• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of human motion effects on 60GHz indoor office propagation①

    2015-04-17 07:17:15ZhaoJunhui趙軍輝
    High Technology Letters 2015年4期
    關(guān)鍵詞:趙軍

    Zhao Junhui(趙軍輝

    (*School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P.R.China)(**National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, P.R.China)

    ?

    Investigation of human motion effects on 60GHz indoor office propagation①

    Zhao Junhui(趙軍輝②

    (*School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P.R.China)(**National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, P.R.China)

    A modified random walk model for human motion is proposed to investigate characteristics of 60 GHz indoor office propagation. Compared with the classic random walk model, the movement tendency in the walking process is taken into account in the modified model. Based on the proposed model, path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method. Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.

    60GHz, human motion, indoor propagation, modified random walk model, ray tracing

    0 Introduction

    Due to the rapid development of consumer electronic devices, such as smartphones, tablet computers, and HDTVs, the demand for a short-range and high-rate indoor wireless communication system is becoming more and more urgent[1]. Especially, networks that utilize millimeter-wave bands, typically 60GHz, have attracted lots of attentions for indoor wireless applications. The bandwidth of several gigahertzes around 60 GHz will be very beneficial to the design and implementation of the future advanced indoor wireless communication systems. Furthermore, the spectrum around 60GHz is license-free in many countries. In a word, 60GHz millimeter-wave radio technology is one of the most prospective communication technologies in the future 10 years.

    There are mainly two approaches to get insight into the characteristics of wireless propagation in an indoor environment: measurement and simulation. Many researchers have reported measurement results around 60GHz in an indoor environment to assist the channel modeling[2,3]. However, the cost of channel measurement is extremely high and the collected data have very limited expansibility for general use. On the other hand, simulation techniques are free from the limitations of experiments. In principle, all details of the propagation can be obtained by solving the Maxwell’s equations with boundary conditions that make allowance for the physical properties of the walls and objects within the environment. But it needs sophisticated computational resources to carry out simulations and overspends too much time. Therefore, a ray tracing method based on geometrical optics is proposed for propagation predictions.

    So far, a lot of efforts have been done concerning the ray tracing simulations in the 60GHz band. Ref.[4] examined the millimeter-wave propagation in a conference room and proved the validation of ray tracing results. Ref.[5] addressed the 60GHz propagation characteristics in an indoor office environment by using the ray tracing software of Wireless InSite. However, only little work concerning the human motion effects has been done and even the done work did not take account of the movement tendency or the furniture in the propagation environment, i.e., they assumed an empty room with random moving human bodies[4,5]. In this paper, it will explore the influences of human motion to the propagation in a relatively more realistic indoor office room based on the proposed modified random walk model and the conventional ray tracing algorithm.

    The remainder of this paper is organized as follows. Section 1 presents a brief description of the ray tracing theory. Section 2 describes the propagation environment and the human motion model. Simulation results and analysis are discussed in detail in Section 3. Section 4 is devoted to conclusions summarizing this work.

    1 Ray tracing theory

    1.1 Ray tracing method

    Ray tracing is a viable technique for predictions of propagation characteristics, such as impulse response, path gain, local mean power, and delay spread. The idea of this technique is to determine the propagation characteristics of a spatial environment from its geometrical and material properties assuming that radio waves follow the rules of geometrical optics. Every propagation path is modeled as a straight line and it is a good approximation providing that the radio wavelength is short enough compared to the environment dimensions. At a boundary between two adjacent media, i.e., the ray hits some obstacle, reflection as well as transmission occurs and the incident ray is split up into a reflected one and a transmitted one[6]. Diffraction can be also investigated by involving the uniform geometrical theory of diffraction (UTD). It plays an important role for coverage prediction when shadow regions are to be taken into account.

    The basic concept of ray tracing based on image method[6]is illustrated in Fig.1. The image method is applied to simulate the effect of flat surfaces and it is not only useful when the number of objects or obstacles is relatively small, as in an indoor environment, but also easy to be implemented. The first step is to find virtual image S′ of source S and the next step is to link receiver R with virtual image S′ by a straight line, then the intersection point I can be determined as well as the whole ray trajectory. The construction that uses the virtual image and determines the point of reflection on the reflecting surface is valid for multiple reflections.

    Fig.1 Illustration of image method

    A simplified diffraction model is illustrated in Fig.2. When the ray hits the corner of an obstacle, no matter what incidence angle is, diffracted rays will be generated to all directions around the obstacle[7].

    Fig.2 Illustration of diffraction model

    Applying the above methods, all of the rays connecting the transmitter and the receiver can be constructed for an indoor environment. In order to find all valid propagation paths, rays are launched from the transmitter in all directions. For a quantitative analysis of the reception, propagation attenuation and delay of every ray are required.

    1.2 Ray tracing algorithm

    For investigations a simplified two-dimension (2D) ray tracing algorithm is used which is capable of simulating the wave propagation taking account of reflections, transmissions and diffractions. The ray tracing algorithm operates on a 2D model of the propagation environment described by numerous rectangles and each of them is related with its dimensions. By specifying the coordinates of the transmitter and the receiver, the sequence of computations begins with the direct path if it exists, followed by all paths with one propagation, two interactions, and so on, up to five reflections, one transmission and two diffractions. For every path, the distance dependent path loss is simply the free space propagation loss which is proportional to the total length squared. The total path loss is computed as the product of the free space propagation loss timing the reflection, transmission, and diffraction losses[8]. The antenna radiation patterns are not considered temporally.

    The flow chart of the 2D ray tracing algorithm is shown in Fig.3. Two termination conditions are set: the maximum number of allowed reflections Nref, transmissions Ntrans, and diffractions Ndiff, the power threshold T.

    Fig.3 Simplified 2D ray tracing algorithm

    2 Propagation environment and human motion model

    2.1 Propagation environment

    The floor plan of the propagation environment is depicted in Fig.4. It is an office room located on the fourth floor of our institute building. The dimensions of the office are 8.0m length and 4.0m width. The walls of the room are made of concrete. There are a glass window and a glass door between the outer room and the inner room. The outer room is provided with six desks, one laboratory table, and a wooden door towards the corridor, while the inner room is furnished with two desks, two bookcases, and one couch. The outer door as well as the inner door is 1.0m width and the glass window is 3.0m width. The dimensions of others objects are summarized in Table 1.

    Fig.4 Floor plan of the office room

    ObjectsDimensionsDesk1.0m×0.5mLaboratorytabletable2.0m×1.0mBookcase1.0m×0.5mCouch2.0m×1.0m

    Table 2 Dielectric properties of objects

    2.2 Human motion model

    A 2D human body model is needed to be in accordance with the 2D ray tracing algorithm described in the above section. So a rectangle with the dimension of 0.3m×0.3m is used to represent the human body which can be considered as a common scatterer like other obstacles except that it is not static. Certainly, the modeling of human motion is the key to the validity and expansibility of the analysis on the human body movement effects to indoor propagations. In Ref.[12], the human motion is modeled as a random walk process which consists of a succession of random steps. It is modeled as a Markov chain that the next step is totally independent of the past trail. Unfortunately, the random walk model is not accurate enough because human body has a movement tendency, even time varying, in the walking process. In order to reproduce the movement of human body as realistic as possible, a modified random walk model is proposed as follows. Four simulation examples are presented in Fig.5, each corresponding to one, three, five, and ten moving bodies in the room.

    (a) one moving body

    (b) three moving bodies

    (c) five moving bodies

    (d) ten moving bodies

    Step 1 Choose a valid point as the starting position randomly and set Count=0.

    Step 2 Select a direction (forward, backward, left, or right) for the next step in random and set Count=Count+1.

    Step 3 Determine whether the selected direction is valid for the next step. If so, go on to Step 4, otherwise, go back to Step 2 as long as Count 4.

    Step 4 Try to keep the movement tendency based on

    the last two positions. If fails, try to turn left or turn right with an equal probability. If it fails again, try the opposed direction (left or right). If it still doesn’t work, turn around and step backwards.

    Step 5 Loop Step 4 until reaching the specified number of steps.

    3 Simulation results and analysis

    The reference system as indicated in Fig.4 is used for ray tracing. The outer door is kept to be closed, while the inner door is assumed to be open during the ray tracing process. As shown in Fig.3, the maximum number of transmissions is limited to one, which means that only the transmission through the glass window and glass door needs to be calculated. Based on the propagation environment model and the modified random walk model, parameters used for simulation are summarized below in Table 3. The simulation tools used are Microsoft Visual Studio 2008 and Matlab 7.10.0 (R2010a).

    Table 3 Simulation parameters

    Transmitter Tx is located at the origin coordinate of the reference system, and the coordinate value of (2.0, -1.0) is chosen as the receiver. It is assumed that both of them are equipped with omnidirectional antennas. Fig.6 shows the ray tracing results between the transmitter and the receiver under the constraints of Nref≤1, Ntrans=0 and Ndiff≤1 at a certain time instant. The multipath disturbance due to the human body movement can be seen from these figures intuitively.

    (a) no moving bodies

    (b) one moving body

    (c) three moving bodies

    (d) five moving bodies

    Simulation is taken with regular time intervals, which makes it possible to compute the positions of the human bodies again and make a new calculation of the parameters of the channel. To investigate the human motion effects on the path gains of different positions, the office room is gridded into a group of squares each with the dimension of 0.1m×0.1m. The path gain of the central point of the square can be used to approximately represent the transmission loss inside it. Especially, the power threshold 1.0×10-15W is used to represent the path gain inside the scatterer.

    Fig.7 shows the simulation result when there is no human motion, i.e., in a static condition. It can be seen that the path gain varies from -40dB to -150dB. Most parts of the office go through a 100dB path loss, while the path gain around the transmitter is roughly -50dB. Furthermore, the path gain distributions under the human motion effects are presented in Figs8,9,10, and 11, each corresponding to the simulated walking trails in Fig.5. As shown in Fig.8, there

    Fig.7 Path gain prediction without human motion

    Fig.8 Path gain prediction with one moving body

    Fig.9 Path gain prediction with three moving bodies

    Fig.10 Path gain prediction with five moving bodies

    Fig.11 Path gain prediction with ten moving bodies

    is just a little affection to the path loss when there is only one moving person. However, the path loss of the bottom right corner of the inner room degrades to 120dB more or less if there are three moving persons, which can be seen from Fig.9. It is mainly caused by the moving person in the inner room and the deep path loss area becomes larger as the number of moving persons increases in the inner room. Moreover, it is worth pointing that, in Fig.10 and Fig.11, a triangle area is formed by the three bodies around the transmitter and it increases the path gains inside the area.

    4 Conclusions

    In this work, it has investigated the human motion effects on the 60GHz indoor office propagation by adopting a modified random walk model which takes account of the movement tendency. Based on the modified random walk model and the 2D ray tracing algorithm, path gain distributions are simulated under the assumptions of different number of moving bodies. The simulation results and analysis show that the movement of human bodies results in multipath disturbances and causes deep path losses in some areas. It is one of the main factors that can significantly degrade the transmission quality in a realistic indoor environment and it may frequently occur because of people walking around from time to time.

    [ 1] Park C, Rappaport T S. Short-range wireless communications for next-generation networks: UWB, 60GHz millimeter-wave WPAN, and ZigBee. IEEE Wireless Commun. Mag, 2007, 14(4): 70-78

    [ 2] Cassioli D. 60GHz UWB channel measurement and model. In: Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB), Syracuse, NY, 2012. 145-149

    [ 3] Moraitis N, Constantinou P. Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Trans Antennas Propag, 2004, 52(12): 3180-3189

    [ 4] Peter W K M, Keusgen W, Felbecker R. Measurement and ray-tracing simulation of the 60 GHz indoor broadband channel: model accuracy and parameterization. In: Proceedings of the 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007. 1-8

    [ 5] Rama R T, Murugesan D, Tiwari N, et al. 60 GHz radio wave propagation studies in an indoor office environment. In: Proceedings of the IEEE International Conference on Communication Systems (ICCS), Singapore, 2012. 181-185

    [ 6] Khafaji A, Saadane R, Abbadi J E, et al. Ray tracing technique based 60 GHz band propagation modeling and influence of people shadowing. International Journal of Electrical, Computer, and Systems Engineering. 2008, 2(2): 102-108

    [ 7] Kouyoumjian R G, Pathak P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE. 1974, 62(11): 1448-1461

    [ 8] Wang Y, Lu W J, Zhu H B. An empirical path-loss model for wireless channels in indoor short-range office environment. International Journal of Antennas and Propagation. 2012, 123(1): 1-12

    [ 9] Pugliese J P, Hammoudeh A, Al-Nuaimi M O. Reflection and transmission characteristics of building materials at 62 GHz. In: Proceedings of the IEE Colloquium on Radio Communications at Microwave and Millimeter Wave Frequencies, London, UK, 1996. 6/1-6/6

    [10] Sato K, Kozima H, Masuzawa H, et al. Measurements of reflection characteristics and refractive indices of interior construction materials in millimeter-wave bands. In: Proceedings of the 45th IEEE Vehicular Technology Conference, Chicago, USA, 1995. 449-453

    [11] Sato K, Manabe T, Ihara T, et al. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. In: Proceedings of the 7th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Taipei, China, 1996. 14-18

    [12] Islam, Jakirul M. Investigation of the effect of human motion on indoor radio signal propagation. In: Proceedings of the 2nd International Conference on Power and VLSI Engineering, Kuala Lumpur, Malaysia, 2013. 31-35

    Zhao Junhui, received his Ph.D. degree in National Mobile Communications Research Laboratory of Southeast University in 2004. Now he is a professor and Ph.D. supervisor at School of Electronic and Information Engineering of Beijing Jiaotong University. His main research interests include wireless location, channel modeling, cooperative communication and cognitive radio.

    10.3772/j.issn.1006-6748.2015.04.011

    ①Supported by the National Natural Science Foundation of China (61172073), Program for New Century Excellent Talents of the Ministry of Education (NCET-12-0766), the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2012D19), and the Fundamental Research Funds for the Central Universities (2013JBZ001).

    ②To whom correspondence should be addressed. E-mail: junhuizhao@bjtu.edu.cn Received on June 25, 2014***, Liu Xu*

    猜你喜歡
    趙軍
    “章節(jié)起始課”的教學(xué)觀察與比較
    Effect of void size and Mg contents on plastic deformation behaviors of Al–Mg alloy with pre-existing void: Molecular dynamics study
    俺們村的“貼心人”
    種樹協(xié)議(原創(chuàng))
    隔離的松風(fēng)
    金秋(2019年14期)2019-10-23 02:11:34
    落魄富豪殺子:自己生的垃圾能“退貨”嗎
    抓住整體巧妙代入
    七分審題三分做
    趙軍 藏石欣賞
    寶藏(2017年3期)2017-05-09 03:21:45
    七彩夜明珠
    1024视频免费在线观看| 亚洲男人天堂网一区| 日本黄色日本黄色录像| 久久中文字幕一级| 桃红色精品国产亚洲av| 亚洲国产av影院在线观看| www.精华液| 国产精品一区二区免费欧美| 中文字幕精品免费在线观看视频| 一区二区三区激情视频| 波多野结衣av一区二区av| www.999成人在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品中文字幕一二三四区 | 国产99久久九九免费精品| 在线十欧美十亚洲十日本专区| 蜜桃国产av成人99| 国产又色又爽无遮挡免费看| 亚洲中文av在线| 亚洲精品自拍成人| 国产色视频综合| 后天国语完整版免费观看| 日本vs欧美在线观看视频| 久久ye,这里只有精品| 午夜免费鲁丝| 亚洲午夜理论影院| 大片电影免费在线观看免费| 精品乱码久久久久久99久播| 涩涩av久久男人的天堂| 水蜜桃什么品种好| 精品高清国产在线一区| 9色porny在线观看| 亚洲国产中文字幕在线视频| 国产日韩欧美视频二区| 欧美日韩精品网址| av线在线观看网站| 午夜视频精品福利| avwww免费| av在线播放免费不卡| 国产真人三级小视频在线观看| 国产精品香港三级国产av潘金莲| 午夜福利乱码中文字幕| 他把我摸到了高潮在线观看 | 麻豆国产av国片精品| 亚洲色图 男人天堂 中文字幕| 成年人黄色毛片网站| 男人操女人黄网站| 久久天躁狠狠躁夜夜2o2o| av超薄肉色丝袜交足视频| 欧美日韩成人在线一区二区| 久久久国产成人免费| 国产成人一区二区三区免费视频网站| 久久这里只有精品19| 两人在一起打扑克的视频| 国产极品粉嫩免费观看在线| 亚洲国产av影院在线观看| 可以免费在线观看a视频的电影网站| 精品午夜福利视频在线观看一区 | 一区二区三区国产精品乱码| 色综合婷婷激情| 中文字幕精品免费在线观看视频| 亚洲一区中文字幕在线| 麻豆成人av在线观看| 午夜两性在线视频| 久久久久久久大尺度免费视频| 午夜免费成人在线视频| 国产在线观看jvid| 国产日韩欧美在线精品| 美女午夜性视频免费| 男女无遮挡免费网站观看| 国产精品麻豆人妻色哟哟久久| 色在线成人网| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品麻豆人妻色哟哟久久| 欧美精品高潮呻吟av久久| 巨乳人妻的诱惑在线观看| 国产不卡一卡二| 在线永久观看黄色视频| 国产野战对白在线观看| 免费黄频网站在线观看国产| 老司机午夜福利在线观看视频 | 中亚洲国语对白在线视频| 国产精品av久久久久免费| 露出奶头的视频| 亚洲av日韩在线播放| 久久亚洲真实| 国产av又大| 亚洲人成伊人成综合网2020| 无人区码免费观看不卡 | 免费在线观看视频国产中文字幕亚洲| 又黄又粗又硬又大视频| 手机成人av网站| av免费在线观看网站| 国产精品一区二区精品视频观看| 精品少妇一区二区三区视频日本电影| 久热爱精品视频在线9| 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 涩涩av久久男人的天堂| h视频一区二区三区| 欧美黑人欧美精品刺激| 成年人免费黄色播放视频| 人妻 亚洲 视频| 国产不卡av网站在线观看| 中文字幕人妻丝袜一区二区| 老司机影院毛片| 亚洲人成77777在线视频| 亚洲av第一区精品v没综合| cao死你这个sao货| 桃红色精品国产亚洲av| 性少妇av在线| 大片电影免费在线观看免费| 一本久久精品| 精品少妇一区二区三区视频日本电影| 国产精品1区2区在线观看. | 亚洲色图 男人天堂 中文字幕| 亚洲成a人片在线一区二区| 国产精品免费大片| 一级毛片精品| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 99久久人妻综合| 日韩精品免费视频一区二区三区| 亚洲国产看品久久| 叶爱在线成人免费视频播放| 电影成人av| 国产麻豆69| 日韩中文字幕视频在线看片| 国产片内射在线| 窝窝影院91人妻| 午夜91福利影院| 亚洲精品成人av观看孕妇| 国产精品国产高清国产av | av又黄又爽大尺度在线免费看| 亚洲精品国产色婷婷电影| 久久ye,这里只有精品| 啦啦啦视频在线资源免费观看| 999精品在线视频| 动漫黄色视频在线观看| 黄网站色视频无遮挡免费观看| www.自偷自拍.com| 国产高清激情床上av| 天堂动漫精品| 国产有黄有色有爽视频| 久久久久国内视频| 亚洲天堂av无毛| 99香蕉大伊视频| 美女主播在线视频| 可以免费在线观看a视频的电影网站| 午夜激情久久久久久久| 国产1区2区3区精品| 欧美精品啪啪一区二区三区| 动漫黄色视频在线观看| 亚洲伊人色综图| 色在线成人网| 一二三四社区在线视频社区8| 黑丝袜美女国产一区| 老鸭窝网址在线观看| 黄片大片在线免费观看| 欧美日韩一级在线毛片| 18禁裸乳无遮挡动漫免费视频| 免费av中文字幕在线| 精品高清国产在线一区| 一级a爱视频在线免费观看| 久久久久久人人人人人| 免费看a级黄色片| 九九久久精品国产亚洲av麻豆 | 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区91| 国产一区二区在线av高清观看| 51午夜福利影视在线观看| 两性夫妻黄色片| 亚洲成a人片在线一区二区| 亚洲人成伊人成综合网2020| 精品99又大又爽又粗少妇毛片 | 两性夫妻黄色片| 国产精品亚洲av一区麻豆| 精品久久久久久久久久久久久| 99久久99久久久精品蜜桃| 免费无遮挡裸体视频| 悠悠久久av| 草草在线视频免费看| 亚洲av日韩精品久久久久久密| 夜夜爽天天搞| 日韩有码中文字幕| 国产v大片淫在线免费观看| 九色国产91popny在线| 亚洲成av人片在线播放无| 国产亚洲av高清不卡| 最好的美女福利视频网| 国产主播在线观看一区二区| 亚洲狠狠婷婷综合久久图片| 日韩高清综合在线| 欧美丝袜亚洲另类 | 丝袜人妻中文字幕| 国产成人aa在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久免费视频了| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 巨乳人妻的诱惑在线观看| 床上黄色一级片| 色精品久久人妻99蜜桃| 免费在线观看成人毛片| 91老司机精品| 免费看光身美女| 91字幕亚洲| 热99在线观看视频| 成在线人永久免费视频| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 日韩欧美在线二视频| 韩国av一区二区三区四区| 一级黄色大片毛片| 人人妻,人人澡人人爽秒播| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 久久精品91无色码中文字幕| 色视频www国产| 国内精品久久久久精免费| 成人国产综合亚洲| 国产午夜福利久久久久久| 男人舔女人下体高潮全视频| 欧美一区二区国产精品久久精品| 欧美xxxx黑人xx丫x性爽| 可以在线观看的亚洲视频| 免费在线观看成人毛片| 免费观看精品视频网站| 白带黄色成豆腐渣| 亚洲乱码一区二区免费版| 午夜免费观看网址| 狠狠狠狠99中文字幕| 国产成人av教育| 国产高清三级在线| 国产伦一二天堂av在线观看| 欧美成狂野欧美在线观看| 国产激情欧美一区二区| 久久国产乱子伦精品免费另类| 亚洲五月天丁香| 久久久久久久久免费视频了| 波多野结衣高清无吗| 少妇裸体淫交视频免费看高清| 1024手机看黄色片| 日本黄色片子视频| 99热精品在线国产| 欧美日韩精品网址| 亚洲成人精品中文字幕电影| 久久精品影院6| 美女cb高潮喷水在线观看 | 欧美另类亚洲清纯唯美| 精品国产乱子伦一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩无卡精品| 日韩欧美三级三区| 成人特级av手机在线观看| 国产成人影院久久av| 熟女少妇亚洲综合色aaa.| 国产伦精品一区二区三区四那| 国产精品1区2区在线观看.| 午夜福利18| 天堂√8在线中文| 午夜福利在线观看吧| 欧美中文日本在线观看视频| 久久热在线av| 亚洲午夜精品一区,二区,三区| 亚洲成人精品中文字幕电影| 午夜福利免费观看在线| 久久九九热精品免费| 成年女人毛片免费观看观看9| 9191精品国产免费久久| 在线a可以看的网站| 国产三级在线视频| 日韩三级视频一区二区三区| 高清毛片免费观看视频网站| 校园春色视频在线观看| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 国产精品综合久久久久久久免费| 他把我摸到了高潮在线观看| 一个人观看的视频www高清免费观看 | 91在线观看av| 国产高清视频在线播放一区| 亚洲,欧美精品.| a级毛片a级免费在线| 精品欧美国产一区二区三| 天堂影院成人在线观看| h日本视频在线播放| 午夜免费成人在线视频| 哪里可以看免费的av片| 欧美成人一区二区免费高清观看 | 好看av亚洲va欧美ⅴa在| 亚洲专区中文字幕在线| 欧美黄色片欧美黄色片| 天天躁日日操中文字幕| 午夜成年电影在线免费观看| 久久精品亚洲精品国产色婷小说| 18禁观看日本| 亚洲av成人av| 给我免费播放毛片高清在线观看| www.熟女人妻精品国产| 网址你懂的国产日韩在线| 亚洲片人在线观看| 精品免费久久久久久久清纯| 精品一区二区三区四区五区乱码| 欧美最黄视频在线播放免费| 人妻夜夜爽99麻豆av| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 欧美3d第一页| 精品久久久久久久人妻蜜臀av| 免费在线观看影片大全网站| 色吧在线观看| 又大又爽又粗| 中文字幕最新亚洲高清| 在线国产一区二区在线| 精品一区二区三区视频在线观看免费| 一进一出好大好爽视频| 久久久久久大精品| 精品熟女少妇八av免费久了| 久久久久久久久中文| 久久精品人妻少妇| 99精品欧美一区二区三区四区| 欧美zozozo另类| 日本黄色片子视频| 特级一级黄色大片| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美在线一区二区| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 国内精品美女久久久久久| 男女床上黄色一级片免费看| 久久久精品欧美日韩精品| 别揉我奶头~嗯~啊~动态视频| 91老司机精品| 亚洲精品在线美女| 久久精品夜夜夜夜夜久久蜜豆| 日日干狠狠操夜夜爽| 亚洲精品456在线播放app | 久久久久国内视频| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 巨乳人妻的诱惑在线观看| 观看美女的网站| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| 黄色日韩在线| 欧美av亚洲av综合av国产av| 97超视频在线观看视频| 后天国语完整版免费观看| 国产人伦9x9x在线观看| 黄色日韩在线| 99re在线观看精品视频| 男女之事视频高清在线观看| 又爽又黄无遮挡网站| 人妻丰满熟妇av一区二区三区| 国内精品一区二区在线观看| 两个人的视频大全免费| 中文字幕人妻丝袜一区二区| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 岛国在线观看网站| 两个人的视频大全免费| 色综合站精品国产| 国产日本99.免费观看| 91老司机精品| 国产高清视频在线播放一区| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 日日夜夜操网爽| 人妻夜夜爽99麻豆av| 亚洲精品美女久久av网站| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 欧美日韩综合久久久久久 | 国产av不卡久久| 可以在线观看的亚洲视频| 日韩欧美在线乱码| 亚洲精品在线美女| 午夜福利在线在线| 九九久久精品国产亚洲av麻豆 | 精品熟女少妇八av免费久了| 国产av一区在线观看免费| 日韩国内少妇激情av| 神马国产精品三级电影在线观看| 91麻豆精品激情在线观看国产| 一边摸一边抽搐一进一小说| 久久午夜综合久久蜜桃| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 久久亚洲真实| 日本三级黄在线观看| 久久国产精品影院| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 亚洲av中文字字幕乱码综合| ponron亚洲| 国产伦人伦偷精品视频| 亚洲国产中文字幕在线视频| 国产极品精品免费视频能看的| 国产一区二区在线av高清观看| 成人鲁丝片一二三区免费| 欧美日韩国产亚洲二区| 啦啦啦免费观看视频1| 国产精品 国内视频| 国产高清videossex| 国产一区二区三区视频了| 久久久精品欧美日韩精品| 欧美黄色淫秽网站| 在线a可以看的网站| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 男女那种视频在线观看| 午夜a级毛片| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 在线观看日韩欧美| 三级国产精品欧美在线观看 | 三级男女做爰猛烈吃奶摸视频| а√天堂www在线а√下载| 欧美日韩国产亚洲二区| 露出奶头的视频| 亚洲av中文字字幕乱码综合| 十八禁网站免费在线| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 国产精品久久电影中文字幕| 99re在线观看精品视频| www国产在线视频色| 久久人人精品亚洲av| 日韩有码中文字幕| 超碰成人久久| 欧美午夜高清在线| 久久九九热精品免费| 亚洲精品中文字幕一二三四区| 精品日产1卡2卡| 三级国产精品欧美在线观看 | 久久久久国内视频| 窝窝影院91人妻| 村上凉子中文字幕在线| 色播亚洲综合网| 久久久国产成人精品二区| 久久久久久久久中文| 午夜福利在线在线| 综合色av麻豆| 国产97色在线日韩免费| 国产高潮美女av| 五月伊人婷婷丁香| 欧美日韩乱码在线| 夜夜夜夜夜久久久久| 一本精品99久久精品77| 无限看片的www在线观看| avwww免费| 美女cb高潮喷水在线观看 | 黄色日韩在线| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 亚洲成人中文字幕在线播放| 国产av不卡久久| 夜夜躁狠狠躁天天躁| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 熟妇人妻久久中文字幕3abv| 美女高潮喷水抽搐中文字幕| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 久久香蕉国产精品| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 观看美女的网站| 国产高清三级在线| 国产野战对白在线观看| 久久久久国内视频| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 中出人妻视频一区二区| 网址你懂的国产日韩在线| 成在线人永久免费视频| 国产综合懂色| 日韩成人在线观看一区二区三区| 国产精品女同一区二区软件 | 国产精品一及| e午夜精品久久久久久久| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 国产人伦9x9x在线观看| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 少妇熟女aⅴ在线视频| www.999成人在线观看| 特大巨黑吊av在线直播| 国产精品综合久久久久久久免费| 日韩av在线大香蕉| 精品国产乱子伦一区二区三区| 99国产极品粉嫩在线观看| 成人午夜高清在线视频| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 国产精品 国内视频| 天堂网av新在线| 亚洲美女黄片视频| 中国美女看黄片| 香蕉久久夜色| 一a级毛片在线观看| 亚洲五月婷婷丁香| 久久久久免费精品人妻一区二区| 深夜精品福利| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 嫩草影院入口| 国产伦在线观看视频一区| 亚洲一区二区三区色噜噜| 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3| 老熟妇乱子伦视频在线观看| 久久精品影院6| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产高清在线一区二区三| 亚洲狠狠婷婷综合久久图片| 成人18禁在线播放| 午夜福利在线在线| a在线观看视频网站| 欧美日本视频| 久久99热这里只有精品18| 日本一二三区视频观看| 国产成+人综合+亚洲专区| 天堂动漫精品| 国产成人啪精品午夜网站| 1000部很黄的大片| 国产成人精品无人区| 亚洲av中文字字幕乱码综合| 丰满的人妻完整版| 最新在线观看一区二区三区| 身体一侧抽搐| 69av精品久久久久久| 在线国产一区二区在线| 丰满的人妻完整版| 欧美一级毛片孕妇| 日本黄大片高清| 欧美激情在线99| 国产1区2区3区精品| 国产成人系列免费观看| 成人三级做爰电影| 99精品欧美一区二区三区四区| 成人鲁丝片一二三区免费| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 精品国产亚洲在线| 国产成人av教育| 美女免费视频网站| 亚洲第一电影网av| 九色成人免费人妻av| 国产午夜精品论理片| 国产精品 国内视频| 三级国产精品欧美在线观看 | 精品不卡国产一区二区三区| 国产真实乱freesex| 亚洲自拍偷在线| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 91在线观看av| 天天躁日日操中文字幕| av在线蜜桃| 久久久国产成人精品二区| 免费av毛片视频| 麻豆一二三区av精品| 最近最新中文字幕大全免费视频| 国产精品久久久久久久电影 | svipshipincom国产片| 天堂√8在线中文| 无限看片的www在线观看| 成人无遮挡网站| 国产精品综合久久久久久久免费| 97超级碰碰碰精品色视频在线观看| 亚洲片人在线观看| 国产探花在线观看一区二区| 成在线人永久免费视频| 国产精品1区2区在线观看.| 国产真实乱freesex| 91av网一区二区| 国产精品一区二区免费欧美| 听说在线观看完整版免费高清| 亚洲精品一卡2卡三卡4卡5卡| 99在线视频只有这里精品首页| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 亚洲av电影在线进入| 一个人看的www免费观看视频| 一级作爱视频免费观看| 精品久久久久久,| 天堂影院成人在线观看| 露出奶头的视频| 免费av不卡在线播放| 国产成人aa在线观看| 18禁黄网站禁片免费观看直播| 成人三级做爰电影| 宅男免费午夜| 99热这里只有是精品50| 老汉色av国产亚洲站长工具| 超碰成人久久| 久久午夜亚洲精品久久| 欧美av亚洲av综合av国产av| 制服人妻中文乱码| 噜噜噜噜噜久久久久久91| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 国产精品久久久av美女十八| 制服人妻中文乱码| 亚洲九九香蕉| 日本黄色视频三级网站网址| 亚洲人成伊人成综合网2020| 在线永久观看黄色视频| 国产欧美日韩精品一区二区|