• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    免费高清在线观看视频在线观看| 久久久久网色| 欧美人与善性xxx| 美女视频免费永久观看网站| 波多野结衣巨乳人妻| av福利片在线观看| 午夜福利在线在线| 亚洲综合色惰| 欧美成人a在线观看| 久久精品国产亚洲网站| 看黄色毛片网站| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 国产淫片久久久久久久久| 伊人久久国产一区二区| 亚洲欧美日韩东京热| 汤姆久久久久久久影院中文字幕| 一级二级三级毛片免费看| 国产人妻一区二区三区在| 亚洲精品国产av蜜桃| 91精品一卡2卡3卡4卡| 边亲边吃奶的免费视频| av一本久久久久| 亚洲国产色片| 人人妻人人看人人澡| 欧美精品一区二区大全| 97超视频在线观看视频| 男人爽女人下面视频在线观看| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡动漫免费视频 | 联通29元200g的流量卡| 免费看不卡的av| 黄片wwwwww| 亚洲最大成人中文| 欧美老熟妇乱子伦牲交| 黄色欧美视频在线观看| 亚洲伊人久久精品综合| 成人国产av品久久久| 美女内射精品一级片tv| 最近手机中文字幕大全| 国产精品嫩草影院av在线观看| 秋霞在线观看毛片| 天堂网av新在线| 欧美激情国产日韩精品一区| 久久久久久九九精品二区国产| 少妇人妻久久综合中文| 一二三四中文在线观看免费高清| 国产精品国产三级国产专区5o| 在线观看一区二区三区激情| 久久久久久久久久人人人人人人| 在线观看一区二区三区| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 日本与韩国留学比较| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 国产 一区 欧美 日韩| 成人欧美大片| 免费观看在线日韩| 啦啦啦在线观看免费高清www| 亚洲aⅴ乱码一区二区在线播放| 99热全是精品| 熟女av电影| 我的老师免费观看完整版| 精品久久久久久电影网| videossex国产| 国产v大片淫在线免费观看| 免费看不卡的av| 纵有疾风起免费观看全集完整版| 一本色道久久久久久精品综合| 女人十人毛片免费观看3o分钟| 人妻系列 视频| 国产亚洲av片在线观看秒播厂| 黄色配什么色好看| 日本wwww免费看| 免费大片18禁| 女人被狂操c到高潮| 亚洲在久久综合| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 久久精品久久久久久久性| 别揉我奶头 嗯啊视频| 国产精品一区二区在线观看99| 日本午夜av视频| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 国产色婷婷99| 亚洲欧美精品自产自拍| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 男女那种视频在线观看| 日本免费在线观看一区| 97超视频在线观看视频| 热99国产精品久久久久久7| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 日日啪夜夜撸| 舔av片在线| 久久久久精品性色| 小蜜桃在线观看免费完整版高清| 欧美精品人与动牲交sv欧美| 亚洲一级一片aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 日韩 亚洲 欧美在线| 国产免费又黄又爽又色| 国产日韩欧美在线精品| 在线a可以看的网站| 午夜福利在线在线| 综合色丁香网| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 精品国产乱码久久久久久小说| 中国国产av一级| 午夜激情福利司机影院| 特级一级黄色大片| 亚洲欧美日韩无卡精品| 精品一区在线观看国产| 韩国高清视频一区二区三区| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 精品人妻视频免费看| 成人漫画全彩无遮挡| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 午夜免费鲁丝| 亚洲人成网站在线播| 十八禁网站网址无遮挡 | 麻豆成人av视频| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 亚洲精品日本国产第一区| 精品久久久噜噜| 欧美区成人在线视频| 久久久久久伊人网av| 18禁裸乳无遮挡免费网站照片| av在线app专区| 国产老妇女一区| 日日撸夜夜添| 禁无遮挡网站| 99久久精品一区二区三区| 大话2 男鬼变身卡| 一级毛片电影观看| 国产一级毛片在线| 99re6热这里在线精品视频| freevideosex欧美| av在线天堂中文字幕| 韩国av在线不卡| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 国产精品爽爽va在线观看网站| 少妇熟女欧美另类| 国产毛片在线视频| 99热国产这里只有精品6| 免费观看无遮挡的男女| 亚洲精品一区蜜桃| 国产精品久久久久久久电影| 亚洲国产欧美人成| 国产精品国产三级国产专区5o| 国产毛片在线视频| www.色视频.com| 老司机影院成人| tube8黄色片| 亚洲欧美精品自产自拍| 久久精品综合一区二区三区| 在线 av 中文字幕| 人人妻人人看人人澡| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频 | 精品熟女少妇av免费看| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 欧美激情在线99| 99久久人妻综合| 成人亚洲精品一区在线观看 | 99热国产这里只有精品6| 久久6这里有精品| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 国产精品一及| 国产精品久久久久久精品电影小说 | 亚洲av男天堂| 春色校园在线视频观看| 精品视频人人做人人爽| 免费高清在线观看视频在线观看| 久久97久久精品| 久久精品国产亚洲av天美| 精品国产一区二区三区久久久樱花 | 黄色日韩在线| 一级a做视频免费观看| 国产精品嫩草影院av在线观看| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 日韩欧美精品免费久久| av在线app专区| 人体艺术视频欧美日本| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜爱| 成人二区视频| 99久久九九国产精品国产免费| 国产精品av视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 成人综合一区亚洲| 亚洲自拍偷在线| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 午夜福利在线在线| 欧美成人一区二区免费高清观看| 成人高潮视频无遮挡免费网站| 少妇被粗大猛烈的视频| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 亚洲av成人精品一区久久| 欧美日韩在线观看h| 大香蕉97超碰在线| 精品视频人人做人人爽| 久久精品国产自在天天线| 欧美日韩国产mv在线观看视频 | 干丝袜人妻中文字幕| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 国产伦精品一区二区三区视频9| 在线观看三级黄色| 中文字幕人妻熟人妻熟丝袜美| 国产免费一级a男人的天堂| 男女国产视频网站| 欧美 日韩 精品 国产| .国产精品久久| 国产一区亚洲一区在线观看| 女人被狂操c到高潮| 免费av不卡在线播放| 亚洲国产欧美在线一区| 一级av片app| 在线a可以看的网站| 欧美另类一区| 韩国高清视频一区二区三区| 一级毛片黄色毛片免费观看视频| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频 | 久久精品国产自在天天线| 插阴视频在线观看视频| 熟女av电影| 99热国产这里只有精品6| 国内精品宾馆在线| 一个人看视频在线观看www免费| 一级毛片 在线播放| 丝袜脚勾引网站| 尾随美女入室| 亚洲一级一片aⅴ在线观看| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| av在线播放精品| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 中文字幕久久专区| 日本色播在线视频| 国产片特级美女逼逼视频| 国产精品不卡视频一区二区| 亚洲av免费在线观看| 青春草国产在线视频| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 夜夜爽夜夜爽视频| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 白带黄色成豆腐渣| 一边亲一边摸免费视频| 欧美3d第一页| 欧美区成人在线视频| 国产高清国产精品国产三级 | 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 人妻系列 视频| 亚洲色图av天堂| 美女国产视频在线观看| 一级av片app| 天堂中文最新版在线下载 | 亚洲久久久久久中文字幕| 中文天堂在线官网| 久久韩国三级中文字幕| 秋霞伦理黄片| 日韩伦理黄色片| av女优亚洲男人天堂| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影| 国产精品一区www在线观看| 欧美激情久久久久久爽电影| 在线观看国产h片| 伊人久久国产一区二区| 国产黄频视频在线观看| 插阴视频在线观看视频| 国产探花极品一区二区| 国产黄a三级三级三级人| 午夜精品国产一区二区电影 | 国产精品爽爽va在线观看网站| 国产在线一区二区三区精| 日日啪夜夜撸| 久久久久网色| 交换朋友夫妻互换小说| 久久6这里有精品| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 国产精品一二三区在线看| 熟女电影av网| 69av精品久久久久久| 午夜免费观看性视频| 日韩精品有码人妻一区| 欧美xxxx性猛交bbbb| 亚洲欧美精品自产自拍| 欧美激情在线99| 久久久精品免费免费高清| 免费播放大片免费观看视频在线观看| 性色av一级| 国产午夜福利久久久久久| 观看美女的网站| 国产免费又黄又爽又色| 七月丁香在线播放| 久久精品国产鲁丝片午夜精品| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区国产| 国产老妇女一区| 色视频在线一区二区三区| 日韩视频在线欧美| 亚洲美女视频黄频| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 少妇丰满av| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 少妇丰满av| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| 色哟哟·www| 日日啪夜夜爽| 看非洲黑人一级黄片| 国产人妻一区二区三区在| 全区人妻精品视频| 好男人视频免费观看在线| 欧美日本视频| 亚洲国产欧美在线一区| 又爽又黄a免费视频| 国产精品国产三级专区第一集| 亚洲综合精品二区| 99久久九九国产精品国产免费| 亚洲最大成人av| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看日韩| 亚洲成人一二三区av| 我的老师免费观看完整版| 亚洲,一卡二卡三卡| 精品久久久噜噜| 亚洲欧洲国产日韩| 成年av动漫网址| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站 | 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 免费看a级黄色片| 亚洲国产色片| 永久网站在线| 免费黄色在线免费观看| 网址你懂的国产日韩在线| 久久影院123| 联通29元200g的流量卡| 亚洲av免费在线观看| 日本三级黄在线观看| 只有这里有精品99| 久久精品夜色国产| 久久热精品热| 一级黄片播放器| 我的老师免费观看完整版| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜添av毛片| 国产成人福利小说| 一级爰片在线观看| 国产精品一及| 久久精品国产a三级三级三级| 少妇人妻一区二区三区视频| 青春草国产在线视频| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 成人亚洲精品一区在线观看 | 国产亚洲91精品色在线| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 狠狠精品人妻久久久久久综合| 视频区图区小说| 免费看日本二区| 国产精品成人在线| 建设人人有责人人尽责人人享有的 | 国语对白做爰xxxⅹ性视频网站| 伦精品一区二区三区| 777米奇影视久久| 97在线人人人人妻| 26uuu在线亚洲综合色| 亚洲精品第二区| 成年女人看的毛片在线观看| 好男人视频免费观看在线| 成人免费观看视频高清| 大片免费播放器 马上看| 人妻制服诱惑在线中文字幕| 观看美女的网站| 日韩在线高清观看一区二区三区| 精品久久国产蜜桃| 日韩电影二区| 啦啦啦在线观看免费高清www| 国产一区有黄有色的免费视频| 婷婷色综合大香蕉| 极品教师在线视频| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 久久久久久久国产电影| 久久久久精品久久久久真实原创| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 亚洲成人一二三区av| 久久99蜜桃精品久久| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 久久精品夜色国产| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 欧美区成人在线视频| 免费观看无遮挡的男女| 国产精品不卡视频一区二区| 激情五月婷婷亚洲| a级一级毛片免费在线观看| 精品一区在线观看国产| 欧美变态另类bdsm刘玥| 成人特级av手机在线观看| 久久精品熟女亚洲av麻豆精品| 日日撸夜夜添| 老女人水多毛片| 七月丁香在线播放| 在线观看一区二区三区激情| 国产精品一及| 22中文网久久字幕| 高清欧美精品videossex| 欧美区成人在线视频| 午夜老司机福利剧场| 最近中文字幕2019免费版| 国产av国产精品国产| 国产欧美亚洲国产| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 卡戴珊不雅视频在线播放| 五月开心婷婷网| 91精品伊人久久大香线蕉| .国产精品久久| 欧美日韩国产mv在线观看视频 | 久久久久久久久久人人人人人人| 最后的刺客免费高清国语| 插逼视频在线观看| 国产在视频线精品| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 日本黄大片高清| 亚洲国产精品成人久久小说| 久久热精品热| 色视频www国产| 不卡视频在线观看欧美| 丝袜美腿在线中文| 岛国毛片在线播放| 日韩亚洲欧美综合| 永久免费av网站大全| 国产精品一区www在线观看| 久久精品人妻少妇| 一级黄片播放器| 国产精品偷伦视频观看了| 国产精品伦人一区二区| av免费观看日本| 欧美成人精品欧美一级黄| 亚洲精品色激情综合| 成年女人在线观看亚洲视频 | 亚洲精品一二三| 中国国产av一级| 国产高清不卡午夜福利| 少妇人妻精品综合一区二区| 亚洲欧洲国产日韩| 国产伦精品一区二区三区四那| av国产精品久久久久影院| 亚洲欧美一区二区三区黑人 | 亚洲欧美中文字幕日韩二区| 国产 一区精品| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区久久久樱花 | 亚洲精品色激情综合| av专区在线播放| 中国国产av一级| 免费人成在线观看视频色| 欧美性感艳星| 五月开心婷婷网| 一级毛片我不卡| 亚洲av日韩在线播放| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 别揉我奶头 嗯啊视频| 久久久久久久久大av| 18+在线观看网站| 日韩成人av中文字幕在线观看| 久久久久久久久久久免费av| 日韩免费高清中文字幕av| 在线看a的网站| 国产黄色视频一区二区在线观看| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频 | 高清毛片免费看| 国产成人免费观看mmmm| 日韩视频在线欧美| 久久久精品94久久精品| 成人亚洲欧美一区二区av| 老司机影院成人| 婷婷色麻豆天堂久久| 午夜福利视频精品| 大陆偷拍与自拍| 在现免费观看毛片| 欧美亚洲 丝袜 人妻 在线| 91精品国产九色| 在线观看一区二区三区| 99热这里只有是精品50| 亚洲国产欧美人成| 人人妻人人看人人澡| 亚州av有码| 另类亚洲欧美激情| 天美传媒精品一区二区| 三级男女做爰猛烈吃奶摸视频| 99久国产av精品国产电影| 国内少妇人妻偷人精品xxx网站| 青春草国产在线视频| 99热国产这里只有精品6| 免费黄色在线免费观看| 国产真实伦视频高清在线观看| 欧美日韩亚洲高清精品| 国产一区二区亚洲精品在线观看| 欧美+日韩+精品| 亚洲高清免费不卡视频| 我的老师免费观看完整版| 青春草国产在线视频| 精品国产乱码久久久久久小说| 国产一区有黄有色的免费视频| 91久久精品国产一区二区三区| 在线精品无人区一区二区三 | 久久97久久精品| 人人妻人人澡人人爽人人夜夜| 最近2019中文字幕mv第一页| 免费观看a级毛片全部| 国产大屁股一区二区在线视频| 精品久久国产蜜桃| 国产精品不卡视频一区二区| 亚洲高清免费不卡视频| 寂寞人妻少妇视频99o| 久久人人爽人人片av| 3wmmmm亚洲av在线观看| 看黄色毛片网站| 女人十人毛片免费观看3o分钟| 插逼视频在线观看| 国产中年淑女户外野战色| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 欧美另类一区| 岛国毛片在线播放| 在线 av 中文字幕| 在线观看av片永久免费下载| 乱码一卡2卡4卡精品| 91久久精品国产一区二区三区| 国产欧美亚洲国产| 婷婷色综合www| 2022亚洲国产成人精品| 美女视频免费永久观看网站| 日韩大片免费观看网站| 免费人成在线观看视频色| 69人妻影院| 日本免费在线观看一区| 久久99热6这里只有精品| 黄片wwwwww| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 亚洲最大成人av| 欧美最新免费一区二区三区| 水蜜桃什么品种好| 在线观看一区二区三区|