• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    2015-04-17 07:17:17YangPing
    High Technology Letters 2015年4期

    Yang Ping (楊 萍

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    ?

    Sealed model and computation of hazardous waste landfill high voltage DC leakage detection①

    Yang Ping (楊 萍②

    (School of Information, Beijing Union University, Beijing 100101, P.R.China)

    According to the structural characteristics of hazardous waste landfill and the leakage current model of high voltage DC Landfill leakage detection, a sealed model is established and analyzed in detail. The detection layer of the hazardous waste landfill is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of the current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition for the high resistivity of high density polyethylene (HDPE) membrane. Based on which a numerical calculation method is developed. Satisfactory agreement between experimental data and simulated data validates the analysis. Parametric studies show that a larger horizontal distance between the power supply electrode and leak and a smaller distance between the detector electrodes and the detected liner are helpful to leak location. More parametric curves show that parameters leaks can be detected effectively with optimum selection of field survey.

    hazardous waste landfill, high voltage DC method, sealed space model

    0 Introduction

    High voltage DC potential detection has been developed to detect and locate leaks in geomembrane liner used in waste landfill to prevent environment from leachates contamination[1-4]. To establish a basis for evaluating the technique, Parra developed a theoretical analysis method that characterized the three-dimensional response of single leaks[5,6]. Wait developed a simple model and regarded the leak current as a point current source[7,8]. Author’s preliminary work showed that the leak current could be regarded as a negative current resource at the entrance or a positive one of the same size at the exit[9]. Based on the fact that the single-liner landfills always had a large scale, a stratified medium model was established[10-12], in which the waste material, the liner, and the soil under the liner were simulated as infinite in the horizontal direction. The relationship between the fraction of leak current I0to total current Isand the surface area of landfill has also been analyzed. And the results show that the relative amount of source current flowing through the leak decreases as the size of the geomembrane liner increases. For a waste landfill having an area of 3600m2(rl=60m), 90 percent of the source current flows through the leak. Theoretically all the studies are about single-liner waste landfill. However hazardous waste landfills and storages usually use double geomembrane liners and the scale of which is only about several thousands of square meters. It is unreasonable to simulate the hazardous waste landfill as an infinite stratified model[13], and the influence caused by side boundary is not negligible especially when a leak is near the boundary. Experiments in Chinese Research Academy of Environmental Sciences also demonstrate a big error when the stratified medium model is used to detect leaks in small scale double-liner landfill of 2000m2in area.

    According to the structural characteristics of hazardous waste landfills and the leakage current model of high voltage leakage detection, a sealed model is deeply discussed. In this paper, the detection layer is considered as a sealed space and it is assumed that the source current flows through the leak entirely. The leak is regarded as a positive current resource +I located at the current entrance or a negative resource -I located at the current exit, which depends on the placement of current supply. The electrical potential of an arbitrary in detection layer satisfies Poisson equation. The boundary condition is regarded as a natural boundary condition in view of the high resistivity of the HDPE membrane[9,14]. On the basis of above assumptions, hazardous waste landfill leakage detection’s sealed space model is established and analyzed in detail.

    1 Principle

    The electrical leak location method makes use of the high electrical resistivity of the geomembrane liner material. When no leak is presented, a voltage impressed across the liner produces a very low current flow. The low current density produces a relatively uniform potential distribution in the detection region. A leak in the geomember liner provides a conductive path for current flow, which produces an increase in the current density at the leak point. So the leak can be equaled to a current source. The localized current density causes an anomaly in the measured potential in the vicinity of the leak. Therefore, leaks can be located by measuring the potential distribution patterns in the material of the detection layer[15]. The basic principle is shown in Fig.1. For a double-lined hazardous waste landfill or storage, the detection layer can be regarded as a sealed space. Under this condition, the electrical potential distribution caused by a steady current is difficult to express analytically. So a new method is advanced to solve the problem of the potential distribution in the sealed detection region.

    Fig.1 Principle of hazardous waste landfill high voltage DC leakage detection

    2 Model and analysis

    2.1 Sealed space model

    The detection layer can be taken as a sealed space encapsulated by high resistivity material. The upper surface and lower surface are primary geomembrane and secondary geomembrane respectively. They are all composed of HDPE membrane with resistivity ρl=1014Ω·m[9]. The detection layer of depth h is full of clay soil with resistivity ρc=100Ω·m. A circular leak of radius a located at (x0, y0, z0) is used to represent the leakage in geomembrane liner, which provides a channel for current flow. If the current source outside the sealed space is positive, then the current flows from the leak to the current return electrode located at (xs, ys, zs). Since it provides a high current density which is equivalent to a current resource, the leak in the high resistivity material is regarded as a positive current resource I0located at the center of the leak. So the electrical potential φ of an arbitrary point in detection layer is the superposition of electrical potential caused by the leakage current I0and the return electrode current -Is. And the electrical potential φ satisfies Poisson equation ▽2φ=f[16-18].

    f=ρcI0δ(x-x0)(y-y0)(z-z0)-ρcIsδ(x-xs)(y-ys)(z-zs), where ρcis the resistivity of the detection layer material, (x0, y0, z0) and (xs, ys, zs) are the coordinates of the leak and the current received electrode respectively. I0and Isare the leakage current and the return electrode current. δ(x) is the δ function .The model is shown in Fig.2.

    Fig.2 Sealed space model of hazard waste landfill high voltage DC leakage detection

    The interfaces continuity of potential and current density requires that[16,17]:

    For a highly resistive liner, ρl>>ρc, which reduces the function to

    where φlis the electrical potential distribution in the thin geomembrane liner. And n is outside normal direction. Considering the current density approximately equal to zero in n direction, it can be derived that Is=I0.

    For a sealed region, it is difficult to give the analytical solution of the above Poisson equation. So a numerical calculation method is imported.

    2.2 Mathematical analysis

    2.2.1 Variational principle

    The variational principle is known to us that,[18]a differential equation defined by

    Lφ=f

    (1)

    If L is a selfadjoint operator, which means that = <φ, Lφ>, then the function can be solved by obtaining the stagnation point of the function

    (2)

    where φ and φ are the arbitrary functions that have the same boundary conditions, <> is an operation defined as

    <φ,φ>=∫Ωφφ*dΩ

    (3)

    where Ω expresses the region in question, * represents the complex conjugate operation.

    δF(φ)=0

    (4)

    (5)

    (6)

    Because φ, f are real functions, <φ, f>=, and it is concluded that

    (7)

    From the scalar Green theorem, it is deduced that[19]:

    (8)

    (9)

    2.2.2 Regional division

    2.2.3 Interpolation

    After regional discrete, unknown function φ in every tetrahedral element need to be expressed. Hence the tetrahedral element as Fig.3 is taken into account. In every tetrahedral element e, the unknown function φ can be described as[20-22]

    Fig.3 Linear tetrahedron cell

    φe(x, y, z)=ae+bex+cey+dez

    (10)

    (10-1)

    (10-2)

    (10-3)

    (10-4)

    Based on the above equations, it can be deduced that:

    (11-1)

    (11-2)

    (11-3)

    (11-4)

    where

    Taking the Coefficient ae、be、ce、deback to φe(x,y,z)=ae+bex+cey+dez, the following is got:

    (12)

    (13)

    2.2.4 Calculation formula of Ritz method

    After regional discretion and interpolation, Eq.(9) can be expressed as

    (14)

    where M is the total amount of the tetrahedral element,

    (15)

    (16)

    The matrix form is

    (17)

    where:

    (18)

    (19)

    Based on the fundamental formulae[17,18]:

    (20)

    (21)

    2.2.5 Combined into equations

    Based on Eq.(17), combining with all units, and imposing the Stagnation point condition to F, the following equation is got:

    (22)

    The compact form is

    [K]{φ}=

    (23)

    where

    2.2.6 Solution of the equations

    Generally, K in Eq.(22) is divided into an Upper triangular matrix U and a lower triangular matrix L. That is

    K=LU

    Firstly, the matrix equation is solved: Lφ=b

    (24)

    Then: Uφ=φ

    (25)

    Use the Crout decomposition method[19-21]

    uii=1

    i=1,2,3,…,n (26)

    i≥j (27)

    i

    Through step forward, φ[22]is obtained

    (29)

    i>1 (30)

    Then, through step backward, the value of φ at the endpoint of a tetrahedral element is got.

    φn=φn

    (31)

    i

    Finally, the value of φ at any point (x, y, z) can be obtained by element interpolating function.

    3 Experiment and computation

    3.1 Experiment verification

    To verify the validity of the model in locating leaks in geomembrane liner of hazard waste landfill, experiments are made at a double-lined simulated landfill (10m×10m×0.4m). As is shown in Fig.1, the landfill has two HDPE geomembrane liners with the thickness t=2mm. The primary liner is covered with water of 0.3m in depth. The detection layer of 0.4m depth is between the primary liner and the secondary liner. Fixed detection electrodes are buried in the detection layer during the construction of the simulated landfill, with 1m-distance from each other and 0.1m from the primary liner. One leak is on the primary liner, the other leak is on the secondary liner. Two leaks are on the center of the 11×11 measurement electrodes. To create an electrical flow through the leak, the positive electrode of DC current source is placed in the water used to simulate the hazardous waste when detecting primary liner or in soil when detecting secondary liner, the negative electrode (current return electrode) of DC current source is placed in the detection layer at the position (9.9, 0.1, 0.08) to form the current passage. The fixed electrode measurement is carried out by installing a potential reference electrode at the position (10, 5, 0.08), which is used to provide a common reference point for the potential measurements (the coordinate system in Fig.2 is referenced here). 121 data are collected over an area of 100m2.

    Table 1 shows the sealed model parameters for locating leaks. These parameters come from the test result of the facility.

    Table 1 Model parameters[23,24]

    Table 2 shows the experimental data collected from the detection electrodes laid on two crossed lines under or above the leaks and the corresponding simulated value based on sealed model. Leak 1 is located at the center of the primary liner. Leak 2 is located at the center of the secondary liner. The relative errors are also shown in Table 2.

    Data in Table 2 show that the relative errors between simulated data and experimental data are less than 5%. Considering the location error of detection electrodes during construction, the errors in measurement and the influence caused by noise and other factors, it can be concluded that the analysis method given above is valid.

    3.2 Parameter study

    The parameter studies below are aimed at charactering the performance of the method for variations in the detection layer material electrical parameters, the contamination, the detection electrodes and current supply electrode position, and the detection layer depth. The result demonstrates the general applicability of the method and may be used to optimize the technique for specific landfill survey application.

    3.2.1 Effect of detection layer resistivity

    The detection layer material’s resistivity ρcis controllable, which can be changed during the construction of a waste landfill. Fig.4 shows the anomaly responses for varying detection layer resistivity for detection electrodes survey data measured at a depth of d=0.05m below the primary liner. These results demonstrate that the strength of the anomaly response is increased and leak detectability is improved for high detection layer resistivity.

    Table 2 Comparison of experimental data and simulated data of two survey lines (V)

    Fig.4 Distribution of the electric potential besides the leak for different resistivity of the detecting liner

    3.2.2 Effect of the inhomogeneity of detection layer medium

    Leak in the liner allows the leachates from the waste materials to detection layer, so the resistivity of contaminated region will decrease. ρc′ is used here to present the resistivity of contaminated region. Fig.5 shows the family of leak anomaly responses for different contaminated hemisphere r and ρc′=10Ω.m . The anomaly decays rapidly as the contaminated radius increases, so the leakage should always be conducted timely.

    3.2.3 Effect of detection electrodes depth

    A family of leak anomaly responses for several detection electrodes depths below a single leak located in the primary liner is shown in Fig.6, which indicates the substantial improvement gained in detection sensitivity when the detection electrodes are closer to the detection liner. That is to say, the survey should always be conducted to the detection liner as close as possible.

    Fig.5 Distribution of the electric potential besides the leak for different radius of the pollution area

    Fig.6 Distribution of the electric potential besides the leak for different vertical distance from the leak

    3.2.4 Effect of leak current

    Fig.7 shows the anomaly responses for different leak current. The results illustrate that the higher the leak current, the higher the detectability.

    Fig.7 Distribution of the electric potential besides the leak for different current of the leak

    3.2.5 Effect of the offset distance from the leak to current resource electrode

    The offset distance of the leak to current resource electrode affects the anomaly response. To illustrate this characteristic, Fig.8 presents the distribution of the electric potential besides the leak for different horizontal distance horizontal distance (hd) from leak to source electrode. In Fig.9, the distribution for different vertical distance vertical distance (vd) from leak to source electrode is given. As expected, when the horizontal distance is far enough (>10m), the vertical distance from leak to source electrode has little influence on the leak anomaly responses. But when the source electrode is just below a leak, the range of the leak anomaly responses is very small. It is hard to detect the leak under this circumstance. Hence, in order to detect the entire region of a landfill, there are at least two power supply electrodes in the detection layer.

    Fig.8 Distribution of the electric potential besides the leak for different horizontal distance (hd) from leak to source electrode

    Fig.9 Distribution of the electric potential besides the leak for different vertical distance (vd) from leak to source electrode

    4 Conclusion

    For a hazardous waste landfill, when a high DC voltage is imposed on the both sides of the gemembrance liner, the detection liner can be seen as a sealed space excited by leakage current and the return electrode current, The leakage current is a positive current resource +I located at the current entrance or a negative resource -I located at the current exit. The electrical potential of an arbitrary in detection layer satisfies the Poisson equation. The boundary conditions satisfy natural boundary condition. Parametric studies show that big magnitude of leak current, high resistivity of detection liner, large horizontal distance between the power supply electrode and leak and small distance between the detector electrodes and the detected liner are helpful to leak location, but the vertical distance from leak to source electrode has little influence on the leak anomaly responses when the horizontal distance is far enough (>10m).

    The numerical method is effective in solving the problem of potential distribution in even an irregular region. But there exists some shortage such as low computational efficiency. How to improve the computation efficiency will be the emphasis for further research.

    Reference

    [ 1] Darilek G T, Laine D L, Parra J O. The electrical leak location method for geomembrane liners- Development and application. In: Proceedings of the Industrial Fabrics Association International Geosynthetics, San Diego, USA, 1989. 21-23

    [ 2] Darilek G T, Laine D L. Understanding electrical leak location systems of geomembrane liners and avoiding specifications pitfalls. In: Proceedings of the 10th National Conference, Superfund, Washington, D C, USA, 1989. 27-29

    [ 3] Smith B, Darilek G, Laine D. Enhanced geomembrane CQA through proper application of geomembrane leak location surveys. In: Proceedings of the Geosynthetics 2007 Conference Proceedings, Washington D C, USA, 2007. 16-19

    [ 4] Darilek G, Laine D. Experience with geosynthetic clay liners as a conductive layer in geomembrane leak location surveys. Geosynthetics, 2007,14 (6):30-33

    [ 5] Parra J O. Electrial response of a leak in a geomembrane liner. Geophysics, 1988,53 (11):1445-1452

    [ 6] Parra J O, Owen T E. Model studies of electrical leak detection in geomembrane lined impoundments. Geophysics, 1988,53(11):1453-1458

    [ 7] Wait J R. Complex resistivity of the Earth. Progress in Electromagnetic Research, 1989,1(1):171-175

    [ 8] Wait J R. Simple model for current leakage in insulating liner. IEEE transactions on geoscience and remote sensing, 1994,32(2): 472-474

    [ 9] Yang P, Nai C X, Dong L. Leak current model in leakage detection of HDPE liner using high voltage DC method . Acta Scientiae Circumstantiae,2005,25(10):1261-1364(in Chinese)

    [10] Yang P, Dong L, Wang Q. Multimedia model of single-liner landfill high voltage DC leak detection. China Environmental Science,2008, 28(1):63-67

    [11] Zhao X C, Yang P, Zhang Y D, et al.Finite element simulation of high voltage direct current electricity technology for double liner landfill leakage detection. China Environmental Science,2007,27(1):76-79

    [12] Guan S P, Nai C X, Dong L, et al. A direct current resistance circuit model for landfill leak detection. Acta Scientiae Circumstantiae, 2010. 30(6):1188-1192

    [13] Wang Z C, Chen Y Y. Hazardous waste landfill leakage detection based on transmission lines model. Advances in Information Sciences and Service Sciences, 2011.3(9):17-24

    [14] Nai C X, Dong L, Wang Q, et al. The stratified medium model for leakage detection in double liner landfills. Research of Environmental Sciences, 2008, 21(6):30-34

    [15] Yang P, Jiang Y X,Wang Y N, et al. Study on double-liner landfill leak location algorithm. Journal of Beijing Union University, 2013,27(1),81-85

    [16] Guan S P, Wang Y L,Nai C X. Application of electrical leak detection method in double-lined landfills.China Environmental Science,2011,31(12):2013-2017

    [17] Qiao S, Zhou M Y, Bai L. Theory of Exploration Electromagnetic Field. Beijing: China University Mining Technology Press, 1989. (In Chinese)

    [18] Yao D Z, Liang J B. Method of Mathematics and Physical. Wuhan: Wuhan University Press, 1997. (In Chinese)

    [19] Lang K M. Method of Mathematics and Physical. Beijing: High Education Press, 1997. (In Chinese)

    [20] Zong Z H, Gao M L, Xia Z H. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring part I:FE model updating based on the response surface method.China Civil Engineering Jouranl,2011,2(44):90-98

    [21] Merla A , Donato D , Fazio D . Differential thermal infrared imaging for environmental inspection. Journal of applied remote sensing, 2014, 8(11):117-123

    [22] Abuel N , Hossam M. Bouazza A. Numerical characterization of advective gas flow through GM/GCL composite liners having a circular defect in the geomembrane. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1661-1671

    [23] Gao M L. Study on the Finite Element Model Validation of the Continuous Rigid Frame Bridge Based on Structural Health Monitoring:[Ph.D dissertation]. Fuzhou: Fuzhou University, 2008

    [24] Chen Y Y, Nai C X, Dong L, et al.Landfill leakage detection based on boundary localization method.Research of Environmental Sciences,2012,25(3) : 346-351

    Yang Ping, born in 1974. She received her Ph.D and M.S degrees from college of Mechatronic Engineering of China Mining & Technology University (Beijing) in 2006 and 2003 respectively. She also received her B.S degrees from XinYang Normal University in 1997. Her research interests include signal acquisition & processing and mathematical modeling.

    10.3772/j.issn.1006-6748.2015.04.012

    ①Supported by the National Basic Research Development Program of China (No. 2010CB428506), the National High Technology Research and Development Program (No.2007AA061303) and Beijing Higher Education Young Elite Teacher Project (YETP1756).

    ②To whom correspondence should be addressed. E-mail: xxtyangping@buu.edu.cn Received on Oct. 14, 2014, Tian Jinwen, Wang Yanni, Xue Lin

    国产精品国产三级国产专区5o| 最近手机中文字幕大全| 亚洲成人av在线免费| 国产午夜精品一二区理论片| 亚洲人成网站在线播| 国内精品宾馆在线| 综合色丁香网| 日韩中文字幕视频在线看片 | 一二三四中文在线观看免费高清| 色吧在线观看| freevideosex欧美| 成人亚洲精品一区在线观看 | 内射极品少妇av片p| 亚洲人成网站高清观看| 成人二区视频| 最近手机中文字幕大全| 久久青草综合色| 亚洲内射少妇av| 久久久久久久久大av| av在线观看视频网站免费| 永久网站在线| 三级经典国产精品| 高清视频免费观看一区二区| 看十八女毛片水多多多| 亚洲成人av在线免费| 国产欧美亚洲国产| 亚洲无线观看免费| 日韩成人伦理影院| 最近最新中文字幕大全电影3| 免费看日本二区| 三级国产精品片| 国产精品久久久久成人av| 免费观看性生交大片5| 久久综合国产亚洲精品| 水蜜桃什么品种好| 国产成人免费无遮挡视频| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区二区在线不卡| 中国三级夫妇交换| 亚洲精品,欧美精品| 亚洲精品视频女| 日日啪夜夜撸| 午夜福利网站1000一区二区三区| 人人妻人人澡人人爽人人夜夜| 日韩在线高清观看一区二区三区| 大又大粗又爽又黄少妇毛片口| 日韩一区二区视频免费看| 中文字幕久久专区| 亚洲不卡免费看| 国产深夜福利视频在线观看| 国产69精品久久久久777片| 国产视频内射| 极品教师在线视频| 国产乱来视频区| a 毛片基地| 亚洲欧美一区二区三区国产| 夜夜骑夜夜射夜夜干| 美女福利国产在线 | 男人和女人高潮做爰伦理| 日韩亚洲欧美综合| 精品久久久久久久末码| 啦啦啦中文免费视频观看日本| 日韩成人av中文字幕在线观看| 亚洲欧洲日产国产| 97超视频在线观看视频| 亚洲av成人精品一二三区| 成人国产麻豆网| 黄片wwwwww| 国产真实伦视频高清在线观看| 国产精品一区二区性色av| 精品人妻偷拍中文字幕| 国产女主播在线喷水免费视频网站| 一区二区三区精品91| 国产免费福利视频在线观看| 十八禁网站网址无遮挡 | 国产成人一区二区在线| 性高湖久久久久久久久免费观看| 久久婷婷青草| 久久久精品免费免费高清| 欧美一级a爱片免费观看看| 国产久久久一区二区三区| 午夜精品国产一区二区电影| 青春草国产在线视频| 欧美精品亚洲一区二区| 久久久久网色| 在现免费观看毛片| 国产精品久久久久成人av| 欧美xxxx黑人xx丫x性爽| 亚洲高清免费不卡视频| 亚洲成人手机| 久久久久精品性色| 在线免费十八禁| 亚洲欧美中文字幕日韩二区| 高清欧美精品videossex| 免费黄色在线免费观看| 亚洲精品456在线播放app| 欧美 日韩 精品 国产| 精品亚洲乱码少妇综合久久| 又爽又黄a免费视频| 精品亚洲乱码少妇综合久久| 成人美女网站在线观看视频| 又爽又黄a免费视频| 久久久a久久爽久久v久久| 精品一品国产午夜福利视频| 国产欧美日韩精品一区二区| 亚洲人成网站在线观看播放| 最近最新中文字幕大全电影3| 国产淫语在线视频| 尾随美女入室| 久久久久久久亚洲中文字幕| 男女无遮挡免费网站观看| 97超碰精品成人国产| 插逼视频在线观看| 亚洲欧美精品自产自拍| 欧美xxⅹ黑人| 欧美三级亚洲精品| 精品熟女少妇av免费看| 成人一区二区视频在线观看| 男女无遮挡免费网站观看| 国产欧美日韩精品一区二区| tube8黄色片| 国产 一区 欧美 日韩| 新久久久久国产一级毛片| 国产在线一区二区三区精| 国产亚洲av片在线观看秒播厂| 极品少妇高潮喷水抽搐| 国产色爽女视频免费观看| 美女中出高潮动态图| 日韩亚洲欧美综合| 亚洲精品日本国产第一区| 精品一区二区三区视频在线| 一本久久精品| 久久韩国三级中文字幕| 一区二区三区四区激情视频| 国产黄片视频在线免费观看| 国精品久久久久久国模美| 男男h啪啪无遮挡| 免费观看的影片在线观看| 男人爽女人下面视频在线观看| 亚洲四区av| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av成人精品| 亚洲精品国产av成人精品| 国产人妻一区二区三区在| 亚洲精品第二区| 欧美极品一区二区三区四区| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费高清在线观看| 我要看日韩黄色一级片| 插阴视频在线观看视频| 国产精品久久久久久精品电影小说 | 欧美精品人与动牲交sv欧美| 中文欧美无线码| 在线观看一区二区三区| 精品国产三级普通话版| 一级a做视频免费观看| 青青草视频在线视频观看| 卡戴珊不雅视频在线播放| 亚洲国产最新在线播放| 午夜福利影视在线免费观看| 国产中年淑女户外野战色| 嘟嘟电影网在线观看| 亚洲国产成人一精品久久久| 中文字幕制服av| 国产日韩欧美在线精品| 大又大粗又爽又黄少妇毛片口| 亚洲av中文字字幕乱码综合| 联通29元200g的流量卡| 国产毛片在线视频| 精品酒店卫生间| 99re6热这里在线精品视频| 国产一区二区三区综合在线观看 | 日韩,欧美,国产一区二区三区| 99re6热这里在线精品视频| 少妇高潮的动态图| 成人毛片a级毛片在线播放| 精品人妻偷拍中文字幕| 亚洲美女黄色视频免费看| xxx大片免费视频| 超碰av人人做人人爽久久| 欧美日韩国产mv在线观看视频 | 久久久欧美国产精品| 欧美激情极品国产一区二区三区 | 人妻夜夜爽99麻豆av| 日本与韩国留学比较| 丰满人妻一区二区三区视频av| 亚洲综合色惰| 男女边吃奶边做爰视频| 久久人人爽av亚洲精品天堂 | 在线观看免费视频网站a站| 秋霞伦理黄片| 高清视频免费观看一区二区| 国产精品99久久久久久久久| 久久女婷五月综合色啪小说| 国内少妇人妻偷人精品xxx网站| 亚洲熟女精品中文字幕| 日韩精品有码人妻一区| 国产男人的电影天堂91| 舔av片在线| 欧美成人a在线观看| 色婷婷久久久亚洲欧美| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 日韩中字成人| 嫩草影院新地址| 春色校园在线视频观看| 亚洲国产毛片av蜜桃av| 五月开心婷婷网| 国产精品福利在线免费观看| 丰满乱子伦码专区| 青春草亚洲视频在线观看| 人妻系列 视频| av在线app专区| 亚洲经典国产精华液单| 国产成人91sexporn| 99久久综合免费| 亚洲成人手机| 男人爽女人下面视频在线观看| 在线免费观看不下载黄p国产| 嘟嘟电影网在线观看| 久久久久久久亚洲中文字幕| 久久久久久久亚洲中文字幕| 色5月婷婷丁香| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 黄片wwwwww| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产av成人精品| 51国产日韩欧美| 极品教师在线视频| 久久精品国产鲁丝片午夜精品| 免费看av在线观看网站| 极品教师在线视频| 麻豆乱淫一区二区| 成人二区视频| 亚洲av成人精品一区久久| 免费看不卡的av| 看十八女毛片水多多多| 高清黄色对白视频在线免费看 | 寂寞人妻少妇视频99o| 在线观看免费日韩欧美大片 | 天天躁夜夜躁狠狠久久av| 激情五月婷婷亚洲| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 在线观看三级黄色| 舔av片在线| 一本久久精品| 少妇人妻精品综合一区二区| 国产精品久久久久久精品古装| 国产在线一区二区三区精| 免费看不卡的av| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 国产精品秋霞免费鲁丝片| 国产精品爽爽va在线观看网站| 六月丁香七月| 少妇熟女欧美另类| 亚洲国产精品国产精品| 熟女av电影| 大陆偷拍与自拍| 国产黄频视频在线观看| 日本猛色少妇xxxxx猛交久久| 91精品国产国语对白视频| 久久99热6这里只有精品| 国产在线男女| 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 水蜜桃什么品种好| 最近最新中文字幕大全电影3| 亚洲在久久综合| 国产精品一区二区性色av| 色哟哟·www| 婷婷色综合www| 在线观看人妻少妇| 人妻夜夜爽99麻豆av| 亚洲欧洲日产国产| 少妇熟女欧美另类| 日本黄色日本黄色录像| 3wmmmm亚洲av在线观看| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 国产又色又爽无遮挡免| 亚洲色图av天堂| 黄片wwwwww| 午夜免费鲁丝| 欧美 日韩 精品 国产| 日韩国内少妇激情av| 国产一区二区三区av在线| 一级毛片电影观看| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 欧美+日韩+精品| 久久99精品国语久久久| 日韩强制内射视频| 日韩 亚洲 欧美在线| tube8黄色片| av.在线天堂| 18禁裸乳无遮挡动漫免费视频| 卡戴珊不雅视频在线播放| 一级av片app| 精品少妇黑人巨大在线播放| av在线观看视频网站免费| 欧美国产精品一级二级三级 | 97热精品久久久久久| 亚洲美女搞黄在线观看| 亚洲成色77777| 精品久久久久久久久亚洲| 高清不卡的av网站| 国产91av在线免费观看| 全区人妻精品视频| 99久久中文字幕三级久久日本| 一区二区三区四区激情视频| 国产乱来视频区| 亚洲av中文字字幕乱码综合| 国产永久视频网站| 自拍欧美九色日韩亚洲蝌蚪91 | 王馨瑶露胸无遮挡在线观看| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 久久久久久人妻| 在线天堂最新版资源| 亚洲欧洲日产国产| 少妇 在线观看| 久久久精品免费免费高清| 2022亚洲国产成人精品| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 天天躁日日操中文字幕| 在线观看一区二区三区激情| 久久久亚洲精品成人影院| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| 亚洲人成网站高清观看| 插逼视频在线观看| 七月丁香在线播放| 嫩草影院入口| 伊人久久国产一区二区| 久久久久久久久久久免费av| 国产真实伦视频高清在线观看| 伦理电影免费视频| 中文字幕av成人在线电影| 国产亚洲91精品色在线| 亚洲av免费高清在线观看| 欧美日韩亚洲高清精品| 免费黄频网站在线观看国产| 波野结衣二区三区在线| 国产黄片美女视频| 欧美日韩视频精品一区| 日韩强制内射视频| 久久久久精品性色| 亚洲人成网站高清观看| 国产熟女欧美一区二区| 美女国产视频在线观看| 欧美成人一区二区免费高清观看| 99热这里只有是精品在线观看| 国产免费又黄又爽又色| 黑丝袜美女国产一区| 国产伦精品一区二区三区视频9| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| 午夜免费男女啪啪视频观看| 国产乱人视频| 亚洲av男天堂| 一本久久精品| 在线观看一区二区三区激情| 九草在线视频观看| 成人国产麻豆网| 少妇猛男粗大的猛烈进出视频| 亚洲人成网站在线播| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 午夜免费鲁丝| 中文字幕亚洲精品专区| 少妇高潮的动态图| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 久久人妻熟女aⅴ| 一级片'在线观看视频| 下体分泌物呈黄色| 国产欧美日韩精品一区二区| 国产永久视频网站| 国产视频首页在线观看| a级毛色黄片| 亚洲欧美日韩东京热| 视频区图区小说| 高清不卡的av网站| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| 中国三级夫妇交换| 久久久久精品性色| 少妇的逼水好多| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 国产精品.久久久| 国产成人91sexporn| 国产69精品久久久久777片| 波野结衣二区三区在线| 日韩强制内射视频| 国产高清三级在线| 边亲边吃奶的免费视频| 国产精品一区二区在线不卡| 极品教师在线视频| 亚洲av二区三区四区| 成人国产av品久久久| 久久精品国产亚洲av天美| 九九在线视频观看精品| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 亚洲久久久国产精品| 七月丁香在线播放| 国产精品一区www在线观看| 亚洲,欧美,日韩| 视频区图区小说| av不卡在线播放| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| videossex国产| 少妇精品久久久久久久| 亚洲av国产av综合av卡| 少妇裸体淫交视频免费看高清| 直男gayav资源| 午夜福利网站1000一区二区三区| 偷拍熟女少妇极品色| av黄色大香蕉| 只有这里有精品99| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 国产精品无大码| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 日韩中字成人| 国产片特级美女逼逼视频| 免费看光身美女| 欧美精品国产亚洲| 91精品国产九色| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 91精品国产九色| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 久久久久久久久久久丰满| 两个人的视频大全免费| 在线观看免费高清a一片| 久久婷婷青草| 国产一区二区在线观看日韩| 亚洲国产色片| 内射极品少妇av片p| 国产高清国产精品国产三级 | 在线免费十八禁| 熟女av电影| 一级毛片电影观看| 久久久久久人妻| 成人毛片a级毛片在线播放| 久久精品久久精品一区二区三区| 日韩电影二区| 国产一区亚洲一区在线观看| 一个人免费看片子| 国产黄频视频在线观看| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 日日啪夜夜撸| 高清欧美精品videossex| 亚洲国产精品999| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | a级毛色黄片| 国产免费福利视频在线观看| 国产av国产精品国产| 日日摸夜夜添夜夜添av毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产中年淑女户外野战色| 黑丝袜美女国产一区| 超碰av人人做人人爽久久| 男女无遮挡免费网站观看| 美女主播在线视频| 亚洲精品日本国产第一区| 久久国产精品大桥未久av | 丰满乱子伦码专区| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 插阴视频在线观看视频| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 在线观看人妻少妇| 日韩中字成人| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 精品久久久久久久久av| 日日啪夜夜爽| 亚洲精品日韩av片在线观看| 久久久久网色| 久久国产精品大桥未久av | 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 视频区图区小说| 香蕉精品网在线| 2022亚洲国产成人精品| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 18禁裸乳无遮挡动漫免费视频| 嘟嘟电影网在线观看| 久久久午夜欧美精品| 最后的刺客免费高清国语| 日韩国内少妇激情av| 久久ye,这里只有精品| 中文字幕久久专区| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 熟女电影av网| 国产黄片视频在线免费观看| 91狼人影院| 天美传媒精品一区二区| 黄色一级大片看看| 91久久精品国产一区二区成人| 成人免费观看视频高清| 久久97久久精品| 亚洲精品一二三| 国产欧美另类精品又又久久亚洲欧美| tube8黄色片| 爱豆传媒免费全集在线观看| 日日啪夜夜爽| 少妇丰满av| 高清毛片免费看| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 欧美xxⅹ黑人| 成人无遮挡网站| 国产黄片美女视频| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 伊人久久国产一区二区| 欧美日韩精品成人综合77777| 亚洲精品中文字幕在线视频 | 国产精品伦人一区二区| 欧美亚洲 丝袜 人妻 在线| 欧美精品亚洲一区二区| 午夜福利在线观看免费完整高清在| 97热精品久久久久久| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区| 男女国产视频网站| 男人添女人高潮全过程视频| 亚洲av.av天堂| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区| 最近中文字幕高清免费大全6| 久久久精品免费免费高清| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 亚洲国产av新网站| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 亚洲精品乱码久久久v下载方式| 99热国产这里只有精品6| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 久久99蜜桃精品久久| 色视频www国产| 亚洲欧美日韩无卡精品| 亚洲精品中文字幕在线视频 | 亚洲性久久影院| 18禁在线播放成人免费| 人人妻人人看人人澡| 欧美国产精品一级二级三级 | 国产亚洲av片在线观看秒播厂| 久久精品国产自在天天线| 国产爽快片一区二区三区| 免费播放大片免费观看视频在线观看| 老熟女久久久| 国产成人免费观看mmmm| 伊人久久国产一区二区| 精品久久久久久电影网| 亚洲美女搞黄在线观看| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 视频区图区小说| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄| 欧美高清性xxxxhd video| 亚洲av.av天堂| 亚洲国产毛片av蜜桃av| 精品午夜福利在线看| 精品久久久噜噜| 激情五月婷婷亚洲| 在线播放无遮挡| 青青草视频在线视频观看| 黄色配什么色好看| 欧美成人一区二区免费高清观看| 在线天堂最新版资源| 最后的刺客免费高清国语| 1000部很黄的大片| 国产成人aa在线观看| av播播在线观看一区| 欧美成人精品欧美一级黄| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品| 少妇的逼好多水| 人妻 亚洲 视频| 国产亚洲最大av| 国产毛片在线视频|