• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    扶手椅型氮化鎵納米管電子結構與傳輸特性的研究

    2015-03-23 11:56:25李恩玲趙丹娜王雪文
    原子與分子物理學報 2015年2期
    關鍵詞:扶手椅納米管氮化

    李恩玲, 崔 真, 趙丹娜, 趙 濤, 王雪文

    (1.西安理工大學理學院, 西安 710048; 2.西北大學信息科學與技術學院, 西安 710068)

    扶手椅型氮化鎵納米管電子結構與傳輸特性的研究

    李恩玲1, 崔 真1, 趙丹娜1, 趙 濤1, 王雪文2

    (1.西安理工大學理學院, 西安 710048; 2.西北大學信息科學與技術學院, 西安 710068)

    本文采用密度泛函理論和非平衡格林函數對扶手椅型氮化鎵納米管(n,n)(2≤ n ≤10)的電子結構和輸運性質進行了研究.結果表明,所有的扶手椅型氮化鎵納米管都是間接帶隙半導體,帶隙隨著納米管直徑的增加而增加,并且得到了兩極體系下氮化鎵納米管的電流-電壓曲線.氮化鎵納米管的半導體特性隨著納米管直徑的增加越來越明顯,電子態(tài)密度和電子透射光譜都具有脈沖型尖峰并且最大峰值隨著n的增加而增加.這說明電子態(tài)密度和電子透射光譜峰在能量范圍內,有較好的對應關系.

    氮化鎵納米管; 電子結構; 傳輸特性; 密度泛函理論

    1 Introduction

    Gallium nitride (GaN) is an excellent wide band gap semiconductor material which has good optical property and thermal stability. It is an ideal material for the production of semiconductor devices such as blue/green light-emitting diode (LED)[1-2], laser diode (LD), and high power integrated circuit(IC)[3].With the development of highly integrated and micro-scale microelectronic devices, nano-electronic devices have become an important development trend of future devices[4-6]. Low-dimensional nanomaterials have more superior performance compared to their bulk materials due to surface effect[7]and quantum size effect[8].The research on the preparation and properties of low-dimensional GaN nanomaterials can provide technical support to the future nano-devices. Then, studies on one-dimensional GaN nano-materials such as GaN nanotubes have attracted a great attention.

    As the preparation technology improved, nano-tubular structures of many materials have been successfully synthesized. In 1997, Liliental-Weberetal. observed nanometer-sized tubular defects in GaN bulk materials[9]. In 2003, Goldbergeretal. prepared successfully single-crystal GaN nanotubes arrays using ZnO nanowires as a template[10]. Currently, GaN nanotubes are still at a stage of preparation and characterization. It is still difficult to prepare good quality GaN nanotubes. So there are few studies of their physical properties. But we can understand the physical properties of GaN nanotubes by theory research which is prior to experiment. Theory research can also help us to predict and analyze various properties of materials, which can provide some guidance to future research[11-15].

    In this paper, we systematically study the electronic structure and transport properties of armchair GaN nanotubes (n, n) (2≤n≤10) by density functional theory (DFT) and non-equilibrium green′s function (NEGF). First, we set up GaN nano-tube models then optimize structures to get the band structure of nanotubes. Second, build two-probe systems to obtain the current-voltage curves, electronic density of state, and the electronic transmission spectra of armchair GaN nanotubes (n, n) (2≤n≤10).

    2 The theoretical model and the calculation method

    2.1 The theoretical model

    In this paper, properties of GaN nanotubes are calculated in Atomistix Toolkit (ATK). First, the models of nanotubes are built in ATK. Then a primitive cell is taken and arranged periodicity along the tube axis. In this way, a certain length of GaN nanotubes model are established.

    All the models are armchairs GaN nanotubes (n, n) (2≤n≤10) with diameters ranged from 0.34 to 1.72 nm. As armchairs nanotubes are similar in the structure, only the models of (2, 2), (5, 5), and (10, 10) GaN nanotubes are shown in Fig.1, dark gray balls represent nitrogen (N) atoms, light gray balls represent gallium (Ga) atoms, while the lines between the ball and the ball represent the N-Ga bond.

    After structure optimization, a two-probe system is built for transport calculations on the basis of optimized structures of GaN nanotubes. As shown in Fig.2, the two-probe system is divided into three parts: the left electrode, the right electrode, and the central scattering region. The both ends of the GaN nanotubes are rigidly attached to Au (1 1 1) surface. The big light gray balls represent Au atoms, the gray and black balls represent Ga atoms and N atoms respectively.

    Fig.1 Models of armchairs GaN nanotubes (2, 2), (5, 5), (10, 10)

    Fig.2 Two-probe system of the armchairs GaN nanotubes

    Fig.3 Optimized structures of the armchairs GaN nanotubes

    2.2 The calculation method

    In this paper, density functional theory (DFT) and non-equilibrium green function (NEGF) are used to calculate the electronic structure and transport properties of single-walled GaN nanotubes. For our calculation, we use a plane-wave based on density-functional (DF) calculation within the local-density approximation (LDA). Exchange-correlation functions parameterized by the Perdew-Zunger scheme are used. The energy cut off for the plane-wave expansion of wave functions is 150 Ry and periodic boundary conditions are applied. Brillouin-zone integral calculations use 1 × 1 × 100 special K-points sampling as suggested by Monkhorst and Pack. The maximum force allowed on each atom is 0.05 eV/?, basis set is double zeta polarized. We use ultrasoft potentials to describe the interaction between a valence electron and the ion core. In the transport calculation, the DFT-NEGF simulation parameters are selected. Cut-off energy is 150 Ry, exchange correlation functional is Perdew-Zunger local-density approximation (LDA.PZ) type with single zeta polarized (SZP) basis set. I-V characteristics are calculated by the equation below:

    Whereflandfrare the Fermi distribution functions at left and right electrode respectively.T(E,Vb) is the transmission coefficient at energyEand bias voltageVb.

    3 Results and discussion

    3.1 Structure optimization

    From Fig.3, we can see that Ga atoms move inward along the direction of the tube diameter while the N atoms move toward the opposite direction after optimization. But the average diameter of nanotubes increases. For the Ga atoms and N atoms move in the opposite direction, there form a "buckling" phenomenon which is similar to other dualistic nanotubes[16].

    Fig.4 Energy band structures of the armchairs GaN nanotubes

    3.2 The energy band structures

    The energy band structures of armchairs GaN nanotubes (n, n) (2≤n≤10) are shown in Fig.4 It can be seen that the bottom of conduction band is at the Γ-point, but the top of valence band deviates from the Γ-point, which is about at the 2/3 of Brillouin zone, moves towards the Z-point with n increases. All the nanotubes are indirect band gap semiconductors, which is same as the calculation results of narrow GaN nanotubes by Seung Mi Lee et al[17].

    The positions of conduction band bottom, valence band top, and band gaps of the armchairs GaN nanotubes are shown in Table 1. From Table 1, we can see that the conduction band moves up with the increase of n, the top valence band moves down to -1.2294 eV and then moves up. The calculated band gap is from 1.5231 to 2.8787eV and increases with n increases[18]. So the nanotubes we calculated are wide band gap semiconductors. Fig.5 shows the band gap as a function of the tube diameter.

    Fig.5 Band gap as a function of the tube diameter

    Table 1 Energy values of conduction band bottom, valence band top, band gaps of the nanotubes

    3.3 Transport properties

    3.3.1Theelectronicdensityofstateandtheelectronictransmissionspectra

    The electronic density of state and the electronic transmission spectra of GaN nanotubes with the bias voltage of 0 V on the two-probe system with the armchairs GaN nanotubes are shown in Fig.6. We can see that both the electronic density of state and the electronic transmission spectrums have their own pulse-type sharp peaks. The maximum sharp peak value increases with n increases. There is a better corresponding relation between the peaks energy ranges of electronic density of states and the electronic transmission spectra. This demonstrates that the distribution of electronic transmission spectrum is determined by the distribution of the electronic density of states. The strength of transmission peaks represents the probability size of the electrons pass through central scattering region. If the electron energy is close to the energy of transmission peaks, the electron can be scattered through the nanotubes from left electrode to right electrode[19].

    3.3.2Current-voltagecharacteristics

    The current-voltage curves of individual nanotubes on two-probe system are calculated with bias voltage range from -2V to 2V and the curves are shown in Fig.7. By curves observing, we find that current increases with voltage increases. Under the same voltage, the currents are increasing with n increasing. The main reason of the current changing trend is that the maxima of sharp peaks in the electronic transmission spectrum and the electronic density of states increase with n increases. All the current-voltage curves of nanotubes are symmetry in the range of -2V to 2V. Each curve has two inflection points which are symmetry. The nanotubes show semiconducting properties due to the existence of the inflection points. The semiconducting properties of nanotubes become increasingly evident with n increases, especially for (8, 8)-(10, 10) nanotubes.

    4 Conclusions

    We studied the electronic structure of armchairs GaN nanotubes (n, n) (2≤n≤10) using the LDA method based on density functional theory. The band gap is from 1.5231eV to 2.8787eV, all the armchairs GaN nanotubes are indirect band gap semiconductors. The band-gaps increase with the increase of nanotubes diameters.

    Transport properties of GaN nanotubes on a two-probe system have been investigated by using density functional theory (DFT) and non-equilibrium green′s function (NEGF). Both the electronic density of state and the electronic transmission spectra have pulse-type sharp peaks and there is a remarkable corresponding relationship between their peaks energy ranges. The maximum values of the peaks increase as the n increases. The current-voltage curves of nanotubes on two-probe system show that the semiconducting properties of nanotubes become increasingly obvious.

    Fig.6 Electronic density of state and the electronic transmission spectra (the dark curve represents the electronic transmission spectra and the light curve represents the density of states)

    Fig.7 Current-voltage characteristics of GaN nanotubes on two-probe system

    [1] Kyun M Y, Yang K Y, Byeon K J,etal. Enhancement of light extraction in GaN based LED structures using TiO2nano-structures [J].Solid.State.Electron., 2010, 54: 484.

    [2] Honga E J, Byeona K J, Parka H,etal. Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction [J].Mater.Sci.Eng. B, 2009, 163: 170.

    [3] Vitanov S, Palankovski V, Maroldt S,etal. High-temperature modeling of AlGaN/GaN HEMTs [J].Solid.State.Electron., 2010, 54: 1105.

    [4] Schrimpfa R D, Fleetwoodm D M, Alles M L,etal. Radiation effects in new materials for nano-devices [J].Microelectron.Eng., 2011, 88: 1259.

    [5] Dima A, DellaCorte F G, Williams C J,etal. Silicon nano-particles in SiO2sol-gel film for nano-crystal memory device applications [J].Microelectron.J., 2008, 39: 768.

    [6] Hong S H , Bae B J, Lee H,etal. Fabrication of high density nano-pillar type phase change memory devices using flexible AAO shaped template [J].Microelectron.Eng., 2010, 87: 2081.

    [7] Baron B, Altus E, Tadmor E B . Surface effects in non-uniform nanobeams: Continuum vs. atomistic modeling [J].Int.J.Solids.Struct., 2010, 47:1243.

    [8] Condrea E, Nicorici A. Quantum size effect in the resistivity of bismuth nanowires [J].Solid.State.Commun., 2010, 150: 118.

    [9] Weber Z L, Chen Y, Ruvimov S. Formation mechanism of nanotubes in GaN [J].Phys.Rev.Lett., 1997, 79(15): 2835.

    [10] Goldberger J, He R, Zhang Y,etal. Single-crystal gallium nitride nanotubes[J].Nature, 2003, 422: 599.

    [11] Matsunaga R, Matsuda K, Kanemitsu Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy [J].Phys.Rev.Lett., 2011, 106(3): 037404.

    [12] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J].Nature, 1992, 358 (6383): 220.

    [13] Cabria I, Mintmire J W, White C T. Metallic and semiconducting narrow carbon nanotubes [J].Phys.Rev. B, 2003, 67(12): 121406.

    [14] Koh W, Choi J, Lee S G,etal. First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system [J].Carbon, 2011, 49: 286.

    [15] Durgun E, Tongay S, Ciraci S. Silicon and III-V compound nanotubes: Structural and electronic properties [J].Phys.Rev. B, 2005, 72: 075420.

    [16] Xiang H J, Yang J L, Hou J G. First-principles study of small-radius single-walled BN nanotubes [J].Phys.Rev. B, 2003, 68(3): 035427.

    [17] Lee S, Lee Y, Hwang Y,etal. Stability and electronic structure of GaN nanotubes from density-functional calculations [J].Phys.Rev. B, 1999, 60: 788.

    [18] Guo Y H, Yan X H, Yang Y R. First-principles study of narrow single-walled GaN nanotubes [J].Phys.Lett. A, 2009, 373: 367.

    [19] Zhao P, Wang P J, Zhang Z,etal. Electronic transport properties of a molecular switch with carbon nanotube electrodes: A first-principles study [J].Phys. B, 2010, 405: 446.

    A study on the electronic structures and transport properties of armchairs GaN nanotubes

    LI En-Ling1, CUI Zhen1, ZHAO Dan-Na1, ZHAO Tao1, WANG Xue-Wen2

    (1. Sciences School, Xi’an University of Technology, Xi’an 710048, China; 2. School Information Technology, Northwest University, Xi’an 710068, China)

    Electronic structures and transport properties of armchair GaN nanotubes (n, n) (2≤n≤10) have been investigated using density functional theory (DFT) and non-equilibrium green′s function (NEGF). The results show that all the armchairs GaN nanotubes are indirect band gap semiconductors. The band-gaps increase with the increase of nanotubes′ diameters. The current-voltage curves of GaN nanotubes on two-probe systems have been obtained. The semiconducting properties of GaN nanotubes become more and more obvious with the increasing nanotube diameter. The electronic density of state and the electronic transmission spectra of two-probe system have pulse-type sharp peaks and the maximum values of peaks increase as n increases. There is a better corresponding relation between the peaks energy ranges of electronic density of states and the electronic transmission spectra.

    GaN nanotubes; Electronic structures; Transport properties; Density functional theory (DFT)

    103969/j.issn.1000-0364.2015.02.009

    2013-12-9

    國家自然科學基金專項基金項目(51042010);陜西省自然科學基金重點項目(2013JZ018)

    李恩玲(1965—),女,陜西咸陽人,博士,教授,主要從事GaN納米材料制備與物性研究. E-mail: Lienling@xaut.edu.cn

    O472+.4

    A

    1000-0364(2015)02-0225-07

    猜你喜歡
    扶手椅納米管氮化
    萌白治愈
    家居廊(2022年6期)2022-06-21 03:56:54
    氮化鋁粉末制備與應用研究進展
    陶瓷學報(2021年1期)2021-04-13 01:33:08
    最近鄰弱交換相互作用對spin-1納米管磁化強度的影響
    基于節(jié)點特性的現代風格實木扶手椅分類
    XD超級氮化催滲劑的運用
    以氮化鎵/氮化鋁鎵超晶格結構優(yōu)化氮化銦鎵LED
    電子制作(2018年12期)2018-08-01 00:47:48
    藍色扶手椅
    40CrH鋼氣體軟氮化-后氧化復合處理的組織性能
    上海金屬(2016年2期)2016-11-23 05:34:32
    二氧化鈦納米管的制備及其應用進展
    應用化工(2014年11期)2014-08-16 15:59:13
    TiO2納米管負載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    一级毛片高清免费大全| 91麻豆精品激情在线观看国产| 亚洲色图 男人天堂 中文字幕| 欧美成狂野欧美在线观看| www.精华液| 国产av麻豆久久久久久久| 一个人看的www免费观看视频| www.自偷自拍.com| 久久香蕉国产精品| 国产麻豆成人av免费视频| 婷婷丁香在线五月| 在线播放国产精品三级| 国产欧美日韩一区二区精品| 男人舔奶头视频| 真人做人爱边吃奶动态| 黄色丝袜av网址大全| 欧美另类亚洲清纯唯美| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 12—13女人毛片做爰片一| 美女黄网站色视频| 夜夜爽天天搞| 波多野结衣高清无吗| 99久久精品热视频| 久久香蕉国产精品| 听说在线观看完整版免费高清| 日韩 欧美 亚洲 中文字幕| 一区二区三区国产精品乱码| 欧美日韩福利视频一区二区| 国产精品精品国产色婷婷| 琪琪午夜伦伦电影理论片6080| av视频在线观看入口| 色视频www国产| 可以在线观看毛片的网站| 免费av不卡在线播放| 国产精品综合久久久久久久免费| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 色综合亚洲欧美另类图片| www日本黄色视频网| 九九在线视频观看精品| 久久精品人妻少妇| 国产三级黄色录像| aaaaa片日本免费| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| www.999成人在线观看| 成人无遮挡网站| 国产成人aa在线观看| 欧美中文日本在线观看视频| 欧美成人一区二区免费高清观看 | 精品国产乱子伦一区二区三区| 高清毛片免费观看视频网站| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 亚洲一区二区三区色噜噜| 亚洲自拍偷在线| 久久天堂一区二区三区四区| 女同久久另类99精品国产91| 亚洲精品乱码久久久v下载方式 | 热99在线观看视频| 国产黄色小视频在线观看| 成年免费大片在线观看| 午夜久久久久精精品| 91老司机精品| 色精品久久人妻99蜜桃| av在线天堂中文字幕| 日韩三级视频一区二区三区| 免费av毛片视频| 97超视频在线观看视频| 99国产综合亚洲精品| 亚洲av熟女| 91av网站免费观看| 欧美日韩乱码在线| 1024手机看黄色片| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 亚洲无线在线观看| www国产在线视频色| 日本熟妇午夜| 久久天堂一区二区三区四区| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 又粗又爽又猛毛片免费看| 国产精品爽爽va在线观看网站| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 18禁观看日本| 欧美日韩乱码在线| 国产 一区 欧美 日韩| 亚洲 欧美 日韩 在线 免费| 久久精品aⅴ一区二区三区四区| 一二三四社区在线视频社区8| АⅤ资源中文在线天堂| 欧美大码av| av视频在线观看入口| 最近视频中文字幕2019在线8| 免费电影在线观看免费观看| www.999成人在线观看| 99riav亚洲国产免费| 老司机福利观看| 免费无遮挡裸体视频| 久久这里只有精品中国| 男插女下体视频免费在线播放| 国产综合懂色| www.自偷自拍.com| 波多野结衣高清作品| 搡老妇女老女人老熟妇| 欧美性猛交黑人性爽| 亚洲真实伦在线观看| 欧美日韩精品网址| 亚洲国产欧美网| 99精品在免费线老司机午夜| 在线a可以看的网站| 午夜免费观看网址| 啪啪无遮挡十八禁网站| 久久久久性生活片| 亚洲欧洲精品一区二区精品久久久| 亚洲国产中文字幕在线视频| 国产成人精品久久二区二区91| 亚洲精品国产精品久久久不卡| 美女午夜性视频免费| 在线永久观看黄色视频| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 色综合亚洲欧美另类图片| 国产伦在线观看视频一区| 在线观看66精品国产| 一个人看视频在线观看www免费 | tocl精华| 色精品久久人妻99蜜桃| 好男人在线观看高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器 | 美女高潮的动态| 伦理电影免费视频| 免费在线观看成人毛片| 别揉我奶头~嗯~啊~动态视频| 18禁裸乳无遮挡免费网站照片| 成年人黄色毛片网站| 熟女人妻精品中文字幕| 观看免费一级毛片| 曰老女人黄片| 午夜福利在线在线| 亚洲精品在线观看二区| 免费在线观看视频国产中文字幕亚洲| 99久久精品一区二区三区| 啦啦啦观看免费观看视频高清| 国产探花在线观看一区二区| 超碰成人久久| 一进一出好大好爽视频| 美女 人体艺术 gogo| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 麻豆成人午夜福利视频| 亚洲欧美日韩东京热| 黄色女人牲交| 18美女黄网站色大片免费观看| 久久这里只有精品19| 国产精品久久电影中文字幕| 欧美3d第一页| aaaaa片日本免费| 熟女人妻精品中文字幕| 精品欧美国产一区二区三| 欧美3d第一页| 午夜福利在线观看免费完整高清在 | 国产精品99久久久久久久久| 老司机深夜福利视频在线观看| 国产成+人综合+亚洲专区| 日本黄大片高清| 成人三级黄色视频| 国产高清视频在线观看网站| 亚洲人与动物交配视频| h日本视频在线播放| 久久久水蜜桃国产精品网| 麻豆国产av国片精品| 久久伊人香网站| 一级毛片精品| 日本熟妇午夜| 成年女人看的毛片在线观看| 亚洲熟女毛片儿| www.熟女人妻精品国产| 午夜精品一区二区三区免费看| 亚洲成av人片在线播放无| 亚洲专区国产一区二区| 99久久久亚洲精品蜜臀av| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| 99久久综合精品五月天人人| 午夜视频精品福利| 日本 欧美在线| 亚洲欧美日韩高清在线视频| 精品久久久久久,| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区三区四区久久| 亚洲欧美精品综合久久99| 久久香蕉精品热| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 9191精品国产免费久久| 久久久国产成人精品二区| 亚洲五月天丁香| 禁无遮挡网站| 国产精品美女特级片免费视频播放器 | 18禁裸乳无遮挡免费网站照片| 99久久国产精品久久久| 法律面前人人平等表现在哪些方面| 黑人操中国人逼视频| 免费av不卡在线播放| 1000部很黄的大片| 在线永久观看黄色视频| 久久久国产精品麻豆| 18美女黄网站色大片免费观看| 国产精华一区二区三区| 性欧美人与动物交配| 蜜桃久久精品国产亚洲av| 中文字幕高清在线视频| 全区人妻精品视频| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 麻豆一二三区av精品| 在线观看一区二区三区| xxxwww97欧美| 18禁观看日本| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕| 免费观看人在逋| 国内毛片毛片毛片毛片毛片| 久久中文字幕人妻熟女| 天天躁日日操中文字幕| 成人午夜高清在线视频| 欧美在线一区亚洲| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| 欧美av亚洲av综合av国产av| 麻豆av在线久日| 怎么达到女性高潮| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 欧美三级亚洲精品| 久久欧美精品欧美久久欧美| 久久精品aⅴ一区二区三区四区| 精品久久久久久久毛片微露脸| av黄色大香蕉| av中文乱码字幕在线| 色精品久久人妻99蜜桃| 亚洲最大成人中文| 99国产综合亚洲精品| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| aaaaa片日本免费| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 啦啦啦免费观看视频1| 国产av在哪里看| avwww免费| 国产成人福利小说| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 99久久99久久久精品蜜桃| 亚洲激情在线av| 99久久精品国产亚洲精品| 一个人看视频在线观看www免费 | 精品久久久久久成人av| 窝窝影院91人妻| 国产精品一区二区三区四区免费观看 | 亚洲av熟女| 天堂av国产一区二区熟女人妻| 美女大奶头视频| 亚洲色图 男人天堂 中文字幕| 精品福利观看| 观看美女的网站| 国产欧美日韩精品一区二区| 亚洲精品美女久久久久99蜜臀| 午夜成年电影在线免费观看| 国产不卡一卡二| 中文字幕精品亚洲无线码一区| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 欧美色视频一区免费| 在线播放国产精品三级| 99精品在免费线老司机午夜| 国产精品99久久99久久久不卡| 亚洲成人久久性| 精品乱码久久久久久99久播| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| 91字幕亚洲| 亚洲五月婷婷丁香| 国产伦精品一区二区三区四那| 午夜福利高清视频| 99热只有精品国产| 麻豆av在线久日| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费 | 日本三级黄在线观看| 在线国产一区二区在线| 99国产极品粉嫩在线观看| 一夜夜www| 欧美一级a爱片免费观看看| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 亚洲无线观看免费| 亚洲乱码一区二区免费版| 18禁美女被吸乳视频| tocl精华| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 久久香蕉国产精品| 日韩有码中文字幕| 黑人操中国人逼视频| 香蕉av资源在线| 99热这里只有精品一区 | 亚洲精华国产精华精| 看免费av毛片| 午夜福利高清视频| 男女床上黄色一级片免费看| 69av精品久久久久久| xxxwww97欧美| 亚洲av电影不卡..在线观看| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 在线十欧美十亚洲十日本专区| 久久久精品欧美日韩精品| 99热这里只有是精品50| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| tocl精华| 在线看三级毛片| 亚洲欧美日韩高清在线视频| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 黄频高清免费视频| 性欧美人与动物交配| 免费在线观看影片大全网站| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 中出人妻视频一区二区| 真人做人爱边吃奶动态| 2021天堂中文幕一二区在线观| 床上黄色一级片| 免费观看的影片在线观看| 男女那种视频在线观看| 亚洲电影在线观看av| 九色成人免费人妻av| 国产美女午夜福利| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 国产精品99久久久久久久久| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 成人欧美大片| 韩国av一区二区三区四区| 男人舔奶头视频| 亚洲精品美女久久av网站| 18禁裸乳无遮挡免费网站照片| 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 亚洲欧美日韩无卡精品| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 午夜免费成人在线视频| 亚洲精品国产精品久久久不卡| 午夜精品久久久久久毛片777| 日本三级黄在线观看| 一个人看视频在线观看www免费 | 国产精品一及| 最近最新中文字幕大全电影3| 久久久成人免费电影| 国产av一区在线观看免费| 热99在线观看视频| 国产麻豆成人av免费视频| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 久久久国产成人免费| 99久久99久久久精品蜜桃| 日韩免费av在线播放| 十八禁网站免费在线| 成人鲁丝片一二三区免费| 国产精品98久久久久久宅男小说| 男女床上黄色一级片免费看| 国产单亲对白刺激| 一区二区三区高清视频在线| 女警被强在线播放| 色在线成人网| 国产成人啪精品午夜网站| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 美女黄网站色视频| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av在线| 精品国产乱码久久久久久男人| 亚洲欧美精品综合久久99| 曰老女人黄片| 国产一区在线观看成人免费| 欧美激情在线99| 免费在线观看日本一区| 最新中文字幕久久久久 | 国产成人欧美在线观看| 午夜福利18| 欧美一级毛片孕妇| 一进一出好大好爽视频| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 国产精品 国内视频| 中文亚洲av片在线观看爽| 禁无遮挡网站| 国产三级中文精品| 特大巨黑吊av在线直播| 日本五十路高清| 成人性生交大片免费视频hd| 成人高潮视频无遮挡免费网站| 亚洲,欧美精品.| 两性夫妻黄色片| 国产成+人综合+亚洲专区| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 国产毛片a区久久久久| 国产午夜精品久久久久久| 级片在线观看| 黄片小视频在线播放| 中文字幕久久专区| 99国产综合亚洲精品| 欧美激情久久久久久爽电影| 级片在线观看| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 亚洲无线在线观看| 久久久久国产精品人妻aⅴ院| 麻豆av在线久日| 日本黄大片高清| 真人一进一出gif抽搐免费| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 欧美极品一区二区三区四区| ponron亚洲| www.www免费av| 欧美日本视频| 88av欧美| 久久久久精品国产欧美久久久| 88av欧美| 好看av亚洲va欧美ⅴa在| 亚洲黑人精品在线| 免费在线观看影片大全网站| 麻豆成人午夜福利视频| 老汉色∧v一级毛片| 国产成人精品无人区| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 成人鲁丝片一二三区免费| 黄色 视频免费看| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 在线免费观看的www视频| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 成年版毛片免费区| 一级作爱视频免费观看| 丁香欧美五月| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看| 欧美乱妇无乱码| 国产伦在线观看视频一区| 99精品欧美一区二区三区四区| 性欧美人与动物交配| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 一区二区三区激情视频| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| 午夜福利在线观看吧| 一区二区三区高清视频在线| 免费看日本二区| 在线永久观看黄色视频| 中文字幕av在线有码专区| 91久久精品国产一区二区成人 | 国产三级在线视频| 国产精品 欧美亚洲| 国产成人福利小说| 久久久久久久久中文| 欧美日韩中文字幕国产精品一区二区三区| 丁香六月欧美| 国产爱豆传媒在线观看| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9 | 天堂动漫精品| 女人被狂操c到高潮| 91字幕亚洲| 在线观看日韩欧美| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 久久香蕉国产精品| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| av天堂在线播放| 黄色片一级片一级黄色片| 久久精品人妻少妇| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 天天添夜夜摸| 国内精品久久久久精免费| 丁香欧美五月| 热99re8久久精品国产| 成年女人看的毛片在线观看| 国产黄色小视频在线观看| 国产探花在线观看一区二区| 长腿黑丝高跟| 国产激情欧美一区二区| 九色成人免费人妻av| 中文字幕av在线有码专区| 中亚洲国语对白在线视频| 九九在线视频观看精品| 51午夜福利影视在线观看| 国产亚洲精品综合一区在线观看| 国产精品一及| 熟女少妇亚洲综合色aaa.| 日韩成人在线观看一区二区三区| 男插女下体视频免费在线播放| 婷婷精品国产亚洲av| 亚洲国产精品成人综合色| 欧美乱色亚洲激情| 天天添夜夜摸| 一级毛片精品| 波多野结衣高清作品| 一级毛片女人18水好多| 90打野战视频偷拍视频| 国产视频一区二区在线看| 国产97色在线日韩免费| 国产蜜桃级精品一区二区三区| 欧美大码av| 免费高清视频大片| 国产伦精品一区二区三区四那| www.999成人在线观看| 国产高清videossex| 国产精品香港三级国产av潘金莲| 亚洲精品456在线播放app | 欧美一区二区精品小视频在线| 日本免费a在线| 日韩欧美在线乱码| 久久久久久国产a免费观看| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| www.自偷自拍.com| 国产久久久一区二区三区| 免费高清视频大片| 日韩国内少妇激情av| 久久性视频一级片| 村上凉子中文字幕在线| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 一二三四在线观看免费中文在| 麻豆国产av国片精品| 日韩免费av在线播放| 午夜激情欧美在线| 欧美+亚洲+日韩+国产| 亚洲成av人片免费观看| 一级黄色大片毛片| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 国产精品98久久久久久宅男小说| 最近最新免费中文字幕在线| 男人舔女人的私密视频| 久久久久精品国产欧美久久久| 国产精品爽爽va在线观看网站| 亚洲av五月六月丁香网| 欧美日韩福利视频一区二区| 最新中文字幕久久久久 | 日日夜夜操网爽| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 国产精品一区二区三区四区久久| svipshipincom国产片| 少妇丰满av| 日本在线视频免费播放| 久久亚洲精品不卡| www国产在线视频色| 久久久国产欧美日韩av| 久久这里只有精品19| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 此物有八面人人有两片| 在线看三级毛片| www日本黄色视频网|