• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    2015-04-17 07:25:21LiuYangLiYing
    High Technology Letters 2015年4期

    Liu Yang (劉 洋), Li Ying

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Design of bilayer lengthened LDPC codes over expanded graph for relay channels①

    Liu Yang (劉 洋), Li Ying②

    (State Key Laboratory of ISN, Xidian University, Xi’an 710071, P.R.China)

    This paper presents a low complexity optimized algorithm for design of bilayer lengthened LDPC (BL-LDPC) code for decode-and-forward relay system. The design is performed over the expanded graph of the BL-LDPC code, which consists of the original bilayer graph and the extra added relay-generated parity check bits. To build up our proposed optimized algorithm, we present a modified Gaussian approximation algorithm for the expanded structure of the BL-LDPC code. Then using the proposed optimized algorithm, we find the optimum overall expanded graph of the BL-LDPC code. Simulation results show that the BL-LDPC codes obtained by our proposed optimized algorithm have excellent bit-error-rate performances and small gaps between the convergence thresholds and the theoretical limits when transmitted over the additive white Gaussian noise channels.

    bilayer LDPC codes, relay channel, decode-and-forward, Gaussian approximation,channel capacity

    0 Introduction

    The three-node relay channel was introduced in Ref.[1] and the first capacity results were presented in Ref.[2]. While the capacity of the general relay channel is still unknown, recent years there have been a vast amount of researches on this topic, both in the information theory and coding communities. Among them, one main relay protocol is the decode-and-forward (DF) relay scheme, which is proved to achieve the capacity of the relay channel for certain special cases[2]. The classic DF technique is based on random binning[1], where the relay decodes the source data and provides a re-encoded copy (bin index) of the source message to the destination.

    One of the important researches for practical implementation of a DF relay scheme is the design of practical codes. In this research field, authors in Ref.[3] proposed a novel bilayer LDPC code used in Gaussian relay channel, which was designed to approach the information theoretic limit of the DF scheme. Bilayer LDPC codes consist of two general types called bilayer-expurgated LDPC (BE-LDPC) codes and bilayer-lengthened LDPC (BL-LDPC) codes.

    A bilayer LDPC code consists of one higher rate code optimized for the source-to-relay link as well as one lower rate code optimized for the source-to-destination link. As for BL-LDPC code, the lower rate code is designed first and then the higher rate code is designed by increasing the codeword length while keeping the parameters of the lower rate code unchanged. In other words, designing a BL-LDPC code corresponds to finding a bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-, while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+. More researches on the design of BL-LDPC codes were found in Refs[4-6]. In Ref.[4], the authors designed BL-LDPC codes for the Gaussian relay channel using irregular check degrees. The design of BL-LDPC code for Rayleigh fading relay channels was studied in Ref.[5]. Authors in Ref.[6] proposed a technique to design complexity-optimized BL-LDPC codes. However, these designs are all based on the bilayer graph not on the overall expanded graph of the BL-LDPC codes, which expands with an addition of extra parity check bits from the relay.

    The authors in Ref.[7] first proposed a BL-LDPC code design when joint decoding was performed over the overall expanded graph. The optimization algorithm was based on density evolution, including three steps.

    They first optimized the lower graph of BL-LDPC codes at R-, then fixing the lower graph, optimized the upper graph of BL-LDPC codes so that the bilayer graph of BL-LDPC codes was optimized at R+. In the last stage, they optimized the overall expanded graph at R-by fixing the optimized BL-LDPC code. This three-stage method resulted in a lack of global optimization. Meanwhile, since density evolution algorithm is an infinite-dimensional problem, this optimization algorithm is very much complex.

    In this study, a low complexity algorithm is proposed for the design of the BL-LDPC codes over the overall expanded graph, denoted as expanded BL-LDPC codes. To simplify the process, only the mean of message updates will be tracked, which are supposed to be Gaussian mixtures[8]. Based on this fact, a modified Gaussian approximation for the expanded BL-LDPC codes will be presented. The proposed algorithm aims at optimizing the degree distributions of the lower variable nodes and the upper variable nodes simultaneously. the bit-error-rate (BER) performances of the expanded BL-LDPC codes obtained by the proposed optimization algorithm will be simulated and their decoding thresholds will be calculated using the modified Gaussian approximation. Simulation results show that the proposed expanded BL-LDPC codes are excellent in BER performances and small gaps between the convergence thresholds and the theoretical limits.

    1 Preliminaries

    1.1 DF strategy

    A Gaussian degraded relay channel is shown in Fig.1, where X1and X2denote the transmitted signals from the source and relay while Y and Y1denote the received signals at the destination and relay. The transmission can be defined by

    (1)

    where Z1~N(0,N1) and Z2~N(0,N1+N2) denote Gaussian noises at relay and destination respectively. The power constraints at the source and relay are P1and P2. The overall DF rate at source is

    (2)

    where α is the optimal cooperation factor to maximize the rate. To ensure a successful decoding at the destination, the rate for relay’s codeword X2must satisfy

    (3)

    Please refer to Ref.[2] to review a full DF strategy.

    Fig.1 Gaussian degraded relay channel model

    1.2 Coding for DF

    Based on the DF strategy in Ref.[1], authors in Ref.[3] formulized a general code design problem for the scheme. The code design involves the construction of two codebooks: source codebook X1and relay codebook X2. The relay codebook X2can be constructed as a conventional error-correcting code that guarantees successful decoding at the destination. In contrast, the source codebook X1must be constructed so that it can be decoded successfully at both relay and destination. The source’s codebook needs to be designed at two SNR values. The first SNR value ensures the relay can successfully decode X1at SNR+=αP1/N1while the second SNR value ensures a successful decoding of X1with the help of extra parity bits from the relay at SNR-=αP1/(N1+N2).

    The code construction problem is illustrated in a schematic form shown in Fig.2, where

    (4)

    denote the effective source-to-relay and source-to-destination rates. These two rates are the targeted rates for the bilayer LDPC code design.

    Fig.2 The achievable rates R+, R- and R2 using DF strategy

    2 Expanded BL-LDPC code design

    2.1 Expanded BL-LDPC code description

    The Tanner graph of the BL-LDPC code structure[3]is depicted in Fig.3. It is divided into lower and upper graphs, which have n1and n2variable nodes respectively. Both sets of the variable nodes are connected to k1check nodes. Note that the bilayer graph corresponds to a lengthened version of the lower graph by adding n2variable nodes while keeping k1check nodes fixed. As mentioned above, designing a BL-LDPC code corresponds to finding the bilayer graph so that the lower graph corresponds to a good LDPC code at rate R-optimized for SNR-while the bilayer graph represents a good LDPC code at rate R+optimized for SNR+.

    Fig.3 Tanner graph of a BL-LDPC code

    In this work, BL-LDPC code design over the overall expanded graph is proposed which consists of the bilayer graph of the BL-LDPC code and the relay-generated parity bits. The overall expanded graph of the BL-LDPC code is depicted in Fig.4, where it adds up k2extra relay-generated parity bits. At this point onwards, the Tanner graph in Fig.4 is refered as an expanded bilayer lengthened LDPC code (EBL-LDPC) and the Tanner graph in Fig.3 as a bilayer lengthened LDPC code (BL-LDPC).

    Fig.4 Tanner graph of an expanded BL-LDPC code

    Note that there are three edge types in Fig.4. The first edge type connects the sets of n1variable nodes and k1check nodes while the second edge type connects n2variable nodes and k1check nodes. The third edge type corresponds to the edges between n2variable nodes and k2extra parity bits. Now define two parameters η1and η2which denote the percentages of the first edge type and the second edge type respectively. It is easy to obtain the following relations.

    (5)

    The conventional design of EBL-LDPC codes can be divided into three stages. In the first stage, optimize the first edge type at R-which represents a good LDPC code for the lower graph of the BL-LDPC code in Fig.3. In the second stage, fixing the first edge type, optimize the second edge type so that the bilayer graph of the BL-LDPC code is a capacity-approaching LDPC code at R+. In the last stage, fixing the optimized BL-LDPC code at R+, search the third edge type in order that the overall expanded graph of the BL-LDPC code is optimized at R-.

    2.2 A modified Gaussian approximation for the EBL-LDPC codes

    In this section, only the mean of message updates is tracked instead of the complete distribution, based on which a modified Gaussian approximation algorithm is presented to design the EBL-LDPC codes over the overall expanded graph.

    (6)

    Hence, the average means of message updates at the n1and n2variable nodes are obtained as follows.

    (7)

    Similarly, working with the message updating rule at the check nodes, it is easy to obtain:

    (8)

    (9)

    Based on Eq.(6), the overall mean of message updates at the variable nodes is defined. This yields to

    (10)

    (11)

    According to Ref.[8], a necessary condition to obtain a successful decoding is given by

    (12)

    Eq.(12) is approximated linearly in λ[i,0,0]and λ[0,j,k], which allows for linear optimization programming.

    2.3 EBL-LDPC code optimization

    The overall expanded BL-LDPC codes can be now optimized. The most powerful algorithm probably consists of optimizing simultaneously n1variable nodes with degree distribution λ[i,0,0]and n2variable nodes with degree distribution λ[0,j,k].

    (13)

    (14)

    From Eq.(13), the following relation can be obtained:

    (15)

    (16)

    subject to:

    (17)

    (18)

    (19)

    A parameter μkis introduced in Ref.[3]. It is slowly increased at each optimization iteration and approaches 1 eventually.

    3 Simulation results

    In this paper, since it is needed to compare the results with those in Ref.[7], only the case of additive white Gaussian noise (AWGN) channel is dealt with.

    Recall that in Ref.[7], using density evolution, the code design starts with optimizing the bilayer graph of the BL-LDPC code at R+=0.7, which takes place in three stages. First, optimize the first edge type using an optimized irregular LDPC code at R-=0.5. Second, fix the optimized first edge type, and design the BL-LDPC code at R+=0.7 by adding n2variable nodes using the second edge type. In the next step, the optimized bilayer graph is fixed and the overall expanded graph is designed at R-=0.5 using the third edge type. They designed the optimized degree distribution (node-perspective) in the right side of Table 1. Denote this code as CODE(Ref). The gaps between the convergence thresholds of CODE(Ref) and the theoretical limits are calculated, denoted by gap+and gap-respectively.

    Table 1 The degree distributions of CODE and CODE(Ref)

    at target rate (R+,R-)=(0.7,0.5)

    For ease of comparison, take an overall code length of 10000 bits and denote this code as CODE. Applying our proposed optimized algorithm, the EBL-LDPC code is designed for (R+,R-)=(0.7,0.5) and then the optimized degree distributions (node-perspective) are given in the left side of Table 1.

    The convergence thresholds of CODE(Ref) are within 0.3266dB and 0.2312dB from the theoretical limits at R+=0.7 and R-=0.5, which are calculated using Gaussian approximation. In comparison, the convergence thresholds of CODE obtained by our proposed algorithm are within 0.3040dB and 0.205dB from the theoretical limits at R+=0.6925 and R-=0.4875. The gaps are slightly smaller than those in Ref.[7]. Although there exists minor rate loss, this is admissible as stated in Ref.[3]. Fig.5 plots the BER performances of these two codes. These curves show that the BER performance of CODE designed by our proposed algorithm is also slightly better than that of CODE(Ref) designed by density evolution. Here, it should be noted that the performance gains are more than the drop in theoretical limits due to the minor rate loss.

    To summarize, compared with the optimization process in Ref.[7], the proposed algorithm has low complexity while maintaining the same optimization accuracy as density evolution. Specially, our optimization algorithm is based on a modified Gaussian approximation which can convert an infinite-dimension problem of density evolution to a one-dimensional problem. By doing this, the complexity can be significantly reduced. Besides, the optimization process in Ref.[7] is divided into three stages which lacks of global optimization. Our algorithm is performed in one step which can optimize the degree distributions λ[i,0,0]and λ[0,j,k]simultaneously and the gaps to the theoretical limits of the proposed codes are smaller.

    Fig.5 Compare the BER performances of CODE with that of CODE(Ref). Solid straight lines represent theoretical limits of CODE; dashed straight lines represent the convergence thresholds of CODE

    4 Conclusion

    In this study, a low complexity optimized algorithm is proposed for the design of BL-LDPC codes over the expanded graph by adding up the extra relay-generated parity check bits. A modified Gaussian approximation algorithm is presented to build up the optimized algorithm and analyze the asymptotic performances. Our proposed algorithm shows that it is possible to optimize the degree distributions of the lower and the upper variable nodes simultaneously. Simulation results show that the BL-LDPC codes obtained by using the proposed low complexity algorithm have slightly better BER performances and smaller gaps to theoretical limits compared with those obtained by density evolution algorithm in Ref.[7].

    Reference

    [1] Thomas M C, Abbas A E G. Capacity theorems for the relay channel. IEEE Transactions on Informactions Theory, 1979, 25(5): 572-584

    [2] Gerhard K, Michael G, Piyush G. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Informactions Theory, 2005, 51(9): 3037-3063

    [3] Peyman R, Wei Y. Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Transactions on Informactions Theory, 2007, 53(10): 3723-3739

    [4] Marwan H A, Jinhong Y, Jun N, et al. Improved bilayer LDPC codes using irregular check node degree distribution. In: Proceedings of IEEE Symposium Information Theory, Toronto, Canada, 2008.141-145

    [5] Osso V, Masoud S. Design of bilayer lengthened LDPC codes for Rayleigh fading relay channels. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems, Baltimore, USA, 2011. 1-5

    [6] Osso V, Masoud S. Design of complexity- optimized bilayer lengthened LDPC codes for relay channels. In: Proceedings of the 49th Annual Allerton Conference Allerton House, Monticello, USA, 2011. 1019-1024

    [7] Azmi M H, Yuan J H. Performance of bilayer-lengthened LDPC codes under joint decoding. In: Proceedings of IEEE Information Theory Workshop, Taormina, Italy, 2009. 163-167

    [8] Chung S Y, Richardson T J, et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Informaction Theory, 2001, 47(2): 657-670

    Liu Yang, born in 1988. She is now studying for a Ph.D degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Xidian University in 2010. Her research interests include the construction of LDPC codes, spatially coupled codes and the design of LDPC codes for relay systems.

    10.3772/j.issn.1006-6748.2015.04.017

    ①Supported by the National Basic Research Program of China (No. 2012CB316100) and the National Natural Science Foundation of China (No. 61072064, 61201140, 61301177).

    ②To whom correspondence should be addressed. E-mail: yli@mail.xidian.edu.cn Received on July 14, 2014, Su Yuping

    狂野欧美激情性bbbbbb| 国产成人91sexporn| 18禁在线播放成人免费| 国产精品久久久久久精品电影小说| 99久久人妻综合| 欧美变态另类bdsm刘玥| 日本黄色日本黄色录像| 天天躁夜夜躁狠狠久久av| 91aial.com中文字幕在线观看| 日本wwww免费看| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 久热这里只有精品99| 久久人妻熟女aⅴ| 99热网站在线观看| 国产亚洲精品久久久com| 欧美成人午夜免费资源| .国产精品久久| 看非洲黑人一级黄片| 日韩强制内射视频| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 国产午夜精品久久久久久一区二区三区| 夫妻午夜视频| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| av在线观看视频网站免费| 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 夜夜看夜夜爽夜夜摸| 精品久久久久久电影网| 亚洲av免费高清在线观看| videos熟女内射| 人妻制服诱惑在线中文字幕| 一区二区av电影网| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 精品国产一区二区三区久久久樱花| 搡女人真爽免费视频火全软件| 亚洲色图综合在线观看| 国产在线一区二区三区精| www.av在线官网国产| 午夜av观看不卡| 9色porny在线观看| 如何舔出高潮| 久久久国产精品麻豆| 久久精品国产自在天天线| 天美传媒精品一区二区| 九九爱精品视频在线观看| 久久久久国产网址| 七月丁香在线播放| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 美女大奶头黄色视频| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 我的女老师完整版在线观看| 亚洲综合精品二区| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 丰满乱子伦码专区| 另类精品久久| 精品人妻熟女毛片av久久网站| 黄片无遮挡物在线观看| 黄色毛片三级朝国网站| 亚洲不卡免费看| .国产精品久久| 美女国产视频在线观看| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| 久久久久视频综合| 曰老女人黄片| 久久久欧美国产精品| 国产极品天堂在线| av国产精品久久久久影院| 香蕉精品网在线| 看免费成人av毛片| 成人国语在线视频| 亚洲国产色片| 熟女av电影| 久久99蜜桃精品久久| 国产成人av激情在线播放 | 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 秋霞伦理黄片| 久久99一区二区三区| 少妇的逼好多水| 日韩 亚洲 欧美在线| 久久毛片免费看一区二区三区| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 久久久久久人妻| 国产成人精品福利久久| 久久久久视频综合| 丝袜脚勾引网站| 久久毛片免费看一区二区三区| 在线观看免费日韩欧美大片 | 色网站视频免费| 99热网站在线观看| 亚洲精品第二区| 中国美白少妇内射xxxbb| av免费观看日本| 少妇猛男粗大的猛烈进出视频| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 日日爽夜夜爽网站| 国产免费又黄又爽又色| 如日韩欧美国产精品一区二区三区 | 日日撸夜夜添| 51国产日韩欧美| 亚洲无线观看免费| 久久久久久伊人网av| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一二三区| 能在线免费看毛片的网站| 少妇精品久久久久久久| 国产精品国产三级专区第一集| 天美传媒精品一区二区| 黑人巨大精品欧美一区二区蜜桃 | 日韩中文字幕视频在线看片| 黄色视频在线播放观看不卡| 亚洲无线观看免费| 爱豆传媒免费全集在线观看| 午夜激情福利司机影院| 大香蕉久久网| 日韩av免费高清视频| 99热全是精品| 色94色欧美一区二区| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 久久av网站| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 日韩电影二区| 最黄视频免费看| 丰满少妇做爰视频| kizo精华| 精品国产一区二区久久| 一本一本综合久久| 18+在线观看网站| 国产 一区精品| 精品少妇内射三级| 精品人妻在线不人妻| av播播在线观看一区| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| 精品少妇内射三级| 蜜桃在线观看..| 日韩中字成人| 最近手机中文字幕大全| 高清视频免费观看一区二区| 日日撸夜夜添| 蜜桃国产av成人99| av网站免费在线观看视频| 人人澡人人妻人| 内地一区二区视频在线| 久久人妻熟女aⅴ| av天堂久久9| 亚洲不卡免费看| 边亲边吃奶的免费视频| 91精品伊人久久大香线蕉| 免费少妇av软件| 国产极品天堂在线| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 久久久久久久久大av| 人妻少妇偷人精品九色| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频 | 国语对白做爰xxxⅹ性视频网站| 一区二区日韩欧美中文字幕 | 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 高清黄色对白视频在线免费看| 一级二级三级毛片免费看| 久久精品国产a三级三级三级| 我的老师免费观看完整版| 黑人欧美特级aaaaaa片| 夜夜爽夜夜爽视频| 欧美人与性动交α欧美精品济南到 | 国产成人精品无人区| 午夜免费鲁丝| av专区在线播放| 精品国产乱码久久久久久小说| 一本一本综合久久| 亚洲成色77777| 亚洲内射少妇av| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 日本猛色少妇xxxxx猛交久久| 成人二区视频| 男的添女的下面高潮视频| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 蜜臀久久99精品久久宅男| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放| 色哟哟·www| 在线亚洲精品国产二区图片欧美 | 999精品在线视频| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 最黄视频免费看| 午夜激情av网站| 亚洲成色77777| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线 | 国产高清不卡午夜福利| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 国产av精品麻豆| 99九九线精品视频在线观看视频| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| 国产成人一区二区在线| 国产精品欧美亚洲77777| 亚洲不卡免费看| 日韩av在线免费看完整版不卡| 国产精品久久久久久av不卡| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 精品久久久久久久久av| av在线老鸭窝| 精品国产一区二区久久| 欧美 日韩 精品 国产| 国产永久视频网站| 国产在视频线精品| 91精品一卡2卡3卡4卡| 99久久中文字幕三级久久日本| 在线观看www视频免费| 亚洲av日韩在线播放| 卡戴珊不雅视频在线播放| 午夜视频国产福利| 精品午夜福利在线看| 午夜精品国产一区二区电影| 国产黄频视频在线观看| 老司机影院成人| 成人免费观看视频高清| 啦啦啦中文免费视频观看日本| 黄色欧美视频在线观看| 中国三级夫妇交换| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 九色亚洲精品在线播放| 永久免费av网站大全| 亚洲成人手机| 国产欧美亚洲国产| 成人影院久久| 黄色欧美视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 特大巨黑吊av在线直播| 欧美日韩成人在线一区二区| 亚洲人与动物交配视频| 久久99一区二区三区| 大片免费播放器 马上看| 国产成人一区二区在线| 免费av中文字幕在线| 中文字幕人妻熟人妻熟丝袜美| 一区在线观看完整版| 国产 精品1| 美女脱内裤让男人舔精品视频| av在线播放精品| 在线播放无遮挡| 2018国产大陆天天弄谢| 在线观看人妻少妇| 桃花免费在线播放| 新久久久久国产一级毛片| 五月伊人婷婷丁香| 超碰97精品在线观看| 中文天堂在线官网| 国产精品久久久久久精品电影小说| 大陆偷拍与自拍| 日本爱情动作片www.在线观看| 久久久欧美国产精品| 欧美精品国产亚洲| 免费少妇av软件| 国产成人91sexporn| 国产精品久久久久久久久免| 午夜av观看不卡| 久久人人爽人人片av| 满18在线观看网站| 国产亚洲精品久久久com| 国产精品一区二区在线观看99| 人人澡人人妻人| 国产午夜精品一二区理论片| 国国产精品蜜臀av免费| 久久婷婷青草| 国产亚洲午夜精品一区二区久久| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 中文字幕制服av| 欧美精品一区二区免费开放| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片 | 国产国语露脸激情在线看| 日本黄色片子视频| 成人手机av| 亚洲人与动物交配视频| 男女边摸边吃奶| 热99国产精品久久久久久7| 色网站视频免费| 热re99久久国产66热| 在线精品无人区一区二区三| 观看美女的网站| 国产精品不卡视频一区二区| 搡老乐熟女国产| h视频一区二区三区| 亚洲国产欧美在线一区| 国产色婷婷99| 国产国拍精品亚洲av在线观看| tube8黄色片| 国产成人91sexporn| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区 | 色婷婷av一区二区三区视频| 日日啪夜夜爽| 日韩制服骚丝袜av| av黄色大香蕉| 中国三级夫妇交换| 国产成人精品一,二区| 亚洲综合色惰| 国产色爽女视频免费观看| 久久久久久久久大av| 老熟女久久久| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 十八禁高潮呻吟视频| 又大又黄又爽视频免费| 久久久久久久久久久丰满| 国产极品粉嫩免费观看在线 | 久久99精品国语久久久| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 日韩 亚洲 欧美在线| 91久久精品电影网| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 丝袜脚勾引网站| 人成视频在线观看免费观看| 人妻少妇偷人精品九色| 亚洲精品亚洲一区二区| 51国产日韩欧美| 男女边摸边吃奶| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 18在线观看网站| 狂野欧美白嫩少妇大欣赏| a级毛片在线看网站| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| a级毛片免费高清观看在线播放| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 国产探花极品一区二区| 高清不卡的av网站| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 国产成人精品久久久久久| 好男人视频免费观看在线| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 热re99久久国产66热| 成人亚洲欧美一区二区av| 国产在视频线精品| 天天操日日干夜夜撸| 九色亚洲精品在线播放| 黄片无遮挡物在线观看| 99热这里只有精品一区| 最近最新中文字幕免费大全7| 一级爰片在线观看| 多毛熟女@视频| 97超碰精品成人国产| 人人澡人人妻人| 欧美日本中文国产一区发布| 精品国产国语对白av| 国产av码专区亚洲av| 夜夜骑夜夜射夜夜干| 欧美三级亚洲精品| 国产黄色视频一区二区在线观看| 国产午夜精品久久久久久一区二区三区| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 日韩av免费高清视频| 久久久欧美国产精品| 久久人人爽av亚洲精品天堂| av有码第一页| 日韩三级伦理在线观看| 精品人妻在线不人妻| 男女国产视频网站| 十八禁网站网址无遮挡| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版| 青春草国产在线视频| 免费观看a级毛片全部| 亚洲精品乱码久久久v下载方式| 色吧在线观看| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| 午夜91福利影院| 人体艺术视频欧美日本| 人妻少妇偷人精品九色| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美 | 80岁老熟妇乱子伦牲交| 欧美性感艳星| 免费av不卡在线播放| 热99国产精品久久久久久7| 日韩人妻高清精品专区| 亚洲精品456在线播放app| 少妇丰满av| 免费黄频网站在线观看国产| 男女高潮啪啪啪动态图| 免费大片黄手机在线观看| 精品国产国语对白av| 寂寞人妻少妇视频99o| 亚洲精品第二区| 婷婷色综合大香蕉| 国产高清三级在线| 欧美国产精品一级二级三级| 亚洲久久久国产精品| 热re99久久国产66热| 亚洲欧美精品自产自拍| 在线免费观看不下载黄p国产| 免费观看a级毛片全部| 亚洲少妇的诱惑av| 97在线视频观看| 精品人妻熟女毛片av久久网站| 久久午夜福利片| 男女免费视频国产| 韩国高清视频一区二区三区| 国产一区二区在线观看av| 亚洲第一av免费看| 久久综合国产亚洲精品| .国产精品久久| 精品熟女少妇av免费看| 欧美精品亚洲一区二区| 精品久久久久久久久亚洲| av在线app专区| √禁漫天堂资源中文www| 久久精品国产亚洲av涩爱| 99九九在线精品视频| 永久免费av网站大全| 性色av一级| 少妇人妻 视频| 黄色欧美视频在线观看| 在线观看国产h片| 成人亚洲精品一区在线观看| 下体分泌物呈黄色| 91aial.com中文字幕在线观看| 久久精品国产a三级三级三级| 一边亲一边摸免费视频| 国产在线视频一区二区| 日本欧美国产在线视频| 成人手机av| 亚洲少妇的诱惑av| 国产亚洲最大av| 黄色一级大片看看| 热99国产精品久久久久久7| 超色免费av| 亚洲精品一区蜜桃| av一本久久久久| 伦理电影大哥的女人| 五月天丁香电影| 欧美精品一区二区免费开放| 午夜福利视频在线观看免费| 久久久久人妻精品一区果冻| 久久女婷五月综合色啪小说| 亚洲人与动物交配视频| 亚洲欧洲国产日韩| 精品人妻在线不人妻| 亚洲欧美日韩卡通动漫| 久久99一区二区三区| 亚洲成人一二三区av| 99久久中文字幕三级久久日本| 热99久久久久精品小说推荐| 精品卡一卡二卡四卡免费| 日韩人妻高清精品专区| 内地一区二区视频在线| √禁漫天堂资源中文www| 国产欧美亚洲国产| 亚洲国产色片| 少妇丰满av| 免费人成在线观看视频色| 视频中文字幕在线观看| 国产免费福利视频在线观看| 妹子高潮喷水视频| 成人国语在线视频| 亚洲,欧美,日韩| 亚洲综合精品二区| 欧美精品一区二区免费开放| 国产一区有黄有色的免费视频| 国产精品女同一区二区软件| 免费观看av网站的网址| 国产69精品久久久久777片| 十分钟在线观看高清视频www| 亚洲精华国产精华液的使用体验| 能在线免费看毛片的网站| 久久久午夜欧美精品| 亚洲不卡免费看| 丰满乱子伦码专区| 成人亚洲欧美一区二区av| 少妇熟女欧美另类| 我的女老师完整版在线观看| 午夜福利,免费看| 中文字幕精品免费在线观看视频 | 校园人妻丝袜中文字幕| 我的老师免费观看完整版| 晚上一个人看的免费电影| 久久久国产一区二区| 欧美激情极品国产一区二区三区 | h视频一区二区三区| 91精品国产国语对白视频| 久久免费观看电影| 国产乱人偷精品视频| 制服人妻中文乱码| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 久久久久久久久大av| 尾随美女入室| 亚洲av免费高清在线观看| 69精品国产乱码久久久| 成年女人在线观看亚洲视频| 丝袜美足系列| 一区二区三区精品91| 国产一区有黄有色的免费视频| 久久久久久久精品精品| 寂寞人妻少妇视频99o| 亚洲国产成人一精品久久久| 国国产精品蜜臀av免费| 色网站视频免费| 欧美丝袜亚洲另类| 啦啦啦在线观看免费高清www| 岛国毛片在线播放| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| 亚洲在久久综合| 下体分泌物呈黄色| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人精品一区二区| 夜夜骑夜夜射夜夜干| 欧美人与性动交α欧美精品济南到 | 成人漫画全彩无遮挡| 日本免费在线观看一区| 国产精品蜜桃在线观看| 欧美另类一区| 夜夜看夜夜爽夜夜摸| 飞空精品影院首页| 久久久精品94久久精品| 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 欧美少妇被猛烈插入视频| 老司机影院毛片| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美在线一区| 看十八女毛片水多多多| 久久人人爽人人片av| 国产一区亚洲一区在线观看| 黄色配什么色好看| 少妇人妻精品综合一区二区| 国产精品国产三级国产av玫瑰| 99re6热这里在线精品视频| 亚洲国产色片| 日本vs欧美在线观看视频| 99国产精品免费福利视频| 欧美日韩av久久| av免费在线看不卡| 黄色配什么色好看| 国产日韩欧美视频二区| 欧美精品国产亚洲| 免费高清在线观看日韩| 超碰97精品在线观看| 国产亚洲午夜精品一区二区久久| 精品国产露脸久久av麻豆| 如何舔出高潮| 中文字幕最新亚洲高清| 男女免费视频国产| 亚洲国产精品国产精品| 青青草视频在线视频观看| 22中文网久久字幕|