• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Secure planar convex hull protocol for large-scaled point sets in semi-honest model①

    2015-04-17 07:25:12SunMaohua孫茂華
    High Technology Letters 2015年4期

    Sun Maohua(孫茂華)

    (*Information School, Capital University of Economics and Business, Beijing 100070, P.R.China)(**School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China)

    ?

    Secure planar convex hull protocol for large-scaled point sets in semi-honest model①

    Sun Maohua(孫茂華)②

    (*Information School, Capital University of Economics and Business, Beijing 100070, P.R.China)(**School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China)

    Efficiency and scalability are still the bottleneck for secure multi-party computation geometry (SMCG). In this work a secure planar convex hull (SPCH) protocol for large-scaled point sets in semi-honest model has been proposed efficiently to solve the above problems. Firstly, a novel privacy-preserving point-inclusion (PPPI) protocol is designed based on the classic homomorphic encryption and secure cross product protocol, and it is demonstrated that the complexity of PPPI protocol is independent of the vertex size of the input convex hull. And then on the basis of the novel PPPI protocol, an effective SPCH protocol is presented. Analysis shows that this SPCH protocol has a good performance for large-scaled point sets compared with previous solutions. Moreover, analysis finds that the complexity of our SPCH protocol relies on the size of the points on the outermost layer of the input point sets only.

    secure multi-party computation, secure multi-party computational geometry (SMCG), secure planar convex hull protocol (SPCH), privacy-preserving point-inclusion protocol (PPPI), semi-honest model

    0 Introduction

    With the rapid expansion of smart phone and tablet markets, location based service (LBS) becomes more and more popular. LBS uses information on the geographical position of mobile devices and it has a large number of users in social network. Although the LBS applications have significant benefits, some of them reveal privacy of users which may attract security risk. For example, revealing that a master is not at home may be a risk if that information is discovered by thieves. Several technical approaches exist to protect privacy in LBS. One way that formalizes privacy requirements for LBS is done by secure multi-party computation (SMC) protocols. SMC enables mutually suspicious parties to compute a joint function on their private input in a manner that at the end parties know nothing useful and except the result. SMC was introduced by Yao[1], further extended by Goldreich, et al.[2]and other researchers. A series of works have considered the design of more efficient SMC protocols in all kinds of application area.

    As a special application area of SMC, SMCG aims to protect the input data in a geometric function computation. SMCG was proposed by Atallah, et al.[3]in 2001. Since its instruction, SMCG has been extensively studied because it can be wildly used in many applications e.g. the privacy issue in LBS applications. In this paper, the SMCG line is followed to protect the privacy information in the geometry function computation, which mainly focuses on two classical SMCG problems, namely PPPI and SPCH.

    PPPI problem: Alice has a convex hull P={p0, p1,…,pn}, where p0is the bottom-left point and other points are sorted anticlockwise. Point pican be described as pi=(xi, yi) for 0≤i≤n. Bob has a point q=(m, n). Alice and Bob wish to estimate whether q locates in P without revealing to each other anything intended. Concretely, Alice cannot get the value of q and Bob cannot get anything about P.

    SPCH problem: Alice has a point set A,Bob has a point set B. Alice and Bob wish to jointly find the convex hull for these A∪B points. However, neither Alice nor Bob wish to disclose any more information to each other than what can be derived from the result.

    PPPI and SPCH are the classical and best studied problems in SMCG. Since their introduction, several techniques have been used to realize PPPI and SPCH protocols. Solutions to PPPI and SPCH include:

    Circuit-Based Solutions A naive solution to PPPI or SPCH is using the circuit-based SMC, which is a generic secure computation protocol that allows the secure evaluation of arbitrary functions, expressed as Arithmetic or Boolean circuits. The most classical circuit-based SMC protocol called GMW was introduced by Goldreich, et al[2]. Their solution allows evaluation of arbitrary functions between two parties in the semi-honest model. Improved GMW protocols are proposed in Refs[4-6] recently. Although any polynomial-time multi-party computation can be done by circuit-based solutions, this generic approach is sometimes impractical due to its complexity. Recent research on PPPI and SPCH focuses on finding more efficient privacy-preserving custom algorithms.

    Custom PPPI Solutions The first custom PPPI protocol was proposed by Atallah, et al.[3]. Li, et al.[7]proposed an approximate secure multi-party graph inclusion protocol based on Monte Carlo approach and Cantor encoding. Luo, et al.[8]proposed a PPPI protocol to determine whether a point was inside a convex polygon based on the secure cross product protocol; the computational complexity of their protocol is O(tnlogn+tn2) where t denotes the vertex size in the convex hull. Based on additive homomorphic encryption, Liu et al. developed a privacy-preserving point-line relation determination protocol[9]and the computational complexity of their protocol was O(tlogn+tn2). As evaluating the positional relationship between a point and every edge in the convex hull is an intuition to address the PPPI problem, it is found that the computation and communication complexity of the previous protocols using this intuition rely on the vertex size of the input polygon. When the vertex size of the input polygon is large, the previous protocols are less efficient.

    Custom SPCH Solutions Lu, et al.[10]provided a SPCH scheme based on Graham algorithm with the computational complexity O(rN3+NlogN) where N denotes the size of the input points set. Based on the Euclid-distance Measure scheme, Wang, et al.[11]presented an approximate solution to the SPCH problem with computational complexity O(N3+N2logN). Hans, et al.[12]constructed an improved SPCH protocol with complexity O(NlogN), unfortunately it was shown in secure in Ref.[13]. Wang, et al. presented a SMC protocol for two party convex hull construction with quadratic communication complexity[14]. In addition, Li, et al.[15]presented a quadratic SMC protocol for approximately three-dimensional convex hulls. Like the existing custom PPPI protocols, it is found find that the complexity of these SPCH protocols relies on the size of input point sets. When the input point sets are large, the protocols are less efficient.

    In this work, two effective SMCG protocols including a PPPI protocol and a SPCH protocol are proposed in the semi-honest model. In the PPPI protocol, parties do not need to determine the positional relationship between the input point and every edge in the convex hull; they only need to determine the positional relationship between the input point and one edge which is called the nearest edge. When the size of the input convex hull is large, the proposed protocol is more efficient. The SPCH protocol is designed based on the incremental method. As the parties compute the convex hull of their input point sets respectively in the preprocessing stage, the complexity of the SPCH protocol is only related to the size of the points in the outermost layer. Compared with the previous SPCH protocols, the proposed protocol is faster when the input point sets are large scaled.

    Analysis shows that the new protocols are secure in the semi-honest mode. The semi-honest model assumes that parties follow the protocol correctly, and there is no efficient adversary that can extract more information from the transcript of the protocol execution than what is revealed from the output. The scheme secure is not given against malicious adversaries for three reasons. First, the semi-honest model is secure enough when it is hard to tamper the protocol software. This is just right fit for our settings. Second, most of the existing SMCG protocols[7-15]and many advanced SMC protocols[3-18]are proposed in the semi-honest model. The choice of semi-honest model follows the previous work. Third, it is an independent object of interest in SMC to convert protocols in semi-honest model to malicious model[19-28]. These conversions can be used to change the proposed protocols’ secure model if necessary. The security analysis of our protocols uses the definition of the security in semi-honest model given by Goldreich[29]. This analysis method is widely used in SMC protocols.

    The paper is organized as follows. Section 1 described the preliminaries. Section 2 depicts the proposed PPPI protocol. The SPCH protocol is presented in Section 3. Conclusion is drawn in Section 4.

    1 Preliminaries

    1.1 Millionaire protocol

    In 1980’s, Yao[1]proposed a constant-round protocol called Millionaire Protocol (MP) to securely compare two private input data owned by the two participants separately. In the proposed protocol, MP is used as the underlying block. In the rest of the paper, MP is used (x, y) to denote the Millionaire Protocol with the input data x and y. The return of MP(x, y) is defined as

    1.2 Homomorphic encryption

    1.3 Secure cross product protocol

    2 PPPI Protocol

    2.1 Protocol design

    The definition of PPPI problem is described in the Introduction. To avoid evaluating the positional relationship between the q and every edge in P, the following idea is used: in the planar field, three cases exist in the relationship between a convex and a point:

    (1) If n

    Fig.1 Relationship between a point and a convex

    (2) If n=y0, it is needed to estimate whether q=p0. If q=p0, then point q is the bottom-left point of P. If q≠p0, then q?P. Such as point B with the convex hull P={p0, p1,…,p4} in Fig.1.

    (3) If n>y0, it is assumed that q locates between p0pi-1andp0pi. Now, it is needed to estimate the relationship between q and pi-1pi. the nearest edge in the convex hull is called P for point q. If q locates at the left side of pi-1pi, then q∈P. Such as point D with the convex hull in Fig.1. When q locates at the right side of pi-1pi, q?P, such as point C with convex hull P={p0, p1,…,p4} in Fig.1.

    Based on the idea above, firstly MP and additive homomorphic encryption scheme are used to find the nearest edge in P for q; Secondly, SCP_PL is used to determine the relationship between q and the nearest edge which reflect the relationship between q and P. The PPPI protocol is described in Table 1. In the rest of our paper, Ai^Bidenotes that Alice and Bob compute the function jointly in step i; Ai|Bidenotes that Alice and Bob compute the function seperately in step i; Aidenotes that Alice computes the function alone in step i.

    Table 1 PPPI Protocol

    2.2 Security analysis

    Theorem 1 Assuming the underlying millionaire protocol, homomorphic encryption scheme and SCP_PL protocol are secure in semi-honest model, the proposed PPPI protocol securely evaluates the relationship between the input point and convex hull in the presence of semi-honest adversaries.

    Proof: As the underlying millionaire protocol is secure in semi-honest model, our protocol is secure if n≤y0. If n>y0, the security of our protocol is analyzed as following:

    Alice inputs the point set P={p0, p1,…,pn}, Bob inputs the point set q=(m,n). The protocol outputs outputΠ=t where t=True refers to q∈P and t=False refers to q?P.

    Bob’s view The view of Bob during the execution of π is

    E′(r′m-r′x0)=[E(-x0)]r′E(r′m)

    E′(r′n-r′y0)=[E(-y0)]r′E(r′n)

    As the underlying homomorphic encryption scheme, millionaire protocol and SCP_PL protocol are secure in semi-honest model, the conclusion is that

    Thus it is concluded the simulated view is distinguishable from the real view:

    The same simulator can be created for Alice.

    2.3 Algorithm complexity

    In SMCG, many protocols use underlying building blocks without specifying the protocol detail. Notations defined in Table 6 is used to compare the complexity. To compare the computational complexity concretely, the underlying protocols are referred as follows: Paillier’s cryptosystem is used as the additive homomorphic encryption scheme; the protocol presented in Ref.[18] is used to solve the millionaire problem; Luo’s solution[30]is used as the underlying SCP_PL protocol.

    The communicational complexity is concluded in Table 2 (t is the vertex size in the convex hull).It shows that the complexity of protocols in Refs[8,9] relies on the vertex size of the convex hull while the proposed protocol is not. When the number of the vertex in the convex hull is huge, our protocol is much better than the previous protocols.

    Table 2 Algorithm complexity

    3 Secure planar convex hull protocol

    3.1 Protocol design

    To reduce the interactive computation, Alice and Bob evaluate the convex hull of his/her point set locally at the preprocessing phase. This method is also used in the previous works[32,33]. M={m1,…,mk} and N={n1,n2,…,nt} stand for the vertex set of convex hull of Alice’s and Bob’s point set respectively. Now, Alice and Bob can use incremental method to evaluate the convex hull of set M and N.

    When evaluating the convex hull of point p and convex hull P, there are two cases as shown in Fig.2:

    (1) If p locates in P, the new convex hull remains to be P.

    The SPCH protocol is described in Table 3.

    Table 3 SPCH protocol

    3.2 Security analysis

    Theorem 2 Assuming the underlying protocol is secure in semi-honest model, the SPCH protocol securely evaluates the convex hull of the input point sets in the presence of semi-honest adversaries.

    The same simulator can be created for Alice.

    3.3 Algorithm complexity

    In the processing stage, PPPI protocol is called for m times. For the worst case that all the vertexes of Alice’s convex hull locate at the outside of Bob’s convex hull, SCP_PL Protocol is used for mn times. So the computational complexity of the proposed protocol is mnTc+mTp, and the communication complexity is mCp+mnCc. The notations used here are defined in Appendix B.

    The computational and communicational complexity comparison of Lu’s, Wang’s and the proposed protocol are shown in Table 4. It shows that the complexity of protocols in Refs[10,11] relies on the input point set size. The proposed protocol’s complexity only relies on the size of the input points’ convex hull vertex set. So, when the points in the two party’s input point set are dense, the proposed protocol is more efficient than the previous works.

    Table 4 Algorithm complexity

    (M and N denote the set size of Alice and Bob. m and n denote the size of Alice’s and Bob’s convex hull vertex set.)

    To compare the complexity visually, the computational complexity of Lu’s, Wang’s and the proposed protocol are charted in Fig.3. For the sake of comparison, it is assumed that M=N, m=n, M=100m, r=50. The same conclusion can be got with the theoretical analysis above.

    4 Conclusion

    Privacy-preserving point-inclusion and secure planar convex hull are the classical problems in SMCG. In this work, a novel PPPI protocol has been designed based on the classic homomorphic encryption and secure cross product protocol. Analysis shows that novel PPPI is highly efficient because the complexity is not related to the vertex size of the convex hull. Based on the novel PPPI protocol, an effective SPCH protocol has been presented. Analysis finds that the complexity of this SPCH protocol only relies on the size of the points in the outermost layer of the input point sets, and it has a good performance for large-scaled point sets compared with the previous solutions.

    Fig.3 Comparisons of Different SPCH protocols

    The proposed protocols are secure in semi-honest model, and the security of the protocols has been demonstrated by Goldreich method. The real world implementation and protocols secure against malicious adversary will be the goal in the future.

    [ 1] Yao A C. Protocols for secure computations. In Proceedings of 23th Annual IEEE Symposium on Foundations of Computer Science, Chicago, USA,1982. 160-164

    [ 2] Goldreich O, Micali S, Wigderson A. How to play any mental game. In: Proceedings of the 19th Annual CAN Symposium on Theory of Computing, 1987. 218-229

    [ 3] Atallah M J, Du W L. Secure multi-party computational geometry. International Workshop on Algorithms and Data Structures, 2004, 2125: 165-179

    [ 4] Choi S G, Hwang K W, Kaza J, et al. Secure multi-party computation of Boolean circuits with application to privacy in online marketplaces. In: Proceedings of the Cryptographer’s Track at the RSA Conference on Topics in Cryptology, San Francisco, USA, 2012. 416-432

    [ 5] Nielsen J B, Nordholt P S, Orlandi C, et al. A new approach to practical active-secure two-party computation. In: Proceedings of the Advances in Cryptology-CRYPTO 2012, volume 7417 of LNCS, 2012. 681-700

    [ 6] Schncider T, Zohner M. GMW vs Yao? Efficient secure two-party computation with low depth circuits. In: Proceedings of the Financial Cryptography and Data Security, volume 7859 of LNCS, 2013.275-292

    [ 7] Li S D, Si T G, Dai Y Q. Secure multi-party computation of set-inclusion and graph-inclusion. Journal of Computer Research and Development,2005,42(10):1647-1653

    [ 8] Luo Y L, Huang L S, Zhong H, et al. A secure protocol for determining whether a point is inside a convex polygon. Chinese Journal of Electronic,2006,15(4):578-582

    [ 9] Liu W, Luo S S, Chen P. Privacy-preserving point-line relation determination protocol and its application. Journal of Beijing University of Posts and Telecommunications,2008,31(2): 72-75

    [10] Lu S F, Luo Y L. Privacy-preserving in graham algorithm for finding convex hulls.Computer Engineering and Applications, 2008,44(36):130-133

    [11] Wang Q, Huang L S. Privacy- preserving protocols for finding the convex hulls. In: Proceedings of the 3rd International Conference on Availability, Reliability and Security, Barcelona, Spain, 2008.727-732

    [12] Hans S, Addenpalli S C, Gupta A, et al. On privacy preserving convex hull. In: Proceedings of the International Conference on Availability, Reliability and Security, Los Alamitos, USA,2009.187-192

    [13] Eppstein D, Goodrich M T, Tamassia R. Privacy-preserving data-oblivious geometric algorithm for geographic data. In: Proceedings of the 18th ACM SIGSPATIAL International Conference Advances in Geographic Information Systems, San Jose, USA, 2010. 13-22

    [14] Wang Q, Zhang Y. A convex hull algorithm for planar point set based on privacy protecting. In: Proceedings of the International Workshop on Education Technology and Computer Science, Wuhan, China, 2009. 434-437

    [15] Li D, Huang L S, Yang W, et al. A practical three-dimensional privacy-preserving approximate convex hulls protocol. In: Proceedings of the 2008 Japan-China Joint Workshop on Frontier of Computer Science and Technology, Nagasahi, Japan, 2008.17-23

    [16] Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium(USENIX Security’14), San Diego, USA, 2014. 447

    [17] Mohassel P, Sadeghian S. How to hide circuits in MPC an efficient framework for private function evaluation. In: EUROCRYPT, volume 7881 of LNCS, 2013.557-574

    [18] Gennaro R, Hazay C, Jeffrey S. S. Automata Evaluation and Text search protocols with simulation based security. In Public Key Cryptography, volume 6056 of LNCS, 2010.332-350

    [19] Barni M, Failla P, Kolesnikov V, et al. Secure evaluation of private linear branching programs with medical applications. In: Proceedings of the 14th European Symposium on Research in Computer Security, volume 5789 of LNCS, 2009. 424-439

    [20] Katz J,Ostrovsky R. Round-optimal secure two-party computation. In: CRYPTO, volume 3125 of LNCS, 2004.335-354

    [21] Pass R. Bounded-concurrent secure multi-party computation with a dishonest majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004. 232-241

    [22] Katz J,Ostrovsky R, Adam S. Round efficiency of multi-party computation with a dishonest majority. In EUROCRYPT, volume 2656 of LNCS, 2003. 578-595

    [23] Damg?rd I, Ishai Y. Constant-round multiparty computation using a black-box pseudorandom generator. In CRYPTO, volume 3621 of LNCS, 2005. 378-394

    [24] Aumann Y, Lindell Y. Security against covert adversaries: efficient protocols for realistic adversaries. In: Proceedings of the 4th Theory of Cryptography Conference, volume 4392 of LNCS, 2007.137-156

    [25] Goyal V , Mohassel P , Smith A. Efficient two party and multi party computation against covert adversaries. In EUROCRYPT, volume 4965 of LNCS, 2008. 289-306

    [26] Lindell Y, Pinkas B. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In EUROCRYPT, volume 4515 of LNCS, 2007. 52-78

    [27] Malkhi D, Nisan N, Pinkas B, et al. Fairplay - a secure two-party computation system. In: Proceedings of the 13th Conference on USENIX Security Symposium, volume 13, 2004. 09-13

    [28] Sella J B, Orlandi C. LEGO for two-party secure computation. In Theory of Cryptography Conference, volume 5444 of LNCS, 2009.368-386

    [29] Goldreich O. The Foundations of Cryptography-Volume 2, Basic Applications. Cambridge University Press, 2004

    [30] Luo Y L, Huang L S, Wei J J, et al. Privacy-preserving cross product protocol and its application. Chinese Journal of Computers,2007,30(2):248-254

    [31] Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT, volume 1592 of LNCS,1999. 223-238

    [32] Nielsen J B, Nordholt P S, Orlandi C, et al. A new approach to practical active-secure two-party computation. In CRYPTO, volume 7417 of LNCS, 2012. 681-700

    [33] Damgard I, Pastro V, Smart N,et al. Multiparty computation from somewhat homomorphic encryption. In CRYPTO, volume 7417 of LNCS, 2012. 643-662

    Appendix A

    Table 5 Intermediate variables among SCP_PL

    Appendix B

    Table 6 Notation used in the paper

    Sun Maohua, born in 1986. She received her Ph.D degree from Beijing University of Posts and Telecommunications in 2013. She also received her Bachelor’s degree from Shandong University in 2008. Her research interests include secure multi-party computation and information security.

    10.3772/j.issn.1006-6748.2015.04.014

    ①Supported by the Young Scientists Program of CUEB (No. 2014XJQ016, 00791462722337), National Natural Science Foundation of China (No. 61302087), Young Scientific Research Starting Foundation of CUEB and Improve Scientific Research Foundation of Beijing Education.

    ②To whom correspondence should be addressed. E-mail: starjingxiang@sina.com Received on Oct. 23, 2014*, Zhu Hongliang**, Li Qi**

    日韩一本色道免费dvd| 国产精品久久电影中文字幕| 免费看日本二区| 夜夜爽天天搞| 九九在线视频观看精品| 久久精品夜夜夜夜夜久久蜜豆| 色在线成人网| 久久婷婷人人爽人人干人人爱| 国产精品日韩av在线免费观看| 露出奶头的视频| а√天堂www在线а√下载| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频| 亚洲欧美中文字幕日韩二区| 51国产日韩欧美| 热99re8久久精品国产| 国产91av在线免费观看| 国产单亲对白刺激| 国产精品一二三区在线看| 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| 亚洲不卡免费看| 日本在线视频免费播放| 中文在线观看免费www的网站| 黄色欧美视频在线观看| 老师上课跳d突然被开到最大视频| 久久久精品大字幕| 18+在线观看网站| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 99久久久亚洲精品蜜臀av| 精品不卡国产一区二区三区| 日韩欧美免费精品| 成人漫画全彩无遮挡| 综合色丁香网| 成人特级av手机在线观看| 少妇裸体淫交视频免费看高清| 男女视频在线观看网站免费| 日韩高清综合在线| 日韩亚洲欧美综合| 麻豆乱淫一区二区| 极品教师在线视频| 丝袜喷水一区| 欧美日本视频| 看十八女毛片水多多多| 亚洲中文字幕一区二区三区有码在线看| 欧美又色又爽又黄视频| 久久婷婷人人爽人人干人人爱| 少妇猛男粗大的猛烈进出视频 | 男人和女人高潮做爰伦理| 亚洲第一电影网av| 日本黄大片高清| 97超视频在线观看视频| 亚洲四区av| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 久久精品夜色国产| 国产精品乱码一区二三区的特点| 亚洲精品成人久久久久久| 综合色丁香网| 尤物成人国产欧美一区二区三区| 午夜福利在线观看免费完整高清在 | 一进一出抽搐gif免费好疼| 国产精品综合久久久久久久免费| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 免费看光身美女| 国产精品人妻久久久久久| 人妻制服诱惑在线中文字幕| 欧美不卡视频在线免费观看| 免费观看在线日韩| 亚洲精品在线观看二区| 一区福利在线观看| 国产av不卡久久| 中国国产av一级| 久久天躁狠狠躁夜夜2o2o| 久久午夜亚洲精品久久| 性欧美人与动物交配| 国产又黄又爽又无遮挡在线| 国产在线男女| 伦精品一区二区三区| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 国产一区二区激情短视频| 一进一出抽搐动态| 日韩一区二区视频免费看| 日韩一本色道免费dvd| 嫩草影院精品99| 国产亚洲欧美98| 国产探花极品一区二区| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 又爽又黄a免费视频| 小说图片视频综合网站| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 久久久久久久久中文| 2021天堂中文幕一二区在线观| 国产精品女同一区二区软件| 高清毛片免费看| 99视频精品全部免费 在线| 美女黄网站色视频| 久久精品夜色国产| 国产黄片美女视频| 精品乱码久久久久久99久播| 亚洲最大成人手机在线| 成人永久免费在线观看视频| 成人综合一区亚洲| 欧美+亚洲+日韩+国产| 一级毛片久久久久久久久女| 国产av一区在线观看免费| 你懂的网址亚洲精品在线观看 | av国产免费在线观看| 美女免费视频网站| 精品久久久久久久久亚洲| 日韩成人av中文字幕在线观看 | 午夜福利高清视频| 少妇的逼好多水| 亚洲精品久久国产高清桃花| 国产在视频线在精品| 成年版毛片免费区| 美女免费视频网站| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 国产综合懂色| 国产毛片a区久久久久| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 色播亚洲综合网| 在线看三级毛片| 丝袜喷水一区| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩无卡精品| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器| 亚洲不卡免费看| 亚洲欧美成人精品一区二区| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 啦啦啦观看免费观看视频高清| 小蜜桃在线观看免费完整版高清| 波野结衣二区三区在线| 亚洲av五月六月丁香网| 自拍偷自拍亚洲精品老妇| 欧美日本亚洲视频在线播放| 日韩三级伦理在线观看| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 尤物成人国产欧美一区二区三区| 97超碰精品成人国产| 国产精品综合久久久久久久免费| 99热只有精品国产| 国产高清有码在线观看视频| 51国产日韩欧美| av在线老鸭窝| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 深爱激情五月婷婷| 热99re8久久精品国产| 日韩大尺度精品在线看网址| 国产高潮美女av| 久久久精品94久久精品| 51国产日韩欧美| 欧美高清成人免费视频www| 亚洲成人久久性| 国产精品久久久久久精品电影| 亚洲av一区综合| 男人和女人高潮做爰伦理| 亚洲久久久久久中文字幕| 国产精品不卡视频一区二区| 日韩精品青青久久久久久| 国产精品免费一区二区三区在线| 卡戴珊不雅视频在线播放| 老司机午夜福利在线观看视频| 日韩在线高清观看一区二区三区| 久久精品人妻少妇| 97在线视频观看| 97热精品久久久久久| 欧美极品一区二区三区四区| 久久久久久久久久成人| 亚洲av中文av极速乱| 精品一区二区免费观看| 一个人免费在线观看电影| 一本久久中文字幕| 国产日本99.免费观看| 国产欧美日韩精品一区二区| 国产高清不卡午夜福利| 午夜福利18| 国产精品女同一区二区软件| 乱系列少妇在线播放| 亚洲图色成人| 两性午夜刺激爽爽歪歪视频在线观看| 九九在线视频观看精品| 午夜a级毛片| 欧美一区二区亚洲| 男插女下体视频免费在线播放| 极品教师在线视频| 国产精品不卡视频一区二区| 亚洲第一区二区三区不卡| 美女大奶头视频| 99热网站在线观看| 搡老妇女老女人老熟妇| 中国美女看黄片| 99热全是精品| av在线老鸭窝| 中文亚洲av片在线观看爽| 日本黄大片高清| 插逼视频在线观看| 欧美最新免费一区二区三区| 日韩一本色道免费dvd| 久久久久久伊人网av| 女人十人毛片免费观看3o分钟| 能在线免费观看的黄片| 99热精品在线国产| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件 | 亚洲内射少妇av| 99热只有精品国产| 亚洲七黄色美女视频| 日本黄色片子视频| 国产综合懂色| 国产白丝娇喘喷水9色精品| 久久亚洲精品不卡| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| av黄色大香蕉| 不卡视频在线观看欧美| 亚洲欧美精品自产自拍| 91麻豆精品激情在线观看国产| 天美传媒精品一区二区| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添小说| 九九在线视频观看精品| 亚洲乱码一区二区免费版| 久久久久久久久大av| 亚洲性夜色夜夜综合| 高清毛片免费观看视频网站| 秋霞在线观看毛片| 一级毛片aaaaaa免费看小| 精品一区二区三区视频在线观看免费| 日本 av在线| 亚洲精品影视一区二区三区av| 精品久久久久久成人av| 婷婷精品国产亚洲av| 久久中文看片网| 精品欧美国产一区二区三| 天堂网av新在线| 波野结衣二区三区在线| 成人三级黄色视频| 亚洲av免费在线观看| 欧美性感艳星| 午夜爱爱视频在线播放| 免费一级毛片在线播放高清视频| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影| 日本a在线网址| 免费看av在线观看网站| 中文字幕久久专区| 你懂的网址亚洲精品在线观看 | 久久久久精品国产欧美久久久| 国产黄片美女视频| 长腿黑丝高跟| 美女高潮的动态| 伦理电影大哥的女人| 免费av毛片视频| 91久久精品国产一区二区成人| 日韩高清综合在线| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| 欧美性猛交黑人性爽| 国产69精品久久久久777片| 国产成人freesex在线 | 欧美中文日本在线观看视频| 国产毛片a区久久久久| 久久精品久久久久久噜噜老黄 | 在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产精品1区2区在线观看.| 免费大片18禁| 免费av观看视频| 免费高清视频大片| 老师上课跳d突然被开到最大视频| 无遮挡黄片免费观看| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 国产精品久久视频播放| 婷婷精品国产亚洲av| 欧美日韩乱码在线| 成人永久免费在线观看视频| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆 | 少妇人妻精品综合一区二区 | 村上凉子中文字幕在线| 日本黄色片子视频| 久久人人精品亚洲av| 三级毛片av免费| 午夜福利在线观看免费完整高清在 | 日韩高清综合在线| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看| 噜噜噜噜噜久久久久久91| 国内精品久久久久精免费| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 97碰自拍视频| 99热全是精品| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 久久九九热精品免费| 女同久久另类99精品国产91| 俺也久久电影网| 亚洲av五月六月丁香网| 国产精品久久久久久av不卡| 日韩国内少妇激情av| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 国产av麻豆久久久久久久| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 精品国内亚洲2022精品成人| av在线观看视频网站免费| 亚洲七黄色美女视频| 日本一本二区三区精品| 亚洲自拍偷在线| 午夜免费激情av| 亚洲丝袜综合中文字幕| 搡老岳熟女国产| 免费看美女性在线毛片视频| 国产黄色视频一区二区在线观看 | 国产高清激情床上av| 91久久精品国产一区二区三区| 一个人观看的视频www高清免费观看| 中出人妻视频一区二区| 麻豆一二三区av精品| av天堂中文字幕网| 亚洲成人精品中文字幕电影| 亚洲熟妇熟女久久| 亚洲va在线va天堂va国产| 成年av动漫网址| 精品少妇黑人巨大在线播放 | 老师上课跳d突然被开到最大视频| 国产乱人视频| 国产成人影院久久av| 麻豆一二三区av精品| 日韩精品有码人妻一区| 国产精品亚洲一级av第二区| 99九九线精品视频在线观看视频| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 免费看日本二区| 国产三级在线视频| 成年女人毛片免费观看观看9| 亚洲精品一区av在线观看| 少妇人妻精品综合一区二区 | 久久精品国产自在天天线| 晚上一个人看的免费电影| 国产一区二区三区av在线 | 中文字幕av在线有码专区| 久久久久久久午夜电影| 97超碰精品成人国产| 亚洲最大成人av| 国产在线男女| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 日本成人三级电影网站| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 日本欧美国产在线视频| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 国产三级中文精品| 国产中年淑女户外野战色| 波多野结衣高清无吗| 午夜激情福利司机影院| av在线观看视频网站免费| 日本黄色片子视频| 国产不卡一卡二| 最近2019中文字幕mv第一页| 免费无遮挡裸体视频| 国产av在哪里看| 国内少妇人妻偷人精品xxx网站| 久久综合国产亚洲精品| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 天美传媒精品一区二区| 国产综合懂色| 亚洲成人精品中文字幕电影| 亚洲四区av| 日韩成人伦理影院| 国产私拍福利视频在线观看| 男人狂女人下面高潮的视频| 成人av一区二区三区在线看| 欧美激情在线99| 看黄色毛片网站| 国产男人的电影天堂91| 别揉我奶头 嗯啊视频| 日韩欧美精品v在线| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲无线在线观看| 国产精品亚洲美女久久久| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 久久国内精品自在自线图片| 日韩av不卡免费在线播放| 久久久久性生活片| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 国产成人福利小说| av在线亚洲专区| av在线播放精品| 伦理电影大哥的女人| 日韩欧美精品免费久久| 免费在线观看影片大全网站| 在线看三级毛片| av中文乱码字幕在线| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 日本a在线网址| 91在线观看av| 少妇的逼好多水| 人人妻人人看人人澡| 久久精品综合一区二区三区| 日韩国内少妇激情av| 嫩草影院入口| 精品熟女少妇av免费看| 亚洲国产欧洲综合997久久,| 久久久a久久爽久久v久久| 九色成人免费人妻av| 91在线观看av| 99久久无色码亚洲精品果冻| 国内精品美女久久久久久| 国产真实乱freesex| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 99热网站在线观看| 99久久精品一区二区三区| 免费看美女性在线毛片视频| .国产精品久久| 午夜免费激情av| 老熟妇仑乱视频hdxx| 成年免费大片在线观看| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 中文字幕熟女人妻在线| 看十八女毛片水多多多| 最近在线观看免费完整版| av天堂在线播放| 又爽又黄无遮挡网站| 男女做爰动态图高潮gif福利片| 国产在线精品亚洲第一网站| 嫩草影院精品99| 国产精品一区二区三区四区免费观看 | 国产精品野战在线观看| 超碰av人人做人人爽久久| 国产精品国产高清国产av| 免费观看的影片在线观看| 一进一出抽搐gif免费好疼| a级毛色黄片| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 一级毛片久久久久久久久女| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 女的被弄到高潮叫床怎么办| 日韩欧美在线乱码| 自拍偷自拍亚洲精品老妇| 欧美色视频一区免费| 在线观看66精品国产| av视频在线观看入口| 午夜日韩欧美国产| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 国产高清视频在线观看网站| 国产大屁股一区二区在线视频| 色综合亚洲欧美另类图片| 别揉我奶头 嗯啊视频| 国内揄拍国产精品人妻在线| 老司机午夜福利在线观看视频| 深夜a级毛片| 久久草成人影院| 久久国产乱子免费精品| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 亚洲国产精品sss在线观看| 免费看av在线观看网站| 村上凉子中文字幕在线| 国产69精品久久久久777片| 国产精品福利在线免费观看| 国产视频内射| 97碰自拍视频| 三级毛片av免费| 99国产极品粉嫩在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品福利在线免费观看| 欧美3d第一页| 日韩精品有码人妻一区| 美女被艹到高潮喷水动态| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 女人被狂操c到高潮| 美女黄网站色视频| 亚洲性久久影院| 俺也久久电影网| 亚洲精品一区av在线观看| 久久久久精品国产欧美久久久| 亚洲无线在线观看| 三级男女做爰猛烈吃奶摸视频| 51国产日韩欧美| 亚洲欧美成人综合另类久久久 | 天美传媒精品一区二区| 夜夜看夜夜爽夜夜摸| 最新在线观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 久久这里只有精品中国| a级一级毛片免费在线观看| 日韩av在线大香蕉| 日韩人妻高清精品专区| 亚洲久久久久久中文字幕| 国产一区二区激情短视频| 亚洲色图av天堂| 可以在线观看的亚洲视频| 婷婷色综合大香蕉| 美女被艹到高潮喷水动态| 丝袜美腿在线中文| 大型黄色视频在线免费观看| 直男gayav资源| 欧美性猛交黑人性爽| 亚洲专区国产一区二区| 麻豆乱淫一区二区| 国产精品国产三级国产av玫瑰| 亚洲性久久影院| 国产亚洲av嫩草精品影院| 成人三级黄色视频| 一级毛片aaaaaa免费看小| 99久久无色码亚洲精品果冻| 男人舔奶头视频| 久久精品国产亚洲av天美| 亚洲最大成人av| 亚洲色图av天堂| 在线免费观看不下载黄p国产| 丰满的人妻完整版| 欧美日韩国产亚洲二区| 午夜精品在线福利| 久久国产乱子免费精品| 欧美最黄视频在线播放免费| 欧美激情在线99| 男女啪啪激烈高潮av片| 国产在视频线在精品| 18禁在线播放成人免费| 国产成人精品久久久久久| 午夜福利成人在线免费观看| 男女边吃奶边做爰视频| 婷婷精品国产亚洲av| 欧美色欧美亚洲另类二区| 亚洲av美国av| 不卡视频在线观看欧美| 精品人妻熟女av久视频| 99热网站在线观看| 特级一级黄色大片| 乱系列少妇在线播放| 精品国产三级普通话版| 国产亚洲精品综合一区在线观看| 久久久久九九精品影院| 蜜臀久久99精品久久宅男| 乱码一卡2卡4卡精品| 日本a在线网址| 精品人妻偷拍中文字幕| 级片在线观看| 日本爱情动作片www.在线观看 | 国产v大片淫在线免费观看| 精品久久国产蜜桃| 亚洲成人av在线免费| 桃色一区二区三区在线观看| 国产亚洲91精品色在线| 一个人看的www免费观看视频| 99热这里只有是精品在线观看| 天堂动漫精品| 国语自产精品视频在线第100页| 美女 人体艺术 gogo| 亚州av有码| 99久久九九国产精品国产免费| 久久精品夜色国产| 日韩欧美三级三区| 色综合色国产| 秋霞在线观看毛片| 亚洲熟妇中文字幕五十中出| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 黑人高潮一二区| 亚洲色图av天堂| 国产69精品久久久久777片| 国产黄a三级三级三级人| 插逼视频在线观看|