潘龍,??←悾返桥?,杜洪,程建波,孫先枝,王秀敏,秦俊杰,袁耀明,張幸開
(1.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點實驗室,北京 100193;2.CAAS-ICRAF農(nóng)用林業(yè)與可持續(xù)畜牧業(yè)聯(lián)合實驗室,北京 100193;3.東北農(nóng)業(yè)大學(xué)食品安全與營養(yǎng)協(xié)同創(chuàng)新中心,黑龍江 哈爾濱 150030;4.北京生泰爾生物科技有限公司,北京 102206;5.上海光明荷斯坦牧業(yè)有限公司,上海 200436)
不同小寫字母表示差異顯著(P<0.05),下同。The different small letters mean the significant differences at P<0.05, the same below.
?
柴胡皂苷對體外發(fā)酵參數(shù)及細(xì)菌數(shù)量變化的影響
潘龍1**,牛俊麗1**,卜登攀1,2,3*,杜洪1,程建波1,孫先枝1,王秀敏4,秦俊杰4,袁耀明5,張幸開5
(1.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點實驗室,北京 100193;2.CAAS-ICRAF農(nóng)用林業(yè)與可持續(xù)畜牧業(yè)聯(lián)合實驗室,北京 100193;3.東北農(nóng)業(yè)大學(xué)食品安全與營養(yǎng)協(xié)同創(chuàng)新中心,黑龍江 哈爾濱 150030;4.北京生泰爾生物科技有限公司,北京 102206;5.上海光明荷斯坦牧業(yè)有限公司,上海 200436)
研究柴胡皂苷(SSA)對體外發(fā)酵指標(biāo)及發(fā)酵液中菌群變化的影響。采用完全隨機(jī)試驗設(shè)計,在0.5 g全混合日糧(TMR)中分別添加0,0.125,0.25和0.5 mg的SSA,通過AGRS-III微生物發(fā)酵微量產(chǎn)氣自動記錄儀在39℃條件下進(jìn)行48 h體外發(fā)酵,并通過實時定量PCR(RT-PCR)檢測發(fā)酵液中菌群相對含量的變化。結(jié)果表明,0.25 g/kg的SSA提高了干物質(zhì)降解率(DMD,P=0.08)和總產(chǎn)氣量(GP,P<0.05),并提高了發(fā)酵液中揮發(fā)酸(VFA)的含量(P<0.05),而0.5和1.0 g/kg的SSA對GP和DMD沒有顯著的影響,但是提高了乙酸和TVFA的含量(P<0.05)。SSA提高了白色瘤胃球菌和牛鏈球菌的相對含量(P<0.05);但降低了短普雷沃氏菌和噬淀粉瘤胃桿菌的相對含量(P<0.05)。因此,SSA提高了體外GP和VFA濃度,并改變發(fā)酵液中細(xì)菌的含量,這表明SSA有利于調(diào)控微生物體外發(fā)酵參數(shù)。
柴胡皂苷;體外發(fā)酵;細(xì)菌數(shù)量
柴胡是傳統(tǒng)中藥,含有豐富的化學(xué)成分,包括柴胡皂苷、甾醇、脂肪油、揮發(fā)油和多糖等[1-3],具有解熱退燒、鎮(zhèn)靜安神、抗炎抗病毒、提高免疫力等多種生物活性[4],因此具有很高的營養(yǎng)和藥用雙重價值[5]。本課題研究表明,柴胡中草藥添加劑可以緩解奶牛熱應(yīng)激并提高其泌乳性能[6],但其緩解畜禽熱應(yīng)激的效果及機(jī)制尚不明確[7]。
長期大量使用柴胡添加劑會對肝臟有一定的損傷作用[8]。柴胡水提物可致小鼠肝臟損傷,其毒性機(jī)理可能與小鼠肝臟的氧化-抗氧化系統(tǒng)平衡受到破壞有關(guān)[9]。柴胡總皂苷醇洗脫物損傷肝組織,且隨著劑量增大損傷程度越嚴(yán)重,谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶也顯著升高;不同劑量的總皂苷醇洗脫物對小鼠肝組織出現(xiàn)不同程度的肝細(xì)胞水腫和脂肪變性,其中高劑量甚至出現(xiàn)組織片狀壞死、小葉結(jié)構(gòu)不清等不良癥狀[10]。此外,藥理實驗證實柴胡可抑制胃液分泌,降低胃蛋白酶活性[11];高劑量的柴胡水提液還可抑制正常動物的胃排空和腸蠕動[12]。因此,使用柴胡中草藥時一定要慎重考慮其適宜的添加劑量,才能充分發(fā)揮其潛在的生物學(xué)功效[13]。
植物皂苷類物質(zhì)調(diào)節(jié)瘤胃發(fā)酵越來越受到廣泛關(guān)注[14]。1%~3%的苜蓿皂苷降低瘤胃發(fā)酵液pH值,提高總揮發(fā)酸(total volatile fatty acids,TVFA)和氨態(tài)氮(NH3-N)的濃度[15];但1%~3%的苜蓿皂苷降低瘤胃原蟲培養(yǎng)液TVFA濃度,2%和3%的苜蓿皂苷降低了培養(yǎng)液微生物蛋白(microbial crude protein,MCP)濃度[16];鳳仙花明顯降低甲烷生成,促進(jìn)NH3-N向MCP轉(zhuǎn)化,改變了瘤胃代謝模式[17];蒺藜皂苷降低體外發(fā)酵液NH3-N和乙酸濃度,但提高丙酸濃度以及飼料能量和蛋白質(zhì)的利用效率[18];皂樹苷和絲蘭皂苷可直接刺激一些瘤胃細(xì)菌的發(fā)育,從而提高飼料消化率[19];絲蘭皂苷降低NH3-N濃度,但提高瘤胃淀粉桿菌、普雷沃菌和丁酸弧菌的豐度[20],苜蓿皂苷的發(fā)酵液中主要細(xì)菌類型為鏈球菌[21]等。由此可知,多種皂苷可以改變瘤胃發(fā)酵參數(shù),并改變其中細(xì)菌含量而優(yōu)化瘤胃發(fā)酵。
藥理學(xué)研究表明,柴胡具“營養(yǎng)”和“藥用”的雙重價值,其主要活性成分為柴胡皂苷[5]。目前,柴胡皂苷(SSA)主要應(yīng)用于提高機(jī)體抗炎和免疫調(diào)節(jié)功能[4],而應(yīng)用于調(diào)控奶牛瘤胃發(fā)酵報道較少,因此,本試驗通過體外法研究SSA對體外發(fā)酵參數(shù)的影響,從而為優(yōu)化瘤胃發(fā)酵提供選擇參考。
1.1 產(chǎn)氣裝置與產(chǎn)品來源
產(chǎn)氣裝置為中國農(nóng)業(yè)大學(xué)楊紅建老師發(fā)明的AGRS-III微生物發(fā)酵微量產(chǎn)氣自動記錄儀(Automated Trace Gas Recording System for Microbial Fermentation, 簡稱AGRS)。柴胡皂苷A(saikosaponin A,SSA)于2014年1月購于上海源葉生物科技有限公司。
1.2 試驗設(shè)計與處理
準(zhǔn)確稱取約0.5 g飼料樣品(按牛場日糧配制成全混合日糧,total mixed ration,TMR)于150 mL厭氧發(fā)酵瓶中,按照完全隨機(jī)試驗設(shè)計,4種處理添加量分別為0,0.25,0.5和1.0 g/kg,將每個瓶中分別加入相應(yīng)SSA劑量(0,0.125,0.25和0.5 mg;由于SSA易潮解且量極少,稱量困難,為此,配成1 mg/mL溶液,即加入0,125,250,500 μL),每處理5個重復(fù)。接種時迅速將每個瓶中加入預(yù)熱的緩沖液50 mL和4層紗布過濾的新鮮瘤胃液25 mL,并向瓶中持續(xù)通入CO25 s后,立即加上瓶塞,并將每個發(fā)酵瓶與產(chǎn)氣裝置的每個傳感器相連接,于39℃下連續(xù)培養(yǎng)48 h,試驗重復(fù)3次。
1.3 樣品采集與測定分析
1.3.1 瘤胃液樣品采集與處理 2014年1月在北京市順義區(qū)某奶牛場通過瘤胃瘺管采集3頭健康奶牛晨飼前的瘤胃內(nèi)容物,混合后裝于保溫瓶迅速帶回實驗室,39℃水浴環(huán)境中用4層紗布過濾,同時通入CO2,然后邊攪拌邊加入?yún)捬醢l(fā)酵瓶,操作應(yīng)在盡量短的時間內(nèi)完成[22]。
1.3.2 發(fā)酵液樣品采集與處理 發(fā)酵48 h后結(jié)束發(fā)酵程序,從發(fā)酵瓶中采集發(fā)酵液,即時測量發(fā)酵液pH;并采集10 mL發(fā)酵液,-20℃冷凍保存,用于揮發(fā)性脂肪酸(volatile fatty acids,VFA)指標(biāo)的測定和DNA提取[23]。對剩余的發(fā)酵液進(jìn)行過濾,用于體外干物質(zhì)降解率(dry matter digestibility,DMD)指標(biāo)的測定[24]。
1.3.3 DNA提取和細(xì)菌相對定量 通過CTAB珠磨法提取發(fā)酵液中DNA[25];利用引物在ABI 7500 Real-Time PCR System上進(jìn)行qPCR相對定量。qPCR擴(kuò)增體系如下:5.0 μL SYBR? Premix Ex Taq?(2×),0.3 μL PCR上游引物(10 μmol/L),0.3 μL PCR下游引物(10 μmol/L),0.2 μL ROX Reference Dye Dye II(50×),1 μL DNA樣品(稀釋至10 ng/μL),3.4 μL ddH2O,總體積為10 μL。qPCR反應(yīng)程序為:95℃預(yù)變性30 s,95℃ 5 s,55℃ 34 s,72℃ 34 s,40個循環(huán);每個樣品3個重復(fù)。以空白組相應(yīng)Ct值為對照,將樣品各種菌和總菌的Ct值通過公式2-ΔΔCt(2-[Δ(Ct樣品-Ct總菌)-Δ(Ct空樣-Ct空總)])得到相對百分含量。
1.4 數(shù)據(jù)處理與分析
用Excel 2003軟件初步整理后,采用SAS 9.2軟件中的GLM模型進(jìn)行分析。采用Tukey方法進(jìn)行多重比較,以最小二乘均數(shù)形式表示統(tǒng)計結(jié)果,差異顯著水平為P<0.05,趨于顯著水平為0.05≤P<0.10。
2.1 柴胡皂苷對體外產(chǎn)氣的影響
SSA對發(fā)酵液的pH沒有顯著影響(表1),但是0.25 g/kg的添加量趨于(P=0.08)提高DMD(圖 1),同時也提高了總產(chǎn)氣量(gas production,GP,P<0.05);而0.5和1.0 g/kg的添加量具有提高DMD和GP的趨勢,但差異均不顯著(圖2)。
表1 柴胡皂苷A對體外產(chǎn)氣的影響
注:同行不同字母表示差異顯著(P<0.05),下同。
Note:The different small letters mean the significant differences atP<0.05, the same below.
2.2 柴胡皂苷對發(fā)酵液中揮發(fā)酸含量的影響
由表2可知,SSA對VFA的影響較大,其中0.25 g/kg的添加量提高了丙酸和丁酸含量(P<0.05),0.25,0.5和1.0 g/kg的添加量均提高了乙酸和TVFA的含量(P<0.01),對乙丙比影響不顯著(P>0.05),并沒有改變瘤胃的發(fā)酵模式。
2.3 柴胡皂苷對發(fā)酵液中微生物數(shù)量的影響
由表3可以看出,SSA提高了白色瘤胃球菌和牛鏈球菌的含量(P<0.05),并有提高布氏普雷沃氏菌的(P=0.08)與脂厭氧弧菌(P=0.04)的趨勢;但卻降低了短普雷沃氏菌、噬淀粉瘤胃桿菌和棲瘤胃普雷沃氏菌的含量(P<0.05),有降低產(chǎn)琥珀酸絲狀桿菌的趨勢(P=0.08)。
圖1 柴胡皂苷A對DM體外降解率的影響Fig.1 Effect of SSA on DMD in vitro
圖2 柴胡皂苷A對體外產(chǎn)氣量的影響Fig.2 Effect of SSA on GP in vitro
不同小寫字母表示差異顯著(P<0.05),下同。The different small letters mean the significant differences atP<0.05, the same below.
表2 柴胡皂苷A對發(fā)酵液揮發(fā)酸含量的影響
表3 柴胡皂苷A對發(fā)酵液中微生物相對含量的影響
體外研究表明低劑量的皂樹苷和絲蘭皂苷可直接刺激一些瘤胃細(xì)菌的發(fā)育,包括纖維分解菌,從而提高飼料消化率,并能調(diào)節(jié)瘤胃微生物群落,且有劑量依賴性;而高劑量皂苷在調(diào)節(jié)瘤胃發(fā)酵特性上與驅(qū)除原蟲類似[19]。絲蘭皂苷可能由于直接抑制了蛋白降解菌,從而降低了氨氮濃度;但其增加了瘤胃新月形單胞桿菌和瘤胃淀粉桿菌、瘤胃普雷沃菌和丁酸弧菌的豐度,盡管增加幅度較小[20]。本試驗結(jié)果也表明,低劑量的SSA的添加提高了DMD,也相應(yīng)提高了體外GP,但是高劑量的添加卻又導(dǎo)致結(jié)果出現(xiàn)降低的趨勢(表1)。GP高(圖1)表明飼料在瘤胃內(nèi)的發(fā)酵活動劇烈,這和DMD的趨勢(圖2)相互驗證。但也有研究表明絲蘭皂苷并沒有影響DMD[26],這可能與皂苷的類型和添加劑量有關(guān)。
添加劑量為75 mg/L的絲蘭皂苷時可顯著提高VFA產(chǎn)量,而225 mg/L添加劑量使VFA產(chǎn)量降低[27],本試驗也表明0.25 g/kg的SSA提高了丙酸和丁酸的含量,而0.5和1.0 g/kg的添加量又有降低的趨勢(表2);但是也有研究表明體外添加皂樹皂苷[28]、絲蘭提取物[26]或無患子果實[29]對總VFA產(chǎn)量沒有影響;洋槐(black locust)皂苷提高了丙酸的濃度,但對TVFA沒有顯著影響[30];混合日糧中添加125 mg/kg絲蘭皂苷顯著提高了丙酸濃度,但對于精料型日糧的效果不明顯[31]。此外,pH為5.5時,30 mg/L 絲蘭屬植物(含8%皂苷)提高丙酸濃度,降低乙酸比例,但在pH為7.0時則沒有效果[32]。因此,皂苷對瘤胃VFA產(chǎn)量的作用效果可能與皂苷的來源、添加量、日糧精粗比和瘤胃pH有關(guān)。本試驗表明柴胡皂苷的添加(0.25,0.5 和1.0 g/kg)均提高了乙酸和總揮發(fā)酸的含量(表2),這與其他報道相一致[33]。
瘤胃作為一個龐大的菌種資源庫,存在著大量的微生物。反芻動物對粗飼料的利用能力遠(yuǎn)遠(yuǎn)高于單胃動物,主要歸功于瘤胃中棲息的微生物菌群。由于瘤胃中細(xì)菌和真菌的種類不同,對皂苷的敏感度也有所不同。毛瓣無患子(Sapindusrarak)皂苷濃度小于1 mg/mL時,白色瘤胃球菌和黃色瘤胃球菌不受其影響,但是當(dāng)其濃度添加到2~4 mg/mL時,其數(shù)量都顯著下降[34]。毛瓣無患子皂苷在短時間內(nèi)能夠抑制白色瘤胃球菌和黃色瘤胃球菌,而105 d后,白色瘤胃球菌和黃色瘤胃球菌均不受影響[35]。因此,不同種類的皂苷及不同的作用時間對瘤胃細(xì)菌的影響均可能不同。葫蘆巴籽皂苷和印度田菁葉子的皂苷使產(chǎn)琥珀酸絲狀桿菌的含量分別提高42%和45%,而飛廉植物葉子和葫蘆巴籽皂苷可使黃色瘤胃球菌的數(shù)量提高40%[36]。苜蓿皂苷(8~16 g/d)顯著提高了綿羊瘤胃中主要纖維分解菌(產(chǎn)琥珀酸擬桿菌、黃化瘤胃球菌及白色瘤胃球菌)占總細(xì)菌數(shù)的相對含量[37]。鮮沙蔥和提取物能夠顯著提高瘤胃產(chǎn)琥珀酸絲狀桿菌和白色瘤胃球菌相對數(shù)量,但對黃化瘤胃球菌的相對數(shù)量沒有顯著影響[38]。而本試驗研究表明,1.0 g/kg的SSA提高了白色瘤胃球菌的數(shù)量,但又有降低產(chǎn)琥珀酸絲狀桿菌數(shù)量的趨勢(表3)。這與上述研究不同,可能由于不同來源的皂苷或者作用時間長短對瘤胃微生物的影響不盡相同。
絲蘭皂苷對于淀粉分解菌的抑制作用因種屬差異變化較大,皂苷可抑制牛鏈球菌、棲瘤胃普雷沃氏菌和嗜淀粉瘤胃桿菌的生長,而對反芻獸新月形單胞菌的生長卻有刺激作用[27]。而該試驗表明,0.5 g/kg的SSA抑制了棲瘤胃普雷沃氏菌的含量,不同劑量均抑制了噬淀粉瘤胃桿菌,這與上述研究結(jié)果一致,但是SSA顯著提高了牛鏈球菌的數(shù)量,這與其他學(xué)者研究結(jié)果相反。關(guān)于皂苷對某些細(xì)菌的促生長作用機(jī)理尚不明確。有學(xué)者認(rèn)為,可能與皂苷對原蟲的抑制作用有關(guān)[39],或者是因為低劑量的皂苷使細(xì)胞膜的滲透作用增強(qiáng),進(jìn)而使細(xì)菌細(xì)胞能夠吸收更多的養(yǎng)分[40]。生產(chǎn)中可利用皂苷對不同微生物的影響調(diào)控瘤胃代謝,如飼喂精料型日糧的反芻動物,其瘤胃內(nèi)牛鏈球菌的數(shù)量較多,促使可溶性淀粉迅速發(fā)酵為乳酸,乳酸過多易引起瘤胃酸中毒,因而在高精料日糧中添加適量皂苷則可通過抑制牛鏈球菌的生長而減少酸中毒的發(fā)生率[41]。因此,研究皂苷對體外發(fā)酵以及菌群的影響具有現(xiàn)實意義。
SSA提高了體外發(fā)酵的GP和DMD,并提高了發(fā)酵液中TVFA的濃度,也相應(yīng)改變了其中的菌群相對含量,但并沒有改變瘤胃發(fā)酵模式。SSA可能通過促進(jìn)發(fā)酵液中的細(xì)菌生長,從而提高了TVFA和GP,調(diào)控瘤胃的發(fā)酵。因此,SSA可以優(yōu)化菌群,促進(jìn)瘤胃發(fā)酵。
[1] Tan L L, Cai X, Hu Z H,etal. Localization and dynamic change of saikosaponin in root of bupleurum Chinense. Journal of Integrative Plant Biology, 2008, 50: 951-957.
[2] Ashour M L, EI-Readai M,Youns M,etal. Chemical composition and biological activity of the essential oil obtained fromBupleurummarginatum(Apiaceae). Journal of Pharmacy and Pharmacology, 2009, 61(8): 1079-1087.
[3] Xu H, Zhang Y Y, Zhang J W,etal. Isolation and characterization of an anti-complementary polysaccharide D3-S1 from the roots ofBupleurumsmithii. International Immunopharmacology, 2007, 7(2): 175-182.
[4] Van Wyk B E, Wink M. Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and Their Uses[M]. Portland, Oregon: Timber Press, 2004.
[5] Ashour M L, Wink M. Genus Bupleurum: a review of its phytochemistry, pharmacology and modes of action. Journal of Pharmacy and Pharmacology, 2011, 63(3): 305-321.
[6] Pan L, Bu D P, Wang J Q,etal. Bupleurum herbal additives relieve heat stress and improve performance in heat-stressed cows. Proceedings of the Fourth China Dairy Assembly[C]. 2013.
[7] Pan L, Bu D P, Cheng J B,etal. Pharmacological functions ofRadixbupleuriand extracts and promising heat-stressed abatement application of livestock and poultry. Feed Industry, 2013, Supplementary (Theory and application of animal nutrition regulation technology): 39-41.
[8] Sun R, Huang W, Li S J,etal. The origin development and initial experiment research about “bupleurum Chinense robbing hepatic yin”. Chinese Journal of Pharmacovigilance, 2009, 6(10): 577-580.
[9] Lin L F, Shi L, Liu R N. The influence of mouse liver after taking the water extract of Bupleurum Chinense continuously. Pharmacology and Clinics of Chinese Materia Medica, 2012, 28(2): 124-126.
[10] Huang W, Li X J Y, Sun R. Study on “dose-time-toxicity” relationship on hepatotoxicity in mice caused by alcohol elution of Bupleurum Saikosaponin. Pharmacology and Clinics of Chinese Materia Medica, 2012, 28(2): 81-84.
[11] Jiang R L. The correlation between several gastrointestinal hormones and gastrointestinal motility. Chinese Journal of Gastroenterology, 1998, 3(3): 156-158.
[12] Wang Y, Sun P, Zhang X D,etal. Effects of bupleurum on gastrointestinal movement. Pharmacy Today, 2011, 21(7): 442-451.
[13] Pan L. Research On the Application of Radix Bupleuri Extract Supplementation Relieving Heat-stressed Lactating Cows[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
[14] Bodas R, Prieto N, García-González R,etal. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 2012, 176(1): 78-93.
[15] Zhang J G, Wang Y Q, Zhao G Q,etal. Effects of alfalfa saponins on ruminal bacterial fermentation in goats. Chinese Journal of Animal Science, 2012, (9): 51-55.
[16] Ding J, Zhang J G, Wang Y Q,etal. Effects of alfalfa saponins on ruminal protozoal fermentationinvitro. Chinese Journal of Animal Science, 2013, 49(19): 59-64.
[17] Wang D S, Huang J L, Zhang Z H,etal. Effect of plant solid powder and ethanol extract of impatiens balsamina on microbial metabolic parameters duringinvitrorumen fermentation. Acta Prataculturae Sinica, 2013, 22(2): 87-93.
[18] Feng Z H, Gao Y X, Gong J G,etal. Effect of gross saponins from tribulus terrestris on ruminal fermentation characteristicsinvitro. China Animal Husbandry & Veterinary Medicine, 2013, 40(1): 103-107.
[19] Patra A K, Stiverson J, Yu Z. Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentationinvitro. Journal of Applied Microbiology, 2012, 113(6): 1329-1340.
[20] Patra A K, Yu Z. Effects of vanillin, quillaja saponin, and essential oils oninvitrofermentation and protein-degrading microorganisms of the rumen. Applied Microbiology Biotechnology, 2014, 98(2): 897-905.
[21] Sun Y, Long R C, Zhang T J,etal. Advances in the study of alfalfa saponin. Acta Prataculturae Sinica, 2013, 22(3): 274-283.[22] Sun G Q, Lv Y Y, Zhang J J. A study on the associative effect of whole corn silage-peanut vine andLeymuschinensisby Rumen fermentationinvitro. Acta Prataculturae Sinica, 2014, 23(3): 224-231.
[23] Hang S Q, Shi Q, Ding L R,etal. Effects of fructo-oligosaccharides on mucosal morphology, digestive enzyme activity, organic acid and lactobacillus of the gastrointestinal tract of unweaned piglets. Acta Prataculturae Sinica, 2014, 23(2): 260-267.[24] Ma Y Y, Li Y F, Cheng Y F,etal. Effects of different chemical treatments on fermentation characteristics of rice strawinvitro. Acta Prataculturae Sinica, 2014, 23(3): 350-355.
[25] Bürgmann H, Pesaro M, Widmer F,etal. A strategy for optimizing quality and quantity of DNA extracted from soil. Journal of Microbiological Methods, 2001, 45(1): 7-20.
[26] Wang Y, Mcallister T A, Newbold C J,etal. Effects ofYuccaschidigeraextract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Animal Feed Science and Technology, 1998, 74(2): 143-153.
[27] Wang Y, Mcallister T A, Yanke L J,etal. Effect of steroidal saponin fromYuccaschidigeraextract on ruminal microbes. Journal of Applied Microbiology, 2000, 88(5): 887-896.
[28] Makkar H P, Becker K. Effect ofQuillajasaponinsonInVitroRumen Fermentation: Saponins Used in Food and Agriculture[M]. Springer, 1996: 387-394.
[29] Hess H D, Monsalve L M, Lascano C E,etal. Supplementation of a tropical grass diet with forage legumes andSapindussaponariafruits: effects oninvitroruminal nitrogen turnover and methanogenesis. Crop and Pasture Science, 2003, 54(7): 703-713.
[30] Patra A K, Kamra D N, Agarwal N. Effect of plant extracts oninvitromethanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology, 2006, 128(3): 276-291.
[31] Kil J Y, Cho N K, Kim B S,etal. Effects of Yucca extract addition on theinvitrofermentation characteristics of feeds and feces, and on the milk yields in lactating cows. Korean Journal of Animal Science, 1994, 36(6): 698-709.
[32] Cardozo P W, Calsamiglia S, Ferret A,etal. Screening for the effects of natural plant extracts at different pH oninvitrorumen microbial fermentation of a high-concentrate diet for beef cattle. Journal of Animal Science, 2005, 83(11): 2572-2579.
[33] Lila Z A, Mohammed N, Kanda S,etal. Effect of sarsaponin on ruminal fermentation with particular reference to methane productioninvitro. Journal of Dairy Science, 2003, 86(10): 3330-3336.
[34] Wina E, Muetzel S, Hoffmann E,etal. Saponins containing methanol extract ofSapindusrarakaffect microbial fermentation, microbial activity and microbial community structureinvitro. Animal Feed Science and Technology, 2005, 121(1): 159-174.
[35] Wina E, Muetzel S, Becker K. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short-and long-term feeding ofSapindusraraksaponins. Journal of Applied Microbiology, 2006, 100(1): 114-122.
[36] Goel G, Makkar H, Becker K. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. Journal of Applied Microbiology, 2008, 5(3): 770-777.
[37] Hu M. Studies on the Effects of Alfalfa Saponin on Fermentation and Other Physiological Functions in Sheep[D]. Hohhot: Inner Mongolia Agricultural University, 2006.
[38] Zhang X. Effect of Allium Mongilicum Regel Extract on Rumen Fermentation and Microflora in Sheep[D]. Hohhot: Inner Mongolia Agricultural University, 2007.
[39] Newbold C J, El Hassan S M, Ortega M E,etal. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. British Journal of Nutrition, 1997, 8(2): 37-249.
[40] Sen S, Makkar H, Muetzel S,etal. Effect ofQuillajasaponariasaponins andYuccaschidigeraplant extract on growth ofEscherichiacoli. Letters in Applied Microbiology, 1998, 27(1): 35-38.
[41] Russell J B, Rychlik J L. Factors that alter rumen microbial ecology. Science, 2001, 292: 1119-1122.
參考文獻(xiàn):
[6] 潘龍, 卜登攀, 王加啟, 等. 柴胡中草藥添加劑緩解奶牛熱應(yīng)激并提高其生產(chǎn)性能. 第四屆中國奶業(yè)大會論文集[C]. 2013.
[7] 潘龍, 卜登攀, 程建波, 等. 柴胡及其提取物的藥理作用及緩解奶牛熱應(yīng)激的應(yīng)用前景. 飼料工業(yè), 2013年《動物營養(yǎng)調(diào)控的技術(shù)理論與應(yīng)用》增刊: 39-41.
[8] 孫蓉, 黃偉, 李素君, 等. 關(guān)于“柴胡劫肝陰”的源流發(fā)展與初步實驗研究. 中國藥物警戒, 2009, 6(10): 577-580.
[9] 林利芬, 時樂, 劉若囡. 柴胡水提物連續(xù)給藥對小鼠肝臟的影響. 中藥藥理與臨床, 2012, 28(2): 124-126.
[10] 黃偉, 李曉驕陽, 孫蓉. 柴胡總皂苷對小鼠肝毒性“量-時-毒”關(guān)系研究. 中藥藥理與臨床, 2012, 28(2): 81-84.
[11] 姜若蘭. 幾種胃腸激素與胃腸運動的相關(guān)性. 胃腸病學(xué), 1998, 3(3): 156-158.
[12] 王艷, 孫鵬, 張學(xué)棟, 等. 柴胡對胃腸運動的影響. 今日藥學(xué), 2011, 21(7): 442-451.
[13] 潘龍. 柴胡提取物緩解奶牛熱應(yīng)激的應(yīng)用效果研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2014.
[15] 張建剛, 王雅倩, 趙國琦, 等. 苜蓿皂苷對山羊瘤胃細(xì)菌發(fā)酵的影響. 中國畜牧雜志, 2012, (9): 51-55.
[16] 丁健, 張建剛, 王雅倩, 等. 苜蓿皂苷對瘤胃原蟲體外發(fā)酵特性的影響. 中國畜牧雜志, 2013, 49(19): 59-64.
[17] 王東升, 黃江麗, 張志紅, 等. 鳳仙花植株乙醇浸提液和固體粉劑對瘤胃體外發(fā)酵代謝參數(shù)的影響. 草業(yè)學(xué)報, 2013, 22(2): 87-93.
[18] 馮志華, 高艷霞, 龔建剛, 等. 蒺藜皂苷對體外瘤胃發(fā)酵的影響. 中國畜牧獸醫(yī), 2013, 40(1): 103-107.
[21] 孫彥, 龍瑞才, 張鐵軍, 等. 紫花苜蓿皂苷研究進(jìn)展. 草業(yè)學(xué)報, 2013, 22(3): 274-283.
[22] 孫國強(qiáng), 呂永艷, 張杰杰. 利用體外瘤胃發(fā)酵法研究全株玉米青貯與花生蔓和羊草間的組合效應(yīng). 草業(yè)學(xué)報, 2014, 23(3): 224-231.
[23] 杭蘇琴, 時祺, 丁立人, 等. 果寡糖對斷奶前仔豬胃腸道組織形態(tài), 消化酶, 有機(jī)酸及乳酸桿菌菌群的影響. 草業(yè)學(xué)報, 2014, 23(2): 260-267.
[24] 馬艷艷, 李袁飛, 成艷芬, 等. 不同化學(xué)處理對稻草體外發(fā)酵動態(tài)變化的影響. 草業(yè)學(xué)報, 2014, 23(3): 350-355.
[37] 胡明. 苜蓿皂甙對綿羊瘤胃發(fā)酵及其它生理功能影響的研究[D]. 呼和浩特: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2006.
[38] 張霞. 沙蔥提取物對綿羊瘤胃發(fā)酵和微生物區(qū)系的影響[D]. 呼和浩特: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2007.
Effects of saikosaponin oninvitrofermentation parameters and bacterial quantity
PAN Long1**, NIU Jun-Li1**, BU Deng-Pan1,2,3*, DU Hong1, CHENG Jian-Bo1, SUN Xian-Zhi1,WANG Xiu-Min4, QIN Jun-Jie4, YUAN Yao-Ming5, ZHANG Xing-Kai5
1.StateKeyLaboratoryofAnimalNutrition,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China; 2.WordAgroforestryCenter,EastandCentralAsia,Beijing100193,China; 3.SynergeticInnovationCenterofFoodSafetyandNutrition,NortheastAgriculturalUniversity,Haerbin150030,China; 4.BeijingCentreBiologyCo.,Ltd.,Beijing102206,China; 5.ShanghaiBrightHostanCo.,Ltd.,Shanghai200436,China
An experiment was conducted to investigate the effects of saikosaponin (SSA) oninvitrofermentation parameters and bacterial quantity. Four treatments consisting of supplemental SSA at 0, 0.25, 0.5, and 1.0 g/kg dry matter (DM) were combined with 0.5 g total mixed ration (TMR), 50 mL basal media and 25 mL rumen fluid obtained from ruminally cannulated, lactating Holstein dairy cows. The treatments were randomly assigned to 5 of 20 incubation bottles. Cumulative gas production (GP) was continuously monitored by an automated trace gas recording system (AGRS-III, Beijing) at 39℃ during the 48 h incubation. Relative content of the bacterial community in theinvitroculture fluid was analyzed by real-time quantitative PCR. The results revealed that SSA at 0.25 g/kg could increase dry matter degradability (DMD,P=0.08), total gas production (GP,P<0.05) and the concentration of acetate, propionate and total volatile fatty acids (TVFA) (P<0.05). Adding SSA at 0.5 and 1.0 g/kg level did not affect GP kinetics and DMD, while it increased the concentration of acetate and TVFA (P<0.05). The supplement of SSA increased the relative quantity ofRuminococcusalbusandStreptococcusbovis(P<0.05), but decreased the content ofPrevotellabrevisandRuminobacteramylophilus(P<0.05). Therefore, SSA supplementation improved gas production, increased VFA concentrations and the quantity of major microbial species in theinvitroculture fluid, which indicates that SSA may be beneficial for the manipulation of rumen microbial fermentationinvitro.
saikosaponin;invitrofermentation; bacterial quantity
10.11686/cyxb2014213
http://cyxb.lzu.edu.cn
2014-04-25;改回日期:2014-12-01
“十二五”科技支撐計劃(2012BAD12B02-5),中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)和動物營養(yǎng)學(xué)國家重點實驗室自主課題(2004DA125184G1103)資助。
潘龍(1988-),男,江蘇徐州人,在讀碩士。E-mail:panlong8809@163.com。??←?1990-),女,新疆塔城人,在讀碩士。E-mail:niujunliwxy@163.com。**共同第一作者These authors contributed equally to this work. *通訊作者Corresponding author. E-mail: burdenpan@gmail.com
潘龍, ??←? 卜登攀, 杜洪, 程建波, 孫先枝, 王秀敏, 秦俊杰, 袁耀明, 張幸開. 柴胡皂苷對體外發(fā)酵參數(shù)及細(xì)菌數(shù)量變化的影響. 草業(yè)學(xué)報, 2015, 24(6): 85-91.
Pan L, Niu J L, Bu D P, Du H, Cheng J B, Sun X Z, Wang X M, Qin J J, Yuan Y M, Zhang X K. Effects of saikosaponin oninvitrofermentation parameters and bacterial quantity. Acta Prataculturae Sinica, 2015, 24(6): 85-91.