孫煒, 何治亮, 李玉鳳, 張豐麒, 周雁
1 中國石化石油勘探開發(fā)研究院 構(gòu)造與沉積儲(chǔ)層實(shí)驗(yàn)室, 北京 100083 2 中國石油大學(xué)(北京),北京 102249 3 中國石化勝利油田物探研究院,山東東營 257022
?
一種裂縫流體因子的提出及應(yīng)用
孫煒1,2, 何治亮1, 李玉鳳3, 張豐麒1, 周雁1
1 中國石化石油勘探開發(fā)研究院 構(gòu)造與沉積儲(chǔ)層實(shí)驗(yàn)室, 北京 100083 2 中國石油大學(xué)(北京),北京 102249 3 中國石化勝利油田物探研究院,山東東營 257022
為了解決各向異性下的流體識(shí)別問題,將縱波各向異性裂縫預(yù)測(cè)以及Russell的流體因子融合到直角坐標(biāo)系中,提出了一種能夠同時(shí)檢測(cè)裂縫發(fā)育情況以及流體性質(zhì)的新的裂縫流體因子(Factor of Fluid-filled Fracture,F(xiàn)FF),并通過一組巖性參數(shù)檢驗(yàn)了裂縫流體因子在裂縫預(yù)測(cè)及流體識(shí)別中的有效性.在理論研究的基礎(chǔ)上,選取松遼盆地某地區(qū)的火成巖裂縫及流體識(shí)別研究為應(yīng)用實(shí)例.通過與測(cè)井流體及裂縫信息的對(duì)比驗(yàn)證,裂縫流體因子能夠較為準(zhǔn)確地預(yù)測(cè)研究區(qū)裂縫和流體的分布情況,且裂縫流體因子在單井上的計(jì)算結(jié)果與單井含氣飽和度吻合度較高.此外,根據(jù)實(shí)際應(yīng)用效果,指出裂縫流體因子在應(yīng)用中的局限性:裂縫流體因子在平面成圖時(shí)受地層厚度影響較大,且無法預(yù)測(cè)裂縫方向.
裂縫流體因子;含氣飽和度;各向異性流體識(shí)別;方位各向異性;火成巖儲(chǔ)層
利用振幅隨偏移距的變化(Amplitude Versus with Offset,AVO)來進(jìn)行流體識(shí)別是目前應(yīng)用較廣的流體識(shí)別方法.Ostrander(1984)最早發(fā)現(xiàn)含氣砂巖中地震波的反射系數(shù)會(huì)隨偏移距增加而增加的特征,為利用AVO進(jìn)行流體識(shí)別奠定了基礎(chǔ).為了更細(xì)致地研究地層巖性的AVO特征,學(xué)者們分別提出了AVO響應(yīng)特征的劃分方案(Rutherford and Williams,1989;Castagna and Smith,1997;Hilterman,2001),在此期間,國內(nèi)外學(xué)者將疊前反演、多屬性交匯分析技術(shù)與AVO理論相結(jié)合,在多個(gè)地區(qū)的流體識(shí)別研究中獲得了成功(Mukerji et al.,1998;Ross,2000;李宏兵等,2004;苑書金等,2005;何誠等,2005;陳建江等,2006;鄒文等,2008;李愛山等,2007;管路平,2008;郎曉玲等,2010;何濤等,2011;周水生等,2012;程冰潔等,2012).在這些技術(shù)的交叉結(jié)合中,直接進(jìn)行流體性質(zhì)識(shí)別的流體因子(Fluid Factor)的概念被提了出來.由AVO疊前反演的彈性參數(shù)構(gòu)建的流體因子,起初是將拉梅系數(shù)和剪切模量結(jié)合起來進(jìn)行流體識(shí)別(Goodway et al.,1997),之后,國外學(xué)者基于縱橫波阻抗和提出了各自的流體因子(Hilterman,2001;Lucia et al.,2003;Russell,2003),國內(nèi)的科研人員也在前人研究的基礎(chǔ)上提出了靈敏度更高的流體因子(寧忠華,2006;王棟等,2008,2009).
但是,以上的各種流體因子均是在地下介質(zhì)為各向同性的前提下提出的.近年來,伴隨著各向異性理論的發(fā)展,學(xué)者們也開始將目光投向與各向異性介質(zhì)、尤其是裂縫相關(guān)的流體預(yù)測(cè)中,進(jìn)行了與裂縫相關(guān)的流體識(shí)別研究(Sayers,1990;Tod and Liu,2002;Shaw and Sen,2006).但是,直接進(jìn)行裂縫流體識(shí)別的裂縫流體識(shí)別因子仍然較少(Liu et al.,2008;Cui,2010).
縱觀流體識(shí)別這幾十年的研究內(nèi)容,由各向同性AVO反演的彈性參數(shù)組合到近年來的各向異性流體預(yù)測(cè),學(xué)者們通過理論研究及應(yīng)用實(shí)踐將所研究的地質(zhì)模型一步步逼近真實(shí)的地下巖層.從這個(gè)大趨勢(shì)來看,與各向異性介質(zhì)有關(guān)的流體預(yù)測(cè)或裂縫流體識(shí)別將是流體預(yù)測(cè)研究的發(fā)展方向.但是,目前國內(nèi)外關(guān)于裂縫流體識(shí)別的理論研究及實(shí)際應(yīng)用仍然較少,本文研究的目的正是為了豐富這一相對(duì)空白的研究領(lǐng)域.研究中通過對(duì)裂縫流體因子的構(gòu)建、巖石參數(shù)檢驗(yàn)及實(shí)際數(shù)據(jù)應(yīng)用,提出一種能夠同時(shí)預(yù)測(cè)裂縫、流體發(fā)育情況,且能夠表征含氣飽和度的裂縫流體因子,并在實(shí)際應(yīng)用中討論其有效性和局限性.
2.1 裂縫流體因子構(gòu)建
從地質(zhì)成因來看,裂縫與流體是密切相關(guān)的.構(gòu)建裂縫流體因子的最終目的,就是希望找出一個(gè)物理量,使它既能夠表征地下巖層裂縫的發(fā)育情況,又能進(jìn)行地層的流體識(shí)別.也就是說,該物理量應(yīng)該能夠表征地層如下四種情況的差異:地層含水、裂縫不發(fā)育,地層含氣、裂縫不發(fā)育,地層含水、裂縫發(fā)育,地層含氣且裂縫發(fā)育.地層裂縫是否發(fā)育以及地層所含流體性質(zhì)對(duì)應(yīng)的四種不同地層情況,與直角坐標(biāo)系中由x,y取值不同來確定坐標(biāo)點(diǎn)在四個(gè)象限中的位置具有相似性.那么,可以將兩者相結(jié)合,用直角坐標(biāo)系內(nèi)某一點(diǎn)的四種正負(fù)值情況來對(duì)應(yīng)由裂縫、流體確定的四種不同地層情況,如圖1.
圖1 裂縫流體因子構(gòu)建Fig.1 Construction of the factor of fluid-filled fracture
根據(jù)這種思路,結(jié)合直角坐標(biāo)系來分別構(gòu)建裂縫識(shí)別項(xiàng)和流體識(shí)別項(xiàng).在進(jìn)行流體識(shí)別時(shí),引入Russell等(2003)定義的流體因子公式,如式(1),式中ρf為流體因子,c為調(diào)節(jié)參數(shù),在地層含水時(shí),ρf為明顯正高值,在地層含氣時(shí),ρf為明顯正低值.
(1)
考慮到巖石含氣時(shí)縱波速度比含水時(shí)縱波速度小,對(duì)Russell的流體因子進(jìn)行調(diào)整,使調(diào)整后的表達(dá)式在含氣時(shí)值為正,含水時(shí)值為負(fù),得到流體識(shí)別項(xiàng),如式(2)
(2)
式中,F(xiàn)luid:cosθ用以表征地層的流體性質(zhì),對(duì)應(yīng)直角坐標(biāo)系中的x軸,IS和IP為各向同性下計(jì)算的橫波阻抗與縱波阻抗,B為常數(shù),稱為流體項(xiàng)系數(shù),其值為干燥巖石縱橫波速度比的平方(B=(VP/VS)2),根據(jù)巖性不同,其取值變化范圍為2.2~4.當(dāng)?shù)貙雍瑲鈺r(shí),F(xiàn)luid:cosθ為正值,參考Russell的流體因子定義可以看出,F(xiàn)luid:cosθ在含氣砂巖中的值大于含水砂巖,并且其值越大,含氣飽和度越高;當(dāng)?shù)貙雍畷r(shí),F(xiàn)luid:cosθ為負(fù)值.
在進(jìn)行裂縫識(shí)別時(shí),考慮到裂縫對(duì)縱波阻抗方位各向異性的影響較為明顯(賀振華等,2007),并希望裂縫識(shí)別項(xiàng)的取值隨裂縫強(qiáng)度的增加而減小,因此,對(duì)裂縫項(xiàng)進(jìn)行如下定義:
(3)
式中Fracture:sinθ用以表征裂縫是否發(fā)育,對(duì)應(yīng)直角坐標(biāo)系中的y軸,IPmax為不同方位縱波阻抗的最大值,IPmin為不同方位縱波阻抗的最小值,C為調(diào)節(jié)參數(shù),參考值為10,其調(diào)節(jié)原則是使裂縫項(xiàng)的數(shù)值量綱與流體項(xiàng)的數(shù)值量綱一致.A為可識(shí)別的最小各向異性強(qiáng)度,取值范圍為1.01~1.1,稱為裂縫項(xiàng)系數(shù),可以通過實(shí)驗(yàn)室的三向應(yīng)力測(cè)試(波速各向異性)得到,其值與方位縱波速度極值及介質(zhì)最小可識(shí)別的各向異性系數(shù)ε存在關(guān)系式(4):
(4)
當(dāng)?shù)貙痈飨虍愋詮?qiáng)度較大,裂縫為可識(shí)別時(shí),F(xiàn)racture:sinθ為正值,且裂縫越發(fā)育, Fracture:sinθ的值越?。划?dāng)?shù)貙痈飨虍愋詮?qiáng)度較小,裂縫為不可識(shí)別時(shí),F(xiàn)racture:sinθ為負(fù)值;特殊地,當(dāng)IPmax=AIPmin時(shí),認(rèn)為該情況下地層裂縫不可識(shí)別,令Fracture:sinθ的值為1,對(duì)應(yīng)θ為90°.
將上述關(guān)于裂縫識(shí)別、流體識(shí)別的討論通過同一角度θ綜合起來,得到:
(5)
式中,A為裂縫項(xiàng)系數(shù),B為流體項(xiàng)系數(shù),C為裂縫項(xiàng)調(diào)節(jié)參數(shù).顯然,通過上述思路得到的角度θ就是希望構(gòu)建的方位各向異性流體因子,考慮到它是根據(jù)裂縫和流體來確定的,因此,稱其為裂縫流體因子(FactorofFluid-filledFracture,F(xiàn)FF),簡稱裂流因子.
裂縫流體因子FFF的取值范圍為0~360,結(jié)合正弦函數(shù)和余弦函數(shù)在0°~360°范圍內(nèi)的單調(diào)性,裂流因子的物理意義及其與流體飽和度的關(guān)系如表1及圖2:①當(dāng)值為0~90時(shí),地層含氣,且裂縫為可識(shí)別,F(xiàn)FF值越小,地層含氣飽和度越高;②當(dāng)值為90~180時(shí),地層含水,且裂縫為可識(shí)別,F(xiàn)FF值越大,地層含水飽和度越高;③當(dāng)值為180~270時(shí),地層含水,但無裂縫或裂縫不可識(shí)別,F(xiàn)FF值越小,地層含水飽和度越高;④當(dāng)值為270~360時(shí),地層含氣,但無裂縫或裂縫不可識(shí)別,F(xiàn)FF值越大,地層含氣飽和度越大.此外,在坐標(biāo)軸附近裂流因子的物理意義較為特殊,x軸附近(FFF值為近0或180時(shí))代表裂縫、流體發(fā)育區(qū),y軸附近(FFF值為近90或270時(shí))代表裂縫發(fā)育情況不同的干層,且FFF值為90時(shí),對(duì)應(yīng)無裂縫干層.
表1 裂流因子FFF物理意義Table 1 Physical meaning of FFF
2.2 裂縫流體因子檢驗(yàn)
在完成裂縫流體因子構(gòu)建后,接下來要做的就是通過巖性參數(shù)來檢驗(yàn)其準(zhǔn)確性.當(dāng)基質(zhì)砂巖圍體的縱波、橫波速度及密度分別為6040、4070 m·s-1和2.65 g·cm-3時(shí),根據(jù)Dvorikin和Nur(1996)提出的高孔隙疏松砂巖模型計(jì)算出孔隙度為15%時(shí)飽含氣砂巖、飽含水砂巖圍體的巖性參數(shù)表,同時(shí)給出地層為各向同性、裂縫為不可識(shí)別以及裂縫為可識(shí)別時(shí)的巖性參數(shù),如表2.取裂流因子中裂縫項(xiàng)系數(shù)A為1.05(認(rèn)為裂縫造成縱波各向異性強(qiáng)度大于1.05時(shí),為可識(shí)別裂縫),流體項(xiàng)系數(shù)B取砂巖縱橫波速度比的平方2.9,裂縫項(xiàng)調(diào)節(jié)參數(shù)C取10,根據(jù)式(5)分別計(jì)算不同地層巖性參數(shù)下裂流因子FFF的值,如表2.從表中最后兩列的運(yùn)算結(jié)果可以看出,裂流因子FFF能夠準(zhǔn)確定位到表征不同裂縫、流體性質(zhì)的象限中,檢驗(yàn)效果較好.
圖2 裂縫流體因子物理意義示意圖Fig.2 Physical meaning of the factor of fluid-filled fracture
縱波速度(m·s-1)橫波速度(m·s-1)密度(g·cm-3)εδγFFFFFF對(duì)應(yīng)象限無裂縫,含氣地層276018802.25000292.5第四象限無裂縫,含水地層332017602.40000247第三象限裂縫不可識(shí)別,含氣地層276018802.250.030.050.1288第四象限裂縫不可識(shí)別,含水地層332017602.400.030.050.1251第三象限裂縫可識(shí)別,含氣地層276018802.250.150.050.1163第一象限裂縫可識(shí)別,含水地層332017602.400.150.050.1114第二象限
3.1 地質(zhì)背景
研究區(qū)位于松遼盆地南部北端某地區(qū),目的層為白堊系營城組火山巖,如圖3,地層厚度變化較大(350~900 m),如圖4.2007年在火山巖的有利相帶部署一口探井A井,在營城組使用50.8 mm油嘴獲日產(chǎn)天然氣592 m3,水62 m3,在A井的基礎(chǔ)上,2008年9月22日部署了另外一口探井B,在營城組使用12 mm油嘴獲天然氣日產(chǎn)量20.2464×104m3,揭示了該地區(qū)火成巖的勘探潛力.
A井和B井的鉆探成功,打開了松遼盆地南部研究區(qū)深層天然氣勘探局面.根據(jù)鉆井資料分析,該地區(qū)火山巖儲(chǔ)層由孔、洞、縫組成.其中原生和次生孔隙是主要儲(chǔ)集空間,裂縫是僅次于孔隙的儲(chǔ)集空間.對(duì)儲(chǔ)層連通性和流體運(yùn)移而言,裂縫是最主要的通道,利用現(xiàn)有技術(shù)手段開展研究區(qū)火山巖儲(chǔ)層裂縫及流體分布特征的研究工作意義重大.
圖3 研究區(qū)營城組頂面構(gòu)造圖Fig.3 Structural map of Yingcheng formation in study area
3.2 裂縫流體因子應(yīng)用
在經(jīng)過正常時(shí)差校正(Normal Moveout,NMO)的疊前地震道集基礎(chǔ)上,利用疊前AVO同步反演計(jì)算出各向同性下的縱橫波速度、密度數(shù)據(jù)體,再分別計(jì)算出對(duì)應(yīng)的縱橫波阻抗;對(duì)NMO道集進(jìn)行方位角道集抽取,并分別進(jìn)行速度分析及疊前時(shí)間偏移,以得到的各分方位角共反射點(diǎn)(Common Reflection Point,CRP)道集為基礎(chǔ),分別進(jìn)行疊前AVO同步反演,得到各方位角的縱波阻抗,通過對(duì)比每個(gè)采樣點(diǎn)不同方位角縱波阻抗的值,可以計(jì)算出方位角縱波阻抗的最大值和最小值.將以上參數(shù)代入式(5),并取裂縫項(xiàng)系數(shù)A為1.05,流體項(xiàng)系數(shù)B為3,裂縫項(xiàng)調(diào)節(jié)參數(shù)C為9,以營城組頂?shù)讓游粸闀r(shí)窗約束,即可得到研究區(qū)裂縫流體因子數(shù)據(jù)體.
對(duì)裂縫流體因子的剖面圖進(jìn)行分析,將裂流因子低值調(diào)整為紅色,高值為藍(lán)色,如圖5.單從裂縫預(yù)測(cè)情況來看,A井和B井在成像測(cè)井上的裂縫發(fā)育段均對(duì)應(yīng)裂流因子的低值區(qū);從裂縫和流體識(shí)別的綜合情況來看,B井營城組頂部裂縫含氣井段及下部的含水井段分別對(duì)應(yīng)裂縫流體因子的低值和中低值,吻合情況較好,A井在含氣裂縫發(fā)育位置也表現(xiàn)出明顯的低值,但氣層下面的干層井段與預(yù)測(cè)結(jié)果略有差異.通過與井上裂縫、含氣情況的對(duì)比來看,整體吻合程度較好,局部預(yù)測(cè)精度還有提升的空間.
圖4 目的層地震剖面Fig.4 Seismic section of target layer
圖5 營城組裂流因子連井剖面Fig.5 Section of the FFF for Yingcheng formation
裂縫流體因子的一個(gè)很大的優(yōu)勢(shì)是能夠?qū)瑲怙柡投冗M(jìn)行定性的判斷.測(cè)井資料中,B井有含氣飽和度曲線,為了考察裂流因子對(duì)含氣飽和度的識(shí)別效果,由裂流因子數(shù)據(jù)體提取B井位置的曲線值,與B井的含氣飽和度曲線進(jìn)行對(duì)比,如圖6和7.在B井2747~2800m井段附近,含氣飽和度為高值,對(duì)應(yīng)的裂流因子FFF取值均在0~90之間,在2782m附近為含氣飽和度峰值,對(duì)應(yīng)的裂流因子也趨向于0;在2800~2900m,含氣飽和度逐漸下降,裂流因子FFF取值在180附近,表現(xiàn)為低含氣飽和度,高含水飽和度.從對(duì)比情況來看,B井含氣飽和度與裂流因子FFF的整體趨勢(shì)一致,證明了裂縫流體因子在含氣飽和度判別上的有效性.
對(duì)裂流因子數(shù)據(jù)體進(jìn)行平面成圖,如圖8,9.在營城組上部(營二三四段)地層的有利裂縫含氣帶為B井區(qū)附近的小片區(qū)域(圖中黑色虛線范圍內(nèi)),在營城組下部(營一段)的分布范圍則較廣,根據(jù)井上的地質(zhì)認(rèn)識(shí),裂流因子在營城組上部地層的預(yù)測(cè)結(jié)果與井上的差異不大,但是,在營城組下部的預(yù)測(cè)結(jié)果與井上差異很大.經(jīng)過分析發(fā)現(xiàn)裂縫流體因子在進(jìn)行平面成圖時(shí),存在明顯的局限性.
圖6 B井含氣飽和度Fig.6 Gas saturation curve of well B
圖7 B井FFF值Fig.7 FFF curve of well B
對(duì)于波阻抗等屬性,研究人員關(guān)心的是有利儲(chǔ)層對(duì)應(yīng)的波阻抗是高值還是低值,在平面成圖時(shí),沿地震層位或某一時(shí)窗取平均或均方根,能夠大致表現(xiàn)出有利儲(chǔ)層的平面分布特征.但是,裂流因子在平面成圖時(shí),其物理意義會(huì)發(fā)生變化,對(duì)于2ms采樣的地震數(shù)據(jù),若計(jì)算出的裂流因子在2010ms時(shí)值為35(裂縫含氣地層)、2012ms時(shí)值為350(無裂縫含氣地層),2014ms時(shí)值為40(裂縫含氣地層),這時(shí),為了觀察平面特征,對(duì)時(shí)窗2010~2014ms內(nèi)的4ms數(shù)據(jù)取平均,得到平均值為106(裂縫含水地層);類似的,對(duì)時(shí)窗2010~2014ms內(nèi)的4ms數(shù)據(jù)取均方根,得到均方根值為204(無裂縫含水地層).無論是取平均還是取均方根,得到的平面屬性均已不代表裂流因子實(shí)際的物理意義,也就是說裂流因子受地層厚度影響非常大(如研究中,營一段地層厚度變化極為劇烈,對(duì)平面分布特征影響嚴(yán)重,得到的裂縫流體分布特征與井上的差異較大),這一問題的主要原因是裂流因子的數(shù)值在不同值域范圍內(nèi)表征了裂縫、流體各異的四種地層性質(zhì).因此,在裂流因子平面成圖時(shí),一定要根據(jù)實(shí)際地層情況,謹(jǐn)慎選取時(shí)窗.此外,裂流因子無法直觀地描述出裂縫的走向.
本文基于對(duì)Russell流體因子的簡單變換及波阻抗方位各向異性,構(gòu)建了裂縫流體因子FFF,并通過一組巖性參數(shù)和實(shí)際工區(qū)的應(yīng)用檢驗(yàn)了裂流因子的有效性,其技術(shù)優(yōu)勢(shì)如下:①FFF能夠準(zhǔn)確地表征地層的裂縫發(fā)育情況及流體性質(zhì),通過對(duì)FFF的分析,能夠清晰地描述地下巖層裂縫和流體的空間分布特征;②在不同值域范圍內(nèi),F(xiàn)FF與流體飽和度均有對(duì)應(yīng)關(guān)系,更易于尋找最有利的勘探目標(biāo)區(qū);③勘探人員最為關(guān)注的含氣裂縫發(fā)育帶對(duì)應(yīng)的FFF為低值,研究人員進(jìn)行最終的地質(zhì)成果繪圖時(shí),將FFF最低值標(biāo)示為暖色調(diào)(如紅色),F(xiàn)FF最高值(含氣無裂縫)標(biāo)示為冷色調(diào)(如藍(lán)色),即可直觀地把握研究區(qū)的裂縫及含氣性特征.
裂流因子在剖面上的預(yù)測(cè)準(zhǔn)確率較高,且與單井含氣飽和度的吻合度非常好,證實(shí)了該因子的有效性.但是,由于裂流因子的數(shù)值在不同值域范圍內(nèi)表征了裂縫、流體各異的四種地層性質(zhì),在對(duì)裂流因子數(shù)據(jù)體進(jìn)行平面成圖時(shí),其數(shù)值受地層厚度影響非常明顯,因此,在利用裂流因子進(jìn)行裂縫、流體平面分布特征預(yù)測(cè)時(shí),時(shí)窗的控制一定要十分謹(jǐn)慎.此外,裂流因子無法直觀地描述出裂縫的走向.
圖8 營城組上部裂流因子平面圖Fig.8 Plane view of FFF for top of Yingcheng formation
圖9 營城組下部裂流因子平面圖Fig.9 Plane view of FFF for bottom of Yingcheng formation
致謝 作者衷心感謝中國地質(zhì)大學(xué)(北京)王彥春教授、劉學(xué)清博士、方圓博士,中國地質(zhì)科學(xué)院劉志偉博士以及二位匿名審稿專家對(duì)本文提出的寶貴建議!
Castagna J P, Smith S W. 1997. Principles of AVO cross-plotting.TheLeadingEdge, 16(4): 337-341.
Chen J J, Yin X Y, Zhang G Z. 2006. Prestack AVO inversion of layered medium.OilGeophysicalProspecting(in Chinese), 41(6): 656-662.
Cheng B J, Xu T J, Li S G. 2012. Research and application of frequency dependent AVO analysis for gas recognition.ChineseJournalofGeophysics(in Chinese), 55(2): 608-613, doi: 10.6038/j.issn.0001-5733.2012.02.023.
Cui J, Han L G, Liu Q K, et al. 2010. P-SV wave elastic impedance and fluid identification factor in weakly anisotropic media.AppliedGeophysics, 7(2): 135-142.
Dvorikin J, Nur A. 1996. Elasticity of high-porosity sandstones: theory for two North Sea data sets.Geophysics, 61(5): 1363-1370.
Goodway B, Chen T, Downton J. 1997. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters: “Lamda-Rho”, “Mu-Rho”, &“Lamda/Mu fluid stack”, from P and S inversions. ∥ 67th Annual International Meeting, SEG. Expanded Abstract, 183-186.
Guan L P. 2008. Pre-stack inversion and direct hydrocarbon indicator.GeophysicalProspectingforPetroleum(in Chinese), 47(3): 228-234.He C, Cai Y H, Li H, et al. 2005. Application of AVO attributes crossplot interpretation technique to predict carbonate reservoir.OilGeophysicalProspecting(in Chinese), 40(6): 711-715.
He T, Shi G, Zou C C, et al. 2011. The uncertainty analysis of the key factors that affect the AVO attributes in sandstone reservoir.ChineseJournalofGeophysics(in Chinese), 54(6): 1584-1591, doi: 10.3969/j.issn.0001-5733.2011.06.018.
He Z H, Huang D J, Wen X T. 2007. Geophysical Predictive Theory and Technique on Fractured Reservoir (in Chinese). Chengdu: Sichuan Publishing House of Science and Technology. Hilterman F J. 2001. Seismic Amplitude Interpretation, Distinguished Instructor Short Course. Society of Exploration Geophysicists.
Lang X L, Peng S M, Kang H Q, et al. 2010. Application of prestack simultaneous inversion in fluid identification.GeophysicalProspectingforPetroleum(in Chinese), 49(2): 164-169. Li A S, Yin X Y, Zhang F C, et al. 2007. Application of prestack simultaneous AVA multi-parameter inversion in gas-bearing reservoir prediction.GeophysicalProspectingforPetroleum(in Chinese), 46(1): 64-68.
Li H B, Zhao W Z, Cao H, et al. 2004. Characteristics of seismic attenuation of gas reservoirs in wavelet domain.ChineseJournalofGeophysics(in Chinese), 47(5): 892-898, doi: 10.3321/j.issn:0001-5733.2004.05.022.
Liu Q K, Han L G, Wang E L, et al. 2008. Reflection coefficients of P-SV waves in weak anisotropic media.AppliedGeophysics, 5(1): 18-23.
Lucia F J, Kerans C, Jenningd J W Jr. 2003. Carbonate reservoir characterization.JournalofPetroleumTechnology, 55(6): 70-72.
Mukerji T, J?rstad A, Mavko G, et al. 1998. Near and far offset impedances: Seismic attributes for identifying lithofacies and pore fluids.GeophysicalResearchLetters, 25(24): 4557-4560.
Ning Z H, He Z H, Huang D J. 2006. High sensitive fluid identification based on seismic data.GeophysicalProspectingforPetroleum(in Chinese), 45(3): 239-241.
Ostrander W J. 1984. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence.Geophysics, 49(10): 1637-1648.
Ross C P. 2000. Effective AVO crossplot modeling: A tutorial.Geophysics, 65(3): 700-711.
Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective.Geophysics, 68(1): 29-39.Rutherford S R, Williams R H. 1989. Amplitude-versus-offset variations in gas sands.Geophysics, 54(6): 680-688.
Sayers C M. 1990. Stress-induced fluid flow anisotropy in fractured rock.TransportinPorousMedia, 5(3): 287-297.
Shaw R K, Sen M K. 2006. Use of AVOA data to estimate fluid indicator in a vertically fractured medium.Geophysics, 71(3): C15-C24.
Tod S R, Liu E R. 2002. Frequency-dependent anisotropy due to fluid flow in bed limited cracks.GeophysicalResearchLetters, 29(15): 39-1-39-4.
Wang D, He Z H, Huang D J. 2009. Construction of a new fluid identification factor and analysis on its application.GeophysicalProspectingforPetroleum(in Chinese), 48(2): 141-145.
Wang D, He Z H, Huang D J. 2008. Research of high sensitive fluid identifying factor in water containing sandstone.JournalofYangtzeUniversity(Nat.Sci.Edit.) (in Chinese), 5(3): 45-47.
Yuan S J, Dong N, Yu C Q. 2005. Study of prestack joint inversion of P-wave impedance and S-wave impedance and its application.OilGeophysicalProspecting(in Chinese), 40(3): 339-342.
Zhou S S, Yi W, Hao Z B, et al. 2012. Experiment research and application of fluid sensitive attributes based on the pre-stack inversion.ChineseJournalofGeophysics(in Chinese), 55(6): 1985-1992, doi: 10.6038/j.issn.0001-5733.2012.06.020.
Zou W, He Z H, Chen A P, et al. 2008. Application of quantitative crossplot technique in fluid identification.GeophysicalProspectingforPetroleum(in Chinese), 47(1): 45-48.
附中文參考文獻(xiàn)
陳建江, 印興耀, 張廣智. 2006. 層狀介質(zhì)AVO疊前反演. 石油地球物理勘探, 41(6): 656-662.
程冰潔, 徐天吉, 李曙光. 2012. 頻變AVO含氣性識(shí)別技術(shù)研究與應(yīng)用. 地球物理學(xué)報(bào), 55(2): 608-613, doi: 10.6038/j.issn.0001-5733.2012.02.023.
管路平. 2008. 地震疊前反演與直接烴類指示的探討. 石油物探, 47(3): 228-234.
何濤, 史謌, 鄒長春等. 2011. 砂巖儲(chǔ)層AVO特征影響因素的不確定性研究. 地球物理學(xué)報(bào), 54(6): 1584-1591, doi: 10.3969/j.issn.0001-5733.2011.06.018.
何誠, 蔡友洪, 李邗等. 2005. AVO屬性交會(huì)圖解釋技術(shù)在碳酸鹽巖儲(chǔ)層預(yù)測(cè)中的應(yīng)用. 石油地球物理勘探, 40(6): 711-715.
賀振華, 黃德濟(jì), 文曉濤. 2007. 裂縫油氣藏地球物理預(yù)測(cè). 成都: 四川科學(xué)技術(shù)出版社.
郎曉玲, 彭仕宓, 康洪全等. 2010. 疊前同時(shí)反演方法在流體識(shí)別中的應(yīng)用. 石油物探, 49(2): 164-169.
李愛山, 印興耀, 張繁昌等. 2007. 疊前AVA多參數(shù)同步反演技術(shù)在含氣儲(chǔ)層預(yù)測(cè)中的應(yīng)用. 石油物探, 46(1): 64-68.
李宏兵, 趙文智, 曹宏等. 2004. 小波尺度域含氣儲(chǔ)層地震波衰減特征. 地球物理學(xué)報(bào), 47(5): 892-898, doi: 10.3321/j.issn:0001-5733.2004.05.022.
寧忠華, 賀振華, 黃德濟(jì). 2006. 基于地震資料的高靈敏度流體識(shí)別因子. 石油物探, 45(3): 239-241.
王棟, 賀振華, 黃德濟(jì). 2009. 新流體識(shí)別因子的構(gòu)建與應(yīng)用分析. 石油物探, 48(2): 141-145.
王棟, 賀振華, 黃德濟(jì). 2008. 含氣含水砂巖的高靈敏度流體識(shí)別因子的研究. 長江大學(xué)學(xué)報(bào)(自然科學(xué)版), 5(3): 45-47.
苑書金, 董寧, 于常青. 2005. 疊前聯(lián)合反演P波阻抗和S波阻抗的研究及應(yīng)用. 石油地球物理勘探, 40(3): 339-342.
周水生, 宜偉, 郝召兵等. 2012. 基于疊前反演的流體敏感屬性實(shí)驗(yàn)研究及應(yīng)用. 地球物理學(xué)報(bào), 55(6): 1985-1992, doi: 10.6038/j.issn.0001-5733.2012.06.020.
鄒文, 賀振華, 陳愛萍等. 2008. 定量交會(huì)圖技術(shù)及其在流體識(shí)別中的應(yīng)用. 石油物探, 47(1): 45-48.
(本文編輯 何燕)
A new factor of fluid-filled fractures and its application
SUN Wei1,2, HE Zhi-Liang1, LI Yu-Feng3, ZHANG Feng-Qi1, ZHOU Yan1
1LaboratoryofStructuralandSedimentologicalReservoirGeology,Exploration&ProductionResearchInstitute,SINOPEC,Beijing100083,China2ChinaUniversityofPetroleum,Beijing102249,China3ShengliGeophysicalResearchInstituteofSINOPEC,ShandongDongying257022,China
Fracture and fluid property are two important factors for oil and gas prospecting. However,the fluid identification factors proposed by previous studies focus on the fluid identification based on isotropic assumption. Little work is concerned with fluid prediction and recognition of fracture fluid associated with anisotropic media. This study attempts to put forward a new parameter which can characterize fracture and fluid simultaneously,and presents its application in practical research.From geological origins,fracture and fluid are closely related. The situation of fracture development (whether or not) and the fluid properties (water or gas) is similar to the four quadrants in rectangular coordinate system,so both the fracture identification and fluid identification items can be constructed using a rectangular coordinate system. Firstly,the fluid factor of Russell is adjusted to the fluid identification item Fluid:cosθso that the result of adjusted expression is positive when formation contains gas,or negative when formation contains water. Secondly,considering that fracture is sensitive to the P-wave impedance azimuthal anisotropy,and the value of this item is expected to decrease with increasing fracture density, the maximum and minimum of P-wave impedances are introduced to construct the fracture identification item Fracture:sinθ. Therefore,a same parameter angleθis combined with the two above-mentioned items, which is the expected anisotropy fluid factor. Now that this factor is determined by both fracture and fluid,it is named Factor of Fluid-filled Fracture,F(xiàn)FF for short. In addition,through numerical calculation with a group of representative lithological parameters based on the highly porous unconsolidated sandstone model proposed by Dvorikin,the validity of the FFF in both fracture prediction and fluid identification is verified.On the basis of theoretical research,fracture and fluid identification of igneous rock in a certain area of the Songliao basin is taken as an application example. With the process of velocity analysis, pre-stack time migration and pre-stack AVO simultaneous inversion,P-wave impedance and S-wave impedance under isotropic condition, the maximum and minimum of P-wave impedances in different azimuths are obtained. By substituting the data above into the expression of FFF,the FFF volume is determined. Comparing the fracture and fluid information in two wells with the predicted results shows a good consistence. In addition,the predicted result is consistent with the gas saturation curve in a well B. So the effectiveness of the new parameter is proved.Based on the adjustment to fluid factor Russell and P-wave impedance azimuthal anisotropy, a new parameter named FFF is proposed,and its effectiveness is proved with both numerical calculation and practical application. Its technical advantages are as follows: (1) FFF can describe the distribution of fracture and fluid accurately. (2) For different ranges of FFF,fluid saturation can be characterized so that the favorable target can be identified much more conveniently. (3) The minimum and maximum of FFF respectively represent gas-bearing fracture zones and gas zones without fracture,which is intuitive for researchers to understand the characteristics of fracture and gas-bearing properties with the FFF map.
Factor of fluid-filled fracture;Gas saturation;Fluid identification in anisotropy medium;Azimuthal anisotropy;Igneous reservoir
10.6038/cjg20150728.
國家重大專項(xiàng)子課題“海相碳酸鹽巖層系優(yōu)質(zhì)儲(chǔ)層分布與保存條件評(píng)價(jià)”(2011ZX05005-002);中石化科技部項(xiàng)目“泥頁巖裂縫形成演化特征與油氣成藏關(guān)系研究”(P13068)共同資助.
孫煒,男,1984年生,中國石化石油勘探開發(fā)研究院在站博士后,主要從事地震儲(chǔ)層及裂縫預(yù)測(cè)研究工作.E-mail: seagleff@126.com
10.6038/cjg20150728
P631
2014-04-23,2015-05-29收修定稿
孫煒,何治亮,李玉鳳等.2015.一種裂縫流體因子的提出及應(yīng)用.地球物理學(xué)報(bào),58(7):2536-2545,
Sun W, He Z L, Li Y F, et al. 2015. A new factor of fluid-filled fractures and its application.ChineseJ.Geophys. (in Chinese),58(7):2536-2545,doi:10.6038/cjg20150728.