频| 极品人妻少妇av视频| 少妇 在线观看| 精品久久久久久久毛片微露脸 | 一本综合久久免费| 亚洲,欧美精品.| 成人国产av品久久久| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 欧美久久黑人一区二区| 青春草视频在线免费观看| 性少妇av在线| 女人被躁到高潮嗷嗷叫费观| 又大又爽又粗| a级毛片黄视频| 国产精品自产拍在线观看55亚洲 | 国产亚洲欧美在线一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美色中文字幕在线| 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 黄色a级毛片大全视频| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 亚洲少妇的诱惑av| 日韩有码中文字幕| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 中文字幕精品免费在线观看视频| 视频区欧美日本亚洲| 久久99热这里只频精品6学生| 久久中文看片网| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 亚洲国产av新网站| 纯流量卡能插随身wifi吗| 91国产中文字幕| 一边摸一边做爽爽视频免费| 电影成人av| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 五月开心婷婷网| 亚洲精品av麻豆狂野| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 99精品久久久久人妻精品| 黄色 视频免费看| 两性夫妻黄色片| 另类精品久久| 在线观看免费日韩欧美大片| 亚洲欧美激情在线| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 电影成人av| 狂野欧美激情性bbbbbb| 日韩人妻精品一区2区三区| 手机成人av网站| 亚洲黑人精品在线| 水蜜桃什么品种好| 日韩人妻精品一区2区三区| 777久久人妻少妇嫩草av网站| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 电影成人av| 又紧又爽又黄一区二区| 亚洲精品久久久久久婷婷小说| 欧美成人午夜精品| 大香蕉久久成人网| 国产无遮挡羞羞视频在线观看| 国产一区二区三区av在线| 热re99久久精品国产66热6| 制服诱惑二区| 午夜视频精品福利| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃| 国产精品秋霞免费鲁丝片| 国产精品影院久久| 成人国产av品久久久| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 在线亚洲精品国产二区图片欧美| 黄色片一级片一级黄色片| 自线自在国产av| 操美女的视频在线观看| tube8黄色片| 免费久久久久久久精品成人欧美视频| 午夜免费观看性视频| 搡老乐熟女国产| www.999成人在线观看| 丁香六月欧美| 国内毛片毛片毛片毛片毛片| 国产精品一区二区精品视频观看| 欧美精品一区二区免费开放| 丰满饥渴人妻一区二区三| 欧美人与性动交α欧美精品济南到| 亚洲全国av大片| 成人国语在线视频| 精品一品国产午夜福利视频| 91大片在线观看| 欧美激情极品国产一区二区三区| netflix在线观看网站| 男女之事视频高清在线观看| 老司机在亚洲福利影院|