• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    2015-04-17 07:17:11XingChenghong興成宏XuFengtian
    High Technology Letters 2015年4期

    Xing Chenghong (興成宏), Xu Fengtian

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    ?

    A fault diagnosis method of reciprocating compressor based on sensitive feature evaluation and artificial neural network①

    Xing Chenghong (興成宏)*, Xu Fengtian②

    (*Diagnosis and Self-Recovery Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, P.R.China)(**PetroChina Beijing Gas Pipeline Co., Ltd., Beijing 100101, P.R.China)(***PetroChina Fushun Petrochemical Company Detergent Chemical Plant, Fushun 113005, P.R.China)

    A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors. Aiming at the current situation that the accuracy rate of reciprocating compressor fault diagnosis which depends on manual work in engineering is very low, we apply information entropy evaluation to select the sensitive features and make clear the corresponding relationship of characteristic parameters and failures. This method could reduce the feature dimension. Then, a complete fault diagnosis architecture has been built combining with radial basis function network which has the fast and efficient characteristics. According to the test results using experimental and engineering data, it is observed that the proposed fault diagnosis method improves the accuracy of fault automatic diagnosis effectively and it could improve the practicability of the monitoring system.

    information entropy, radial basis function network, fault automatic diagnosis, reciprocating compressor, sensitive feature

    0 Introduction

    Reciprocating compressors are widely used in process industries of oil refining and chemical, which are the core equipments of process plant. Most of the operation media of reciprocating compressors are combustible and explosive vapors, such as hydrogen, natural gas, methane gas and ethylene gas. In case of serious faults, dangerous gas is liable to leak, causing serious accidents such as fire even explosion[1]. Currently, part of domestic reciprocating compressors have installed the online monitoring system, which makes real-time monitoring of operation status possible. With the development of computer processing in intelligent classification technology, fault early-warning and automatic diagnosis have been an inevitable trend. But reciprocating compressor has multiple vibration sources, complex structures and poor working conditions. These make signal acquisition, condition monitoring and fault automatic diagnosis very difficult.

    1 Related work

    In recent years, many scholars have always concerned about fault diagnosis of reciprocating compressors. Feng, et al. applies support vector machines in fault classification of reciprocating compressor[2]. Ma, et al. used acoustic emission technology on reciprocating compressors for early-warning of piston rods fracture[3]. Ahmed, et al. uses neural networks, support vector machines and principle component analysis in reciprocating compressors fault diagnosis[4,5]. Qu, et al. proposes a fault diagnosis model based on multi-wavelet packet and neighborhood rough set, which enables automatic recognition of the different status of the device[6].

    However, these monitoring and diagnosis methods are seldom used in practical engineering. There are three main aspects as follows:

    ? Reciprocating compressor’s practical working situation is complicated and the utility of fault diagnosis method in lab remains to be tested.

    ? For single fault, laboratory extracts a smaller number of features. But in the actual diagnosis of typical faults, there are dozens of or even hundreds of extracted features. Diagnosis for real-time processing is difficult.

    ? Part of the diagnosis methods slip from the target for fault early warning does not blended into online monitoring system.

    Therefore, the capability of fault early-warning and automatic diagnosis in the online monitoring system is weak at present.

    This paper applies feature selection technology in machine learning to the field of diagnosis for reciprocating compressor and extracts various kinds of fault features basing on online monitoring data, using information entropy technology to complete feature sensitivity analysis. The method achieves fault sensitive features to establish new alarm parameters.

    Information entropy is the calculated information content on the basis of original data, which has strong objectivity as a measure of system’s uncertainty[7]. For the moment, information entropy is mainly applied to the aspects of feature analysis and selection in fault diagnosis. Xia, et al. uses it for rolling bearing friction analysis[8], Cabal-Yepez, et al. uses it in induction motors fault identification[9,10], Ai, et al. uses it in crack-rubbing coupled fault diagnosis[11].

    There are few reports about the application of information entropy for fault diagnosis of reciprocating compressor.

    On the basis of extraction of fault sensitive features by using information entropy, a new fault early-warning and diagnosis architecture combining fault-sensitive features and artificial neural network has been constructed and applied to practical fault diagnosis. Experimental and practical data have proved that the method in this paper obtains a higher diagnosis accuracy and timeliness of early warning compared to the method without feature selection.

    2 Sensitive feature evaluation and diagnosis

    2.1 Sensitive feature evaluation based on information entropy

    Feature selection in machine learning can be defined as selecting a subset which has the optimal result of evaluation criteria from a set of features[12]. It is an algorithm that selects N features from given M features by a learning algorithm L to make a certain evaluation criterion J=J(L,S) optimal.

    Information entropy evaluation criterion can quantify the uncertainty between features and fault mainly by using information entropy to determine the classification information that features contain. It is a non-parametric and nonlinear evaluation criterion. Among the methods of information entropy evaluation criterion, information gain and mutual information are widely applied. For illustration, the definition of entropy and conditional entropy is given first.

    In information theory and probability and statistics, entropy is a measure of the uncertainty of a random variable. It sets X as a discrete random variable, if its probability distribution is P(X=xi)=pi, i=1,2,…,n, the entropy of the random variable X can be defined as

    (1)

    if pi=0, then 0log2(0)=0. By definition, X depends on the entropy distribution and has nothing to do with the value of X, so the entropy of X can be denoted as H(p). The greater the entropy, the greater the uncertainty of a random variable. When there are only two random variable values as 0 or 1, the distribution of X is H(X=1)=p and H(X=0)=1-p, 0≤p≤1, and the entropy is

    H(p)=-plog2p-(1-p)log2(1-p)

    (2)

    At this point, the curve of the entropy with probability is shown in Fig.1. It could be known from Fig.1 that when p=0 or p=1, H(p)=0. That means the random variable has no uncertainty.

    Fig.1 The relationship between entropy and probability

    (3)

    In Eq.(3), P(xi) is the priorprobability that the value of feature X is xi, and P(xi|yj) is the posterior probability that the value of feature X is xiin the given value yiof feature Y. Therefore, information gain is

    IG(X|Y)=H(X)-H(X|Y)

    (4)

    According to the definition of information gain, if IG(X|Y)>IG(Z|Y), the correlation coefficient of feature Y and feature X is higher than that of feature Z and feature X. And IG(X|Y) can be normalized to

    (5)

    SU(X,Y) is called Symmetric Uncertainty, whose value is in [0, 1]. SU(X,Y)=1 when feature X and Y are completely dependent, and SU(X,Y)=0, when they are completely independent.

    There have been symmetric uncertainty SU(X,Y) which can calculate the correlation coefficient of two features, also symmetric uncertainty SU(X,C) can be oblained which can calculate the correlation coefficient of one feature and fault classes with fault classes C to take the place of feature Y.

    A relatively simple and straight forward calculation method of symmetric uncertainty is the histogram method[13]. Specific steps are as follows:

    Step 1 Given n values x1,x2,…,xnof feature X, the value range of X is divided into n-1 disjoint intervals (xi, xi+1](i=1,…,n-1). Supposing A(xi) is a function that counts the number of sample data of feature X in the interval (xi, xi+1], probability function P(xi)=A(xi)/m would be got approximately in which m is the total number of sample data and information entropy of feature X namely:

    (6)

    Step 2 According to the fault classes, the sample data of feature X is classified. If A(cj) is the number of the sample data under fault class cj, and P(cj)=A(cj)/m is approximately probability function of fault class cj, then information entropy of fault class cjis calculated by

    (7)

    (8)

    Step 4 Finally, it turns to calculate symmetry uncertainty:

    (9)

    After Step 4, calculating the next feature, then repeating computation steps of “1~4”. After all the features of symmetry are calculated, the uncertainty coefficients are normalized. It needs to set a threshold for the coefficients normalized. Then the sensitive features are selected whose coefficient is greater than the threshold for different faults. The provisions of this paper is that for a single fault, the feature whose normalized symmetrical uncertainty coefficient is greater than 0.6 will be selected as the sensitive feature of the fault.

    2.2 Fault diagnosis of reciprocating compressor

    Artificial neural network as an intelligent classifier has been widely used in fault diagnosis of reciprocating compressor. Radial basis function (radial basis, function, RBF) neural network is a typical local three layer feed forward artificial neural network with good performance. It has good training speed and nonlinear ability which can approximate a nonlinear function with any precision globally. In the approximation ability, classification ability, convergence and learning speed etc, the RBF is superior to BP network. This enables RBF to obtain widespread application in many fields[14].

    In this paper, an architecture is constructed combining with sensitive fault feature selection and artificial neural network for fault warning and diagnosis, as shown in Fig.2.

    In Fig.2, based on the data of online monitoring system, the diagnostic parameters in time domain and frequency domain are calculated as the basis for the sensitive feature extraction. Through automatic learning a lot of data, a standard fault sensitive parameters library was built. The sensitive characteristics of the standard library can be used to improve the alarm parameters in the on-line monitoring system. Because the sensitive characteristics of every kind of fault are different, different neural network classifiers are set for different fault. By the learning of known faults history data, the neural network will be completed training. Then the trained neural network classifier can finish the fault automatic diagnosis. The architecture can be also improved by new type of faults, avoiding retraining of the neural network which has been trained.

    3 Experimental investigation

    To verify the effectiveness and practicability of the information entropy evaluation method applied in fault diagnosis of reciprocating compressors, two kinds of faults: fracture of piston rod and looseness of the piston rod nut, are used as validation examples. Both of the faults are difficult to be diagnosed in practice. The method will be verified based on data of fault simulation tests on a reciprocating compressor platform. The information of it is shown in Table 1 and the structure is shown in Fig.3.

    Fig.2 Architecture of early-warning and fault diagnosis based on fault sensitive feature evaluation and artificial neural network

    Based on the online monitoring system, 58 features have been extracted from time domain, frequency domain and time-frequency domain, including displacement peak-to-peak value, acceleration peak value, velocity RMS and so on. Table 2 and Table 3 show the normalized values of parts of features in different time of the failures.

    Table1 The experimental compressor information

    Fig.3 Structure of the reciprocating compressor

    ClassNormalFaulttimetime1time2time3time4time5time6time1time2time3time4time5time6Displacementpeak-to-peak0.170.110.210.180.230.250.220.270.320.330.360.32Accelerationpeak0.080.050.110.100.130.150.340.420.380.410.510.47RMS0.200.270.320.250.220.330.660.820.840.720.810.79

    Table 3 The value of parts of features for the looseness fault of piston rod nut

    It is easy to see that there are varied differences between normal and fault of a certain feature for each kind of fault. Therefore, the information entropy evaluation method can be used to calculate and sort the sensitivity of different features. After normalized, the sensitivity coefficients of each feature of four groups of fault data are shown in Fig.4 and Fig.5. In Fig.4, it

    Fig.4 Results of sensitive feature evaluation for the fracture failure of piston rod

    FaultNumberSensitivefeatureThefractureofpistonrod14Displacementwaveenergy15Displacementchangeindex53Crankcasechangeindex57CrankcaseRMSTheloosenessofpistonrodnut1Displacementpeak-to-peak14Displacementwaveenergy17Displacementvibrationfrequency

    is the result of sensitive feature evaluation for the fracture failure of piston rods. And in Fig.5, it is for the looseness fault. The sensitive features for each fault are shown in Table 4.

    After the sensitive features are obtained, the sample data corresponding to the sensitive features will be used to train the artificial neural network as an intelligent classifier respectively for each kind of fault. Then one typical fault case for the fracture failure of piston rod is taken and one typical fault case for looseness fault to test the independent intelligent classifier. The results are shown in Fig.6 and Fig.7.

    Fig.6 Output value of artificial neural network for the fracture failure of piston rod

    Fig.7 Output value of artificial neural network for the looseness fault of piston rod nut

    Fig.6 shows the output value of artificial neural network for the fracture failure of piston rod and it is easy to figure out that the trained classifier can do fault diagnosis. There is obviously the fault symptom in the early fault period. Similarly, Fig.7 shows the output value of artificial neural network for the looseness fault. And it is also easy to figure out that the trained classifier can do fault diagnosis, there is obviously the fault symptom in the early fault period.

    After evaluation, the fault features not only make clear the relationship between the fault type and fault feature, but also improve the diagnosis accuracy. In order to illustrate it, this paper constructs an architecture of artificial neural network fault diagnosis without sensitive feature selection and just provides one neural network system for all kinds of fault. That is, the fault features for diagnosis are same for every fault. Before the early-warning and diagnosis of test data, it is required the use of a known fault data to train the neural network. One drawback of this layout is a new category of failure which will need to retrain the neural network.

    Comparing and analyzing these experimental data, the test results of a typical fault case of the fracture failure for piston rod and a typical fault case for looseness fault are shown respectively in Fig.8 and Fig.9.

    Fig.8 Output value of artificial neural network without sensitive feature selection for the fracture failure of piston rod

    Fig.9 Output value of artificial neural network without sensitive feature selection for the looseness fault of piston rod

    It shows the output results of artificial neural network of the fracture failure of piston rod and the looseness fault. It is easy to figure out that the trained classifier reduces the accuracy of fault diagnosis compared with the above and there is obviously no fault symptom in the early fault period.

    4 Verification

    In order to exam the practical value in engineering of the method proposed in this paper further, the actual fault case data from a domestic enterprise remote monitoring and diagnosis center of reciprocating compressor were carried to be analyzed. According to the faults including fracture of the piston rod failure, supporting ring wear failure and scuffing failure, 20 groups of the faults data were selected as training data; the other 100 groups fault were selected as test data.

    To comprehensively inspect the practicability and superiority of the method presented in this paper for fault diagnosis, the diagnosis structure of this paper was compared with that based on the sensitive feature selection and BP artificial neural network in addition to the structure that based on radial basis function artificial neural network only.

    In Table 5, it is clear that the accuracy rate of RBF with sensitive features is higher than those of RBF only and BP with sensitive features.

    After sensitive features selection through information entropy evaluation, the dimension of the feature set was greatly reduced from 58 to 4 or 3. Meanwhile, the computational complexity is significantly reduced and the fault diagnosis accuracy is greatly improved. More important, it is clearly to grasp the sensitive features for the compressor operators in application of online monitoring and diagnosis system.

    Table 5 The validation results of actual faults data

    5 Conclusions

    According to the problems that the sensitivity of alarm parameters is very low and it is difficult to take automatic diagnosis in realistic, this paper proposes a new method that applies the information entropy evaluation to select the sensitive features of different faults based on the data in online monitory system. It makes clear the relationship of fault and features, reduces the dimension of data. The sensitive features can be used to improve the alarming system, increase the pertinence and validity of alarming parameters.

    Based on the selection of sensitive features, a new diagnosis architecture combining sensitive features and artificial neural network is built which has been compared with other architectures by different fault cases data. The diagnosis results obtain test data from faults simulation and actual faults, the diagnosis architecture proposed in this paper improves the accuracy of fault diagnosis significantly.

    The study of this paper is closely related to the requirements of realistic fault diagnosis of reciprocating compressor. The method has good application value. The next step will be integrating the diagnosis architecture into the online monitoring system to improve the training and studying through mass of data, and increasing the practicability and automatic diagnosis accuracy of the monitoring system.

    [ 1] Yu L J. Review on fault diagnosis technology for reciprocation compressors. Fluid Machinery, 2014,41(1): 36-37

    [ 2] Feng K, Jiang Z N, He W, et al. A recognition and novelty detection approach based on Curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis, Expert Systems with Applications, 2011, 38:12721-12729

    [ 3] Ma B, Gao J J, Jiang Z N. Research on the piston rod fracture early warning technique of reciprocating compressor. Journal of Mechanical Strength, 2008, 30(3) : 445- 449

    [ 4] M Ahmed, F Gu, A D Ball. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations. Journal of Physics: Conference Series, 2012. 364, p. 012133

    [ 5] Ahmed M, Abdusslam S, Baqqar M, et al. Fault Classification of Reciprocating Compressor Based on Neural Networks and Support Vector Machines. In: Proceedings of the 17th International Conference on Automation & Computing, Huddersfield, UK, 2011. 213-218

    [ 6] Qu J X, Zhang Z S, He Z J. Fault diagnosis model based on multi- wavelet packet and rough neighborhood sets. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 137-140

    [ 7] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [ 8] Xia X T, Chen L, Meng F N. Information Entropy of Rolling Bearing Friction Torque as Data Series. Applied Mechanics and Materials, 2010, 44- 47:1115-1119

    [ 9] Cabal-Yepeza E, Romero-Troncosoa R J, Garcia-Pereza A, et al. Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors. Electric Power Systems Research, 2012, 89: 64-69

    [10] Romero-Troncoso R J, Saucedo-Gallaga R, Cabal-Yepez E, et al. FPGA-Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference. IEEE Transactions on Industrial Electronics, 2011,58(11):5263-5270

    [11] Ai Y T, Fu Q, Tian J, et al. Diagnosis method for crack-rubbing coupled fault in rotor system based on integration of information entropy distance. Journal of Aerospace Power, 2013,28(10): 2161-2166

    [12] Liu H, Yu L. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502

    [13] Liu H W. A study on feature selection algorithms using information entropy: [Ph.D dissertation]. Jilin: Jilin University, 2010. 17-20

    [14] Leng J F, Jin S X, Wu Z Q. Fault diagnosis for gearbox based on RBF neural network. Journal of Mechanical Strength, 2010, 32(1): 017-020

    Xing Chenghong, born in 1972, is studying for his Ph.D degrees in Diagnosis and Self-recovery Engineering Research Center of Beijing University of Chemical Technology. His research interests in mechanical fault diagnosis and expert system.

    10.3772/j.issn.1006-6748.2015.04.007

    ①Supported by the National Basic Research Program of China (973 Program) under Grant (No. 2012CB026000), and the National High Technology Research and Development Program of China (No. 2014AA041806).

    ②To whom correspondence should be addressed. E-mail: 2012210152@grad.buct.edu.cn Received on July 7, 2014*, Yao Ziyun**, Li Haifeng***, Zhang Jinjie*

    亚洲精华国产精华精| 日本一区二区免费在线视频| 两个人看的免费小视频| 国产黄a三级三级三级人| 欧美成人性av电影在线观看| 老司机午夜福利在线观看视频| 日日夜夜操网爽| 亚洲午夜精品一区,二区,三区| 嫩草影视91久久| 久久精品国产亚洲av香蕉五月| 丝袜美腿诱惑在线| 亚洲人成伊人成综合网2020| 最近最新中文字幕大全电影3 | 男人舔奶头视频| 国产野战对白在线观看| 亚洲 国产 在线| 欧美一区二区精品小视频在线| 久久久久久九九精品二区国产 | 国产1区2区3区精品| 伦理电影免费视频| 一本精品99久久精品77| 中文字幕最新亚洲高清| 亚洲国产精品久久男人天堂| 久久久久精品国产欧美久久久| 天堂影院成人在线观看| 窝窝影院91人妻| 一本大道久久a久久精品| 国产精品98久久久久久宅男小说| 国产精品亚洲一级av第二区| 亚洲熟女毛片儿| 不卡一级毛片| 国产一级毛片七仙女欲春2 | 亚洲精品中文字幕一二三四区| 色播亚洲综合网| 18禁裸乳无遮挡免费网站照片 | 中文字幕高清在线视频| 一进一出抽搐gif免费好疼| 88av欧美| 成人手机av| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 日韩精品免费视频一区二区三区| 亚洲国产看品久久| av欧美777| 老司机在亚洲福利影院| 国产免费男女视频| 国产高清视频在线播放一区| 午夜免费观看网址| av在线天堂中文字幕| 精品欧美国产一区二区三| 国产单亲对白刺激| 伦理电影免费视频| 国产视频内射| svipshipincom国产片| xxx96com| 又黄又粗又硬又大视频| 国产午夜福利久久久久久| 午夜免费成人在线视频| 2021天堂中文幕一二区在线观 | www.www免费av| 欧美色视频一区免费| 国产区一区二久久| 午夜久久久久精精品| 亚洲五月色婷婷综合| 日韩欧美一区二区三区在线观看| 制服诱惑二区| 黄色a级毛片大全视频| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 1024手机看黄色片| 午夜日韩欧美国产| 亚洲国产看品久久| 男人的好看免费观看在线视频 | 国产亚洲av高清不卡| 他把我摸到了高潮在线观看| 夜夜爽天天搞| x7x7x7水蜜桃| 国产亚洲欧美精品永久| 欧美久久黑人一区二区| 中文字幕高清在线视频| 久久国产精品影院| 麻豆久久精品国产亚洲av| 少妇粗大呻吟视频| 婷婷精品国产亚洲av在线| 国产一区在线观看成人免费| 国产精品香港三级国产av潘金莲| 88av欧美| 欧美日韩乱码在线| 麻豆国产av国片精品| 国产亚洲欧美精品永久| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 中文字幕av电影在线播放| 97碰自拍视频| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 不卡av一区二区三区| 日本成人三级电影网站| 亚洲av美国av| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 在线观看舔阴道视频| 日本免费一区二区三区高清不卡| 哪里可以看免费的av片| 99热6这里只有精品| 久久久久免费精品人妻一区二区 | 嫁个100分男人电影在线观看| 夜夜爽天天搞| 国产片内射在线| 亚洲成人免费电影在线观看| 欧美性猛交黑人性爽| av片东京热男人的天堂| 国产精品免费视频内射| 18禁国产床啪视频网站| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 少妇熟女aⅴ在线视频| avwww免费| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 精品电影一区二区在线| 亚洲七黄色美女视频| 欧美另类亚洲清纯唯美| 国产高清视频在线播放一区| 国产成人精品久久二区二区91| 99热这里只有精品一区 | 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器 | 啦啦啦观看免费观看视频高清| 欧美日韩精品网址| 国产三级在线视频| 久久久久久大精品| 制服诱惑二区| 精品一区二区三区av网在线观看| 国产亚洲精品av在线| 不卡一级毛片| 巨乳人妻的诱惑在线观看| 国产三级黄色录像| 久久精品91无色码中文字幕| 在线观看免费午夜福利视频| 欧美中文日本在线观看视频| 久久久久久久久免费视频了| 搞女人的毛片| 好男人电影高清在线观看| 中文字幕人成人乱码亚洲影| 在线天堂中文资源库| 51午夜福利影视在线观看| 久久性视频一级片| 欧美一级毛片孕妇| 久久精品国产综合久久久| 老熟妇仑乱视频hdxx| 国产91精品成人一区二区三区| 99国产综合亚洲精品| 国产亚洲av嫩草精品影院| 亚洲成av人片免费观看| 99久久综合精品五月天人人| 黄片播放在线免费| 成人永久免费在线观看视频| 不卡一级毛片| 国内揄拍国产精品人妻在线 | 校园春色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 免费在线观看完整版高清| 欧美日韩一级在线毛片| 曰老女人黄片| 国产一区二区在线av高清观看| 日韩一卡2卡3卡4卡2021年| 天天一区二区日本电影三级| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 亚洲最大成人中文| 亚洲精品色激情综合| 美女 人体艺术 gogo| www日本在线高清视频| 在线免费观看的www视频| 国产成人av教育| 亚洲最大成人中文| 欧美性猛交黑人性爽| 欧美日韩亚洲国产一区二区在线观看| 亚洲 国产 在线| 大型av网站在线播放| 日韩大尺度精品在线看网址| avwww免费| 麻豆成人午夜福利视频| 搞女人的毛片| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 999久久久国产精品视频| 久久精品国产亚洲av高清一级| 91大片在线观看| 男人舔奶头视频| 免费人成视频x8x8入口观看| 精品国产国语对白av| 久久亚洲精品不卡| 很黄的视频免费| 一级黄色大片毛片| 国产伦人伦偷精品视频| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 国产麻豆成人av免费视频| 日韩精品中文字幕看吧| videosex国产| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 免费搜索国产男女视频| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 亚洲人成伊人成综合网2020| 精品国产超薄肉色丝袜足j| or卡值多少钱| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 男女视频在线观看网站免费 | 国产成人欧美| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 久久久久国产精品人妻aⅴ院| 此物有八面人人有两片| 女生性感内裤真人,穿戴方法视频| 在线观看免费日韩欧美大片| 男女那种视频在线观看| 国产黄片美女视频| 美女国产高潮福利片在线看| 亚洲精品在线美女| 88av欧美| 国产成人av教育| 99国产精品99久久久久| 国产亚洲av高清不卡| 久久中文看片网| 在线播放国产精品三级| 国产黄片美女视频| 黄色女人牲交| 桃色一区二区三区在线观看| 亚洲五月色婷婷综合| 久久中文字幕一级| 精品久久久久久久人妻蜜臀av| 国产主播在线观看一区二区| 精品一区二区三区四区五区乱码| 精品不卡国产一区二区三区| 久久人妻福利社区极品人妻图片| 午夜久久久久精精品| 午夜视频精品福利| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 亚洲专区字幕在线| 日韩 欧美 亚洲 中文字幕| 啪啪无遮挡十八禁网站| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 久久久久国内视频| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产 | 欧美另类亚洲清纯唯美| av天堂在线播放| 香蕉国产在线看| 老熟妇乱子伦视频在线观看| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 国产成人精品久久二区二区免费| 国产欧美日韩精品亚洲av| 日本在线视频免费播放| 在线观看一区二区三区| 性欧美人与动物交配| 999精品在线视频| 免费搜索国产男女视频| 女性被躁到高潮视频| 亚洲无线在线观看| 中文字幕av电影在线播放| 午夜免费观看网址| 国产av一区在线观看免费| 欧美av亚洲av综合av国产av| 国产区一区二久久| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清 | 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 久久热在线av| 国产一卡二卡三卡精品| 亚洲成国产人片在线观看| 少妇 在线观看| 婷婷六月久久综合丁香| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 99久久久亚洲精品蜜臀av| 国产欧美日韩精品亚洲av| 免费在线观看黄色视频的| 国产成人精品久久二区二区免费| 午夜影院日韩av| 精品久久久久久久末码| 国产在线精品亚洲第一网站| 老司机靠b影院| 天天添夜夜摸| www.精华液| 亚洲国产高清在线一区二区三 | 日本撒尿小便嘘嘘汇集6| 午夜激情av网站| 啦啦啦 在线观看视频| 老司机午夜十八禁免费视频| www日本在线高清视频| 婷婷六月久久综合丁香| a在线观看视频网站| 脱女人内裤的视频| 国产野战对白在线观看| 久久精品国产亚洲av高清一级| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站 | 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 日韩欧美国产在线观看| 欧美三级亚洲精品| 亚洲最大成人中文| 黄色成人免费大全| 日韩视频一区二区在线观看| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 脱女人内裤的视频| 国产精品久久久人人做人人爽| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 亚洲av成人av| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 在线永久观看黄色视频| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 久久狼人影院| 亚洲人成电影免费在线| 亚洲午夜精品一区,二区,三区| 国产免费av片在线观看野外av| 一本久久中文字幕| 99精品在免费线老司机午夜| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 亚洲中文日韩欧美视频| 国产免费av片在线观看野外av| 俺也久久电影网| 久久午夜综合久久蜜桃| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| 一区二区三区高清视频在线| 两个人视频免费观看高清| 国产又黄又爽又无遮挡在线| 日韩精品青青久久久久久| 欧美日韩乱码在线| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 亚洲最大成人中文| 一级片免费观看大全| 日韩精品中文字幕看吧| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 麻豆av在线久日| 日本成人三级电影网站| 十八禁人妻一区二区| 国产亚洲av高清不卡| 18禁裸乳无遮挡免费网站照片 | 欧美午夜高清在线| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 两性午夜刺激爽爽歪歪视频在线观看 | 免费女性裸体啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 免费观看人在逋| 欧美性长视频在线观看| 嫩草影院精品99| 不卡一级毛片| 在线av久久热| 欧美在线黄色| 亚洲男人的天堂狠狠| 99re在线观看精品视频| 高清在线国产一区| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 色综合站精品国产| 香蕉久久夜色| cao死你这个sao货| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 伊人久久大香线蕉亚洲五| 精品一区二区三区四区五区乱码| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 国产av一区二区精品久久| 在线播放国产精品三级| 88av欧美| 久久国产亚洲av麻豆专区| 国产精品爽爽va在线观看网站 | 嫩草影视91久久| 91国产中文字幕| 亚洲国产精品合色在线| 国产亚洲欧美在线一区二区| 日本在线视频免费播放| 亚洲美女黄片视频| 可以在线观看的亚洲视频| 成年版毛片免费区| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 成人av一区二区三区在线看| 亚洲一码二码三码区别大吗| 成人欧美大片| av在线播放免费不卡| 国产麻豆成人av免费视频| 首页视频小说图片口味搜索| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 亚洲无线在线观看| 亚洲在线自拍视频| 国产黄a三级三级三级人| 九色国产91popny在线| 久久久久久久久久黄片| 中文字幕久久专区| 长腿黑丝高跟| 国产亚洲精品av在线| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点| 欧美激情高清一区二区三区| 老熟妇乱子伦视频在线观看| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 真人一进一出gif抽搐免费| 亚洲专区中文字幕在线| 久久久精品国产亚洲av高清涩受| 97人妻精品一区二区三区麻豆 | 欧美国产日韩亚洲一区| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 99热只有精品国产| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区黑人| 亚洲精品一卡2卡三卡4卡5卡| 在线观看免费日韩欧美大片| 亚洲 国产 在线| 久久久国产成人精品二区| 亚洲片人在线观看| 夜夜躁狠狠躁天天躁| 亚洲无线在线观看| 免费无遮挡裸体视频| 香蕉国产在线看| 欧美一区二区精品小视频在线| 国产日本99.免费观看| 97人妻精品一区二区三区麻豆 | 精品人妻1区二区| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 色综合婷婷激情| 亚洲欧美一区二区三区黑人| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 国产av在哪里看| 欧美日韩亚洲国产一区二区在线观看| 日韩精品免费视频一区二区三区| 男女那种视频在线观看| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 波多野结衣高清无吗| 十分钟在线观看高清视频www| 国内揄拍国产精品人妻在线 | 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| 欧美激情高清一区二区三区| 黄网站色视频无遮挡免费观看| 久久这里只有精品19| 精品国产一区二区三区四区第35| 人妻丰满熟妇av一区二区三区| 国产一区二区三区在线臀色熟女| 免费在线观看视频国产中文字幕亚洲| 久久精品成人免费网站| 大型黄色视频在线免费观看| 人妻久久中文字幕网| 日韩欧美三级三区| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 大型黄色视频在线免费观看| √禁漫天堂资源中文www| 天堂√8在线中文| 国产伦一二天堂av在线观看| 又大又爽又粗| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 长腿黑丝高跟| 日韩精品中文字幕看吧| 国产av又大| 午夜福利18| 级片在线观看| a级毛片a级免费在线| www日本在线高清视频| 男人操女人黄网站| 精品久久久久久,| 亚洲人成网站高清观看| 久久中文字幕一级| 白带黄色成豆腐渣| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 看免费av毛片| 亚洲国产精品成人综合色| 999精品在线视频| 99久久综合精品五月天人人| 国产精品二区激情视频| 又黄又粗又硬又大视频| 91国产中文字幕| 国产三级在线视频| 最近最新中文字幕大全电影3 | 成人欧美大片| 国产成人精品无人区| 国产成人欧美| 欧美一级毛片孕妇| 亚洲av成人av| 欧美精品啪啪一区二区三区| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 精品一区二区三区av网在线观看| 免费看美女性在线毛片视频| 亚洲中文字幕一区二区三区有码在线看 | 婷婷精品国产亚洲av在线| 日本三级黄在线观看| 国产三级黄色录像| 国产乱人伦免费视频| 日韩有码中文字幕| 久久亚洲精品不卡| 男男h啪啪无遮挡| 国产精品 国内视频| 男人舔女人的私密视频| 国产精品 欧美亚洲| 亚洲无线在线观看| 亚洲熟女毛片儿| 国产97色在线日韩免费| 免费在线观看完整版高清| 美国免费a级毛片| 香蕉国产在线看| 国产又色又爽无遮挡免费看| 日日摸夜夜添夜夜添小说| 色播亚洲综合网| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 久久中文字幕人妻熟女| 老汉色∧v一级毛片| 老司机福利观看| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 国产国语露脸激情在线看| 国产av一区二区精品久久| 色播在线永久视频| 久久九九热精品免费| 搡老岳熟女国产| 久久久久久久久免费视频了| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 久久久久国产精品人妻aⅴ院| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 国产精品久久电影中文字幕| 国产精品自产拍在线观看55亚洲| 亚洲国产高清在线一区二区三 | 波多野结衣高清无吗| xxx96com| 免费人成视频x8x8入口观看| 成人国产一区最新在线观看| 级片在线观看| 久久精品国产亚洲av高清一级| 久久久久久九九精品二区国产 | 欧美成人午夜精品| 在线av久久热| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 首页视频小说图片口味搜索| 女生性感内裤真人,穿戴方法视频| 国产视频一区二区在线看| 亚洲欧美精品综合久久99| 琪琪午夜伦伦电影理论片6080| 成人特级黄色片久久久久久久| 中出人妻视频一区二区| 国产三级黄色录像| 亚洲电影在线观看av| 精品日产1卡2卡| 午夜福利免费观看在线|