• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport feasibility of proppant by supercritical carbon dioxide fracturing in reservoir fractures *

    2018-07-06 10:01:58XianzhiSong宋先知GenshengLi李根生BinGuo郭斌HaizhuWang王海柱XiaojiangLi李小江Zehao呂澤昊
    關(guān)鍵詞:先知

    Xian-zhi Song (宋先知), Gen-sheng Li (李根生), Bin Guo (郭斌), Hai-zhu Wang (王海柱),Xiao-jiang Li (李小江) , Ze-hao Lü (呂澤昊)

    1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, Beijing 102249, China

    2. PetroChina Tarim Oilfield Company, Korla 841000, China

    Introduction

    China is rich in shale gas and its exploration and development are in a very extensive scale. Stimulation of the reservoir volume fracturing is an important technique for the efficient development of shale gas reservoirs. Currently, the most common technique used in the shale gas reservoir is the slick-water fracturing[1-2]. Due to its low viscosity, the slick-water has good anti-drag effects that help to form complex fractures. But the slick-water for the unconventional reservoir fracturing has also some undesirable features,such as the unwieldiness of the flowback fluid disposal and the reservoir pollution[3-5].

    The SC-CO2is a clean and waterless fracturing fluid that can prevent both the clay swelling caused by the water-based fracturing fluid and reduce the reservoir pollution. Thus, it can be used for the unconventional reservoir fracturing[6-7]. Due to its low density and viscosity compared to the slick-water, the ability to carry sand directly affects the shale gas reservoir fracturing stimulation in fractures[8].

    Many theoretical and experimental studies focus on the proppant settlement and the migration laws in conventional hydraulic fracturing fractures[9-10]. Liu[11]developed new empirical and analytical models for proppant transport and settling in hydraulic fractures.In these models, the sensitivity analysis is applied and these models can be used in any hydraulic fracture simulator. The sand carrying ability of the SC-CO2within the wellbore in the drilling process was studied.Li et al.[12]showed that the variation trend of the carrying-cuttings ability is related with the deviation angle. Shen et al.[13]performed numerical simulations for the cutting-carrying ability of the SC-CO2drilling at horizontal sections. But the sand carrying ability of the SC-CO2in the fracturing process was not well studied in sand carrying environments in the wellbore.The two-phase flow of the SC-CO2and the proppants is very complicated because the proppant concentration is high during the fracturing process in narrow and complex fractures.

    Because of the high temperature and high pressure condition for the SC-CO2in fractures, the experiment of the proppant transport by the SC-CO2fracturing is very difficult. In this paper, the numerical simulation method is used to study this problem systematically. Therefore the feasibility of the proppant transport by the SC-CO2fracturing and the slick-water fracturing in reservoir fractures is studied here as well as the influence of various parameters on the SC-CO2sand carrying ability. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures, which provides a basis for the SC-CO2fracturing design.

    1. Basic model

    There are three multi-phase models based on the Euler-Euler approach in the FLUENT software: the VOF model, the Eulerian model and the Mixture model. The VOF model is suitable for solving problems of stratified flow and free surface tracking.With the Eulerian model, the momentum and continuity equations of each phase are solved separately.The Mixture model as a simplified form of the Eulerian model, can be used to simulate the multiphase flow field with relative velocities and can be applied to problems of particle settling, as is relevant in the cases of this paper. Besides, the Mixture model enjoys almost the same accuracy but with less computational cost as compared to the Eulerian model[14].

    The Peng-Robinson equation[15]is generally superior in calculating the density of the liquid CO2.However, it performs poorly with respect to the supercritical phase of CO2. The Span-Wagner equation[16]was developed for CO2and is considered as the top choice of the equation of state for calculating the property of pure CO2[17-18]. Unfortunately, this equation is too complicated to be used in engineering calculations. The Aungier-Redlich-Kwong equation of state[19]was used for the state equation of the SC-CO2because of its high accuracy and efficiency, especially for the supercritical state of CO2[20]. A physical model of the fractures was established based on the correlation.

    1.1 Mathematical model

    1.1.1 Continuity equation

    wheremρ is the mixture density,mv is the massaveraged velocity.

    1.1.2 Momentum equation

    wherepρ is the density of the phasep,pis the pressure, g is the acceleration of gravity,pα is the volume fraction of the phasep,,dr pv is the drift velocity of the secondary phasepandmμ is the viscosity of the mixture.

    1.1.3 Energy equation

    wherepEis the energy of the phasep,pv is the velocity of the phasep,effkis the effective conductivity andTis the temperature.

    1.1.4 Volume fraction equation

    whereqpm˙ is the mass transfer from the phaseqto the phasep,pqm˙ is the mass transfer from the phasepto the phaseq.

    1.1.5 Aungier-Redlich-Kwong state equation

    whereRis the gas constant,rTis the reduced temperature,cTis the critical temperature,cpis the critical pressure,cVis the critical specific volume,Vis the specific volume and ω is the acentric factor.

    1.2 Physical model

    The SC-CO2fracturing is still in the theoretical research stage and the parameters of the fracture geometry are not yet clear. A similarity geometric model (as shown in Fig. 1) was established based on the size of the fracture model in the literature[21]. The simulated fracture is a cuboid of 2 070 mm in length,495 mm in height and 9 mm in width. A total of 430×100×4 computational cells are used to represent the simulation domain. The sand-carrying fluid enters the left side of the fracture and exits from the right side of the fracture.

    Fig. 1 (Color Online) Schematic diagram of physical model and mesh densification

    According to the fracture operation, the mass flow inlet is used and the mass inflow rates of sand-carrying fluid and the proppant are defined. The inlet pressure and temperature are determined. To improve the calculation precision and the convergence speed, the turbulence intensity and the hydraulic diameters at both inlets and outlets are set correspondingly. The pressure outlet is used (the formation pressure). The no slip wall and the stationary wall are used, with a constant temperature. The filtration loss of the SC-CO2is ignored.

    1.3 Model solution

    The model is solved using th?e state-of-the-art CFD software–ANSYS FLUENT. The standardk-ε model is adopted in this study for the turbulence calculation. In order to reduce errors due to the artificial viscosity item in the low-order discretization schemes, the second-order upwind scheme is adopted.Under certain conditions, with the second-order upwind scheme, the same level of calculation accuracy can be achieved as with the QUICK scheme and the MUSCL scheme, but with a shortened calculation time. The SIMPLE method is used to solve the coupled equations of velocity and pressure, as shown to be stable by numerical tests[22]. In all cases,at least 10 000 iterations are required to make, with the convergence criterion: (1) the residual of the iteration is less than 10-5, or (2) the difference of the mass flow between inlet and outlet is less than 0.5%of that of the inlet mass flow.

    1.4 Model verification

    To the best of our knowledge, there is no experiment of the proppant transport by the SC-CO2fluid carried out. Since the numerical model built in this paper is applicable for any kind of fluid, the slick water is used to verify the model against the experiment, In the process of the proppant transport by the slick water, Liu[11]suggests that the proppant bed buildup consists of three stages. In the first stage,the proppant bed builds up gradually as a function of time. In the next stage, the bed grows only in height.The third stage sees a gradual increase of the proppant bed with a reduced discharge section so that the flow rate increases. The increase of the flow rate finally suspends the injected proppant, and the maximum height of the sand bank is reached and then remains unchanged. This state is called the equilibrium-here,the flow rate is called the equilibrium flow rate, and the height of the sand bank is called the equilibrium height (he). The time is called the equilibrium time.The injected proppant only increases the length of the bank in the flow direction. Numerical simulation comparisons are made based on the conditions in the literature[11]. Figure 2(a) shows the case of the first phase as given in the literature[11], while Figs. 2(b),2(c) shows the cases of the second stage and third stage in the literature[11]. With the numerical model,the three stages of the formation process of the sand bank are reproduced, similar to the three stages proposed by Liu according to the experiment, which validates our model.

    Fig. 2 (Color Online) Three stages of sand bank formation in numerical simulations

    2. Distribution characteristics of proppant in SCCO2 in fractures

    Figure 3 shows the contour of the proppant volume fraction in the vertical profile of the fracture.Figure 4 shows the proppant volume fraction in the fracture height direction of line a in Fig. 3, Fig. 5 shows the proppant velocity ()vin the fracture height direction of line b in Fig. 3. From Figs. 4, 5, we can summarize the cases as in the following Table 1

    Fig. 3 (Color Online) The contour of proppant volume fraction in vertical profile of fracture. Boundary conditions: inlet mass flow rate: 2 kg/s, outlet pressure: 40 MPa, medium properties: proppant density: 2 540 kg/m3, proppant diameter: 40 mesh size, solid volume fraction: 30%, SCCO2 viscosity: 0.06 mPa·s

    Fig. 4 The proppant volume fraction in the fracture height direction

    From the vertical profile of the fracture as seen in Fig. 3, it is clear that we have four regions based on the concentration. The first region is the low sand area at the top of the fracture. In this region, the proppant volume fraction is less than 0.05, and the proppant velocity is over 0.15 m/s. The second region is a suspension area next to the low sand area. In this region, the proppant volume fraction ranges between 0.05 and 0.3. With the proppant concentration gradient, the proppant velocity is greater than 0.15 m/s.The third region is the tumble area below the suspension area with the proppant volume fraction between 0.3 and 0.6, and the proppant velocity is between 0.10 m/s and 0.65 m/s. The fourth and final region is the sand area at the bottom of the fracture with the proppant volume fraction more than 0.6, and its proppant velocity is less than 0.05 m/s.

    3. Sand bank distribution comparison between SCCO2 and slick-water

    Figure 6 shows the contours of the sand bank distribution, where the cases of the SC-CO2and theslick-water are compared. During the initial stage of proppant injecting (t= 5s), the forming speed of the sand bank in the SC-CO2is greater than that of the slick-water. Because the density of the SC-CO2is less than that of the slick-water under the condition of the same mass inflow rate and solid volume fraction, and the proppant volume injected in the SC-CO2is more than that in the slick-water per unit time. Meanwhile the fluidization ability of the slick-water is better than that of the SC-CO2. Thus, with lower sedimentation velocities of the proppant in the slick-water, we will have longer proppant transport-this means settling closer to the outlet. The proppant in the SC-CO2first reaches the largest filling state in the fracture (t=40s) while the proppant in the slick-water reaches the largest filling state later in the fracture (t= 100 s).

    Table 1 Proppant distribution characteristics

    Fig. 6 (Color Online) Comparisons of the contours of sand bank distribution between SC-CO2 and slick-water

    Fig. 7 The comparison of the maximum height of the sand bank between SC-CO2 and slick-water at different times

    Figure 7 compares the maximum heightmax( )hof the sand bank between the cases of the SC-CO2and the slick-water in different time intervals ()t. The maximum height of the sand bank in the SC-CO2is larger than that in the slick-water at all time points,and its height difference first increases and then is maintained unchanged. Before the time of 20 s, the height of the sand bank in the SC-CO2increases rapidly. From =20stto =35st, the height of the sand bank increases slowly and then after =35st,the height stabilizes to a constant value. For the slickwater, the height of the sand bank increases slowly until the time of 90 s. After that it keeps unchanged.The equilibrium time in the SC-CO2is shorter than that of the slick-water but the equilibrium height in the SC-CO2is greater than that in the slick-water. Therefore under the same condition, the slick-water has a stronger sand-carrying ability than the SC-CO2.Further study is needed to ensure that the proppant in the SC-CO2and in the slick-water has a similar filling effect.

    4. Sensitivity analysis

    4.1 Proppant density

    Figure 8 shows the dimensionless equilibrium heights and equilibrium time for different proppant densities. The velocity of the proppant sedimentation,and the dimensionless equilibrium height increase with the increase of the proppant density. The equilibrium time decreases with the increase of the proppant density. When the proppant density is small, such as 1 040 kg/m3, the proppant could not easily settle to form a sand bank because it has a strong proppant fluidization ability. Therefore, the height of the sand bank is less than 60% of the fracture height, and the equilibrium time is close to 60 s. Conversely, increasing the proppant density can help the proppant to settle and form a sand bank in a shorter time.Therefore reducing the proppant density can reduce the equilibrium height and thus the risk of sand plugging-this ensures a uniform proppant settlement in the fracture, as discussed before, with a similar filling effect as that of the slick water.

    Fig. 8 The dimensionless equilibrium heights and equilibrium time for different proppant densities

    4.2 Solid volume fraction

    Figure 9 shows the dimensionless equilibrium heights and equilibrium time for different solid volume fractions. As shown in Fig. 9, the dimensionless equilibrium height increases slightly with the increase of the solid volume fraction, while the equilibrium time decreases substantially. This is because the convective proppant transport effects increase with the increase of the solid volume fraction and the proppant sedimentation becomes faster. The sand-carrying fluids with a high solid volume fraction make it easy to form a sand plug in the fracture at early stages of the SC-CO2fracturing. Therefore, to achieve a longer fracture requires a lower solid volume fraction, on the other hand, to achieve a higher fracture requires a higher solid volume fraction. What is more, the solid volume fraction does not have much influence on the equilibrium height. That means that the solid volume fraction can not be used to control the height of the vertical fracture.

    Fig. 9 The dimensionless equilibrium heights and equilibrium time for different solid volume fractions

    Fig. 10 The dimensionless equilibrium heights and equilibriumtime for different proppant diameters

    4.3 Proppant diameter

    Figure 10 shows the dimensionless equilibrium heights and equilibrium time for different proppant diameters ()D. The dimensionless equilibrium height increases with the increase of the proppant diameter,while the equilibrium time decreases. With the diameter size of 10 mesh, the proppants show the strongest wall effect[17], the fastest sedimentation, the largest porosity of the sand bank, the largest dimensionless equilibrium height, and the shortest equilibrium time. Therefore, when the fracture length is long enough, a sand plug easily occurs because for the proppants with large diameters, we will have a large dimensionless height. The proppant cannot be transported to the remote section of the fracture. With a sand diameter as commonly adopted (20/40 mesh) in the slick water fracturing, long fractures could not be achieved in the SC-CO2fluid. Consequently, a small proppant diameter is an advisable choice to achieve a longer fracture, but with a lower height.

    4.4 Mass inflow rate

    Figure 11 shows the dimensionless equilibrium heights and equilibrium time for different mass inflow rates ()Q. As shown in Fig. 11, both the equilibrium height and the equilibrium time decrease with the increase of the mass flow rate. Considering the cases of the mass inflow rates of 1.0 kg/s and 1.5 kg/s, the equilibrium time at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s because the higher the mass inflow rate, the higher the injected proppant volume per unit time-this decreases the time needed to form a sand bank. The dimensionless equilibrium height at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s. A higher mass inflow rateleads to a larger injected proppant velocity. In turn, we will have a larger suspension area and a larger tumble area and a smaller sand bank area, which leads to a longer fracture at a shorter time.

    Fig. 11 The dimensionless equilibrium heights and equilibrium time for different mass inflow rates

    5. Conclusions

    (1) The proppant concentration varies in vertical fractures of the SC-CO2fracturing. Based on proppant volume fraction, velocity and dimensionless height,these fractures can be divided into four regions-the low land area, the suspension area, the tumble area and the sand bank area. Of these four areas, the sand bank area and the suspension area are two key areas to determine the fracture shape.

    (2) The slick-water enjoys a better sand-carrying ability than the SC-CO2, thus the proppant could form a higher sand bank at a shorter time in the SC-CO2fluid compared with the slick-water, which means that the SC-CO2can lead to higher but shorter fracture compared with the slick water under the same condition.

    (3) In the SC-CO2fracturing, there are positive correlations between the proppant density, the proppant diameter, the solid volume fraction and the dimensionless equilibrium height, equilibrium time, as well as between the mass inflow rate and the equilibrium time and a negative correlation between the mass inflow rate and the dimensionless equilibrium height.

    (4) The results indicate that reducing the density of the proppant, the grain size of the proppant and the solid volume fraction or increasing the injection rate during the SC-CO2fracturing, we will have longer vertical fractures, but with lower height, thus the proppant will have similar filling effects as in fractures of the slick water fracturing. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures. It provides a basis for the SC-CO2fracturing design.

    Acknowledgement

    This work was supported by the Science Foundation of China University of Petroleum, Beijing(Grant No. 2462013BJRC002).

    [1] Hou L., Sun B., Li Y. et al. Impact of unconventional oil and gas exploitation on fracturing equipment and materials development [J].Natural Gas Industry, 2013, 33(12):105-110(in Chinese).

    [2] Dong D., Zou C., Yang H. et al. Progress and prospects of shale gas exploration and development in China [J].Acta Petrolei Sinica, 2012, 33(1): 107-114(in Chinese).

    [3] Sakmar S. L. Shale gas development in North America:An overview of the regulatory and environmental challenges facing the industry [C].North American Unconventional Gas Conference and Exhibition. The Woodlands,USA, 2011.

    [4] Touzel P. Managing environmental and social risks in China [C].International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production.Perth, Australia, 2012.

    [5] Anderson R. L., Ratcliffe I., Greenwell H. C. et al. Clay swelling-A challenge in the oilfield [J].Earth-Science Reviews, 2010, 98(3-4): 201-216.

    [6] Shen Z., Wang H., Li G. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide [J].Petroleum Exploration and Development, 2010, 37(6):743-747.

    [7] Wang H., Shen Z., Li G. Feasibility analysis on shale gas exploitation with supercritical CO2[J].Petroleum Drilling Techniques, 2011, 39(3): 30-35(in Chinese).

    [8] He Z. G., Li G. S., Wang H. Z. et al. Numerical simulation of the abrasive supercritical carbon dioxide jet: The flow field and influence factors analysis [J].Journal of Hydrodynamics, 2016, 28(2): 238-246.

    [9] McClure M., Babazadeh M., Shiozawa S. et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks [J].SPE Journal,2017, 21(4): 1302-1320.

    [10] Gomaa A., Hudson H., Nelson S. et al. Computational fluid dynamics applied to investigate development of highly conductive channels within the fracture geometry[J].SPE Production and Operations, 2017, 32(4):392-403.

    [11] Liu Y. Settling and hydrodynamic retardation of proppants in hydraulic fractures [D]. Doctoral Thesis, Austin, USA:The University of Texas, 2006.

    [12] Li L., Wang Z., Qiu Z. et al. An experimental study on carrying cuttings features for supercritical carbon dioxide drilling fluid [J].Acta Petrolei Sinica, 2011, 32(2):355-359(in Chinese).

    [13] Shen Z. H., Wang H. Z., Li G. S. Numerical sumilation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section [J].Petroleum Drilling Techniques, 2011, 38(2): 233-236(in Chinese).

    [14] ANSYS Inc. ANSYS FLUENT 12.0 theory guide [M].ANSYS Inc., 2009, 558-569.

    [15] Peng D. Y., Robinson D. B. A new two-constant equation of state [J].Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.

    [16] Span R., Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa [J].Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.

    [17]Li X., Li G., Wang H. et al. A coupled model for predicting flowing temperature and pressure distribution in drilling ultra-short radius radial wells [C].IADC/SPE Asia Pacific Drilling Technology Conference, Singapore, 2016.[18] Li X., Li G., Wang H. et al. A unified model for wellbore flow and heat transfer in pure CO2injection for geological sequestration, EOR and fracturing operations [J].International Journal of Greenhouse Gas Control, 2017, 57:102-115.

    [19] Aungier R. H. A fast, accurate real gas equation of state for fluid dynamic analysis applications [J].Journal of Fluids Engineering, 1995, 117(2): 277-281.

    [20] ANSYS Inc. ANSYS FLUENT 12.0 user’s guide [M].ANSYS Inc., 2009, 593-604.

    [21] Liu Y. Sharma M. M. Effect of fracture width and fluid rheology on proppant settling and retardation: An experimental study [C].SPE Annual Technical Conference and Exhibition. Dallas, USA, 2005.

    [22] Wang F. J. Computational fluid dynamics analysis-theory and application of CFD software [M]. Beijing: Tsinghua University Press, 2004, 196-200(in Chinese).

    猜你喜歡
    先知
    春江水暖鴨先知
    高 士
    寶藏(2019年6期)2019-01-15 14:52:30
    《先知》中的立體世界觀美學(xué)
    最好的財(cái)富
    我不是什么先知
    延河(2017年7期)2017-07-19 20:52:04
    春天的小先知(外兩首)
    春天來(lái)了
    臥佛
    詩(shī)林(2016年5期)2016-10-25 05:51:26
    春江水暖鴨先知
    春江水暖鴨先知
    成人av一区二区三区在线看| 国产亚洲精品一区二区www| 亚洲人成电影免费在线| 舔av片在线| 亚洲国产看品久久| 夜夜看夜夜爽夜夜摸| 国产在线精品亚洲第一网站| 校园春色视频在线观看| 国产成人av教育| 男人和女人高潮做爰伦理| 日韩高清综合在线| 久久精品91无色码中文字幕| 波多野结衣高清作品| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲美女久久久| 国产伦在线观看视频一区| 91九色精品人成在线观看| 色尼玛亚洲综合影院| 99久久国产精品久久久| 后天国语完整版免费观看| 男女视频在线观看网站免费| 日韩av在线大香蕉| 在线永久观看黄色视频| 激情在线观看视频在线高清| 久久午夜综合久久蜜桃| 日本在线视频免费播放| 99精品久久久久人妻精品| 亚洲,欧美精品.| 亚洲精品在线观看二区| 久久欧美精品欧美久久欧美| av天堂在线播放| 日韩中文字幕欧美一区二区| 亚洲 欧美一区二区三区| 两个人看的免费小视频| 成人18禁在线播放| 亚洲精品乱码久久久v下载方式 | 99国产精品一区二区三区| 波多野结衣巨乳人妻| 黄色丝袜av网址大全| 久久草成人影院| www国产在线视频色| 后天国语完整版免费观看| 国产精品自产拍在线观看55亚洲| 精品电影一区二区在线| 精品人妻1区二区| 亚洲片人在线观看| 九九热线精品视视频播放| 岛国在线免费视频观看| 久99久视频精品免费| 国产v大片淫在线免费观看| 91老司机精品| 在线国产一区二区在线| 亚洲最大成人中文| 999精品在线视频| 国产精品久久久av美女十八| 岛国视频午夜一区免费看| 舔av片在线| 日本 欧美在线| 亚洲五月婷婷丁香| 在线观看午夜福利视频| 老鸭窝网址在线观看| 亚洲色图 男人天堂 中文字幕| 国产97色在线日韩免费| 精品久久久久久成人av| 成人18禁在线播放| netflix在线观看网站| 成人精品一区二区免费| 国产精品永久免费网站| 国产69精品久久久久777片 | 亚洲在线观看片| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看成人毛片| 很黄的视频免费| www.熟女人妻精品国产| 国内久久婷婷六月综合欲色啪| 中文字幕最新亚洲高清| 欧美一级a爱片免费观看看| 久久国产精品人妻蜜桃| 国产高清三级在线| 国产伦一二天堂av在线观看| 国产伦一二天堂av在线观看| av福利片在线观看| 日韩中文字幕欧美一区二区| 好男人电影高清在线观看| 精品久久久久久,| 色吧在线观看| 国产美女午夜福利| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 最新在线观看一区二区三区| 国产高清videossex| 亚洲在线观看片| 免费看光身美女| 欧美日韩黄片免| 成人三级黄色视频| 亚洲激情在线av| 亚洲国产欧美人成| 精品免费久久久久久久清纯| 欧美乱妇无乱码| 美女高潮的动态| 99精品在免费线老司机午夜| 国产伦一二天堂av在线观看| 搞女人的毛片| 欧美日韩精品网址| 一区二区三区激情视频| 国产亚洲精品久久久久久毛片| 日韩中文字幕欧美一区二区| av天堂在线播放| 最新中文字幕久久久久 | 床上黄色一级片| 天天添夜夜摸| 成人午夜高清在线视频| 一边摸一边抽搐一进一小说| 精品一区二区三区四区五区乱码| 法律面前人人平等表现在哪些方面| 两个人看的免费小视频| 搡老熟女国产l中国老女人| 国产精品一区二区精品视频观看| 日本黄大片高清| 日韩欧美国产一区二区入口| 色噜噜av男人的天堂激情| 国产91精品成人一区二区三区| 亚洲国产欧美人成| 亚洲国产精品成人综合色| 精品一区二区三区视频在线 | 亚洲国产精品sss在线观看| 国产精品亚洲一级av第二区| 国产午夜福利久久久久久| 日韩欧美在线乱码| 老熟妇乱子伦视频在线观看| 日本一本二区三区精品| 国产v大片淫在线免费观看| 一进一出抽搐动态| 很黄的视频免费| 精品久久久久久成人av| 亚洲 欧美一区二区三区| 国产成人av激情在线播放| 国产av麻豆久久久久久久| 岛国在线观看网站| 午夜视频精品福利| 久久精品国产亚洲av香蕉五月| АⅤ资源中文在线天堂| 18禁美女被吸乳视频| 亚洲人与动物交配视频| 法律面前人人平等表现在哪些方面| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻| 亚洲av五月六月丁香网| 国产极品精品免费视频能看的| 久久精品人妻少妇| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 久久久精品欧美日韩精品| 国产精品久久久久久人妻精品电影| 午夜亚洲福利在线播放| 麻豆av在线久日| 18禁裸乳无遮挡免费网站照片| 中国美女看黄片| 桃红色精品国产亚洲av| 1024手机看黄色片| bbb黄色大片| 最新在线观看一区二区三区| 精品午夜福利视频在线观看一区| 欧美另类亚洲清纯唯美| 91老司机精品| 真人做人爱边吃奶动态| 色综合婷婷激情| 久久久久久久久中文| 亚洲专区字幕在线| 国产精品99久久99久久久不卡| 日韩精品中文字幕看吧| 国产亚洲精品久久久久久毛片| www.自偷自拍.com| 久久婷婷人人爽人人干人人爱| 国产一区二区激情短视频| 岛国在线免费视频观看| 午夜激情欧美在线| 久久久久久久久免费视频了| 成人永久免费在线观看视频| netflix在线观看网站| 国产伦精品一区二区三区四那| 国产免费男女视频| 亚洲国产高清在线一区二区三| 美女午夜性视频免费| 男女床上黄色一级片免费看| 一个人免费在线观看电影 | 天堂影院成人在线观看| 国产亚洲精品av在线| av福利片在线观看| 日韩欧美国产一区二区入口| 国产伦在线观看视频一区| 国产乱人伦免费视频| 国产三级中文精品| 国产精品久久久久久精品电影| 偷拍熟女少妇极品色| 男人和女人高潮做爰伦理| 成熟少妇高潮喷水视频| 国产高清videossex| 国产成人欧美在线观看| 香蕉国产在线看| 久久草成人影院| 国产日本99.免费观看| av女优亚洲男人天堂 | 91在线观看av| 国产精品亚洲美女久久久| 精品不卡国产一区二区三区| 欧美+亚洲+日韩+国产| 国产精品一及| 舔av片在线| 精品欧美国产一区二区三| 99久国产av精品| 少妇的逼水好多| 999久久久精品免费观看国产| 国内揄拍国产精品人妻在线| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 亚洲一区二区三区不卡视频| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区久久| 国产午夜精品久久久久久| 床上黄色一级片| 我要搜黄色片| 亚洲五月婷婷丁香| 日本黄色片子视频| 久久人妻av系列| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 婷婷精品国产亚洲av在线| 男女做爰动态图高潮gif福利片| 88av欧美| 日日干狠狠操夜夜爽| 国产亚洲精品久久久com| 在线播放国产精品三级| 久久精品亚洲精品国产色婷小说| 激情在线观看视频在线高清| 国产精品影院久久| 美女高潮喷水抽搐中文字幕| 日本 欧美在线| 久久草成人影院| 色综合婷婷激情| 一进一出抽搐gif免费好疼| 岛国视频午夜一区免费看| 欧美xxxx黑人xx丫x性爽| 日本黄色片子视频| 99久久成人亚洲精品观看| 国产激情偷乱视频一区二区| 黄色成人免费大全| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 成熟少妇高潮喷水视频| 好看av亚洲va欧美ⅴa在| 男人舔女人的私密视频| 88av欧美| 国模一区二区三区四区视频 | 久久久久免费精品人妻一区二区| 国产高清视频在线播放一区| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 日韩欧美在线二视频| 少妇熟女aⅴ在线视频| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产 | 99久久99久久久精品蜜桃| 免费在线观看影片大全网站| 两个人的视频大全免费| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| 在线视频色国产色| 久久精品影院6| 亚洲无线在线观看| 久久天躁狠狠躁夜夜2o2o| 日韩高清综合在线| 午夜精品久久久久久毛片777| 久久人妻av系列| 免费av不卡在线播放| 精华霜和精华液先用哪个| 香蕉丝袜av| 久久精品国产99精品国产亚洲性色| 中文字幕av在线有码专区| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 国产成人一区二区三区免费视频网站| 国产伦精品一区二区三区四那| 1000部很黄的大片| 亚洲狠狠婷婷综合久久图片| 可以在线观看的亚洲视频| 色综合婷婷激情| 12—13女人毛片做爰片一| 巨乳人妻的诱惑在线观看| 亚洲18禁久久av| 91久久精品国产一区二区成人 | 12—13女人毛片做爰片一| 国产真人三级小视频在线观看| 国产精品久久久久久精品电影| 欧美日韩乱码在线| 国产精品美女特级片免费视频播放器 | 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 特大巨黑吊av在线直播| 搡老熟女国产l中国老女人| 12—13女人毛片做爰片一| 国产精品一及| 啪啪无遮挡十八禁网站| xxxwww97欧美| 真人做人爱边吃奶动态| 18禁观看日本| 国产精品一区二区三区四区久久| 丝袜人妻中文字幕| 国产精品永久免费网站| 亚洲国产精品合色在线| 无遮挡黄片免费观看| 波多野结衣高清作品| 免费人成视频x8x8入口观看| 亚洲天堂国产精品一区在线| 精品国产超薄肉色丝袜足j| 亚洲无线在线观看| 热99re8久久精品国产| 欧美一级a爱片免费观看看| 日本成人三级电影网站| 久久欧美精品欧美久久欧美| 美女高潮喷水抽搐中文字幕| 国模一区二区三区四区视频 | 国产精品久久久av美女十八| 欧美激情在线99| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| 天天添夜夜摸| 亚洲第一欧美日韩一区二区三区| 成年版毛片免费区| 日本精品一区二区三区蜜桃| 首页视频小说图片口味搜索| 三级男女做爰猛烈吃奶摸视频| 国产一区在线观看成人免费| a在线观看视频网站| 99久久精品一区二区三区| 美女大奶头视频| 我要搜黄色片| 日本黄色片子视频| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 99久久精品热视频| 91在线精品国自产拍蜜月 | 成人性生交大片免费视频hd| svipshipincom国产片| 特级一级黄色大片| 久久欧美精品欧美久久欧美| 变态另类丝袜制服| 亚洲成av人片免费观看| 精品久久久久久久久久久久久| 国产精品99久久99久久久不卡| 色在线成人网| 综合色av麻豆| 三级毛片av免费| 精品久久久久久久人妻蜜臀av| 1000部很黄的大片| 国产av不卡久久| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区三| 亚洲精品久久国产高清桃花| 国产精品 欧美亚洲| 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 少妇裸体淫交视频免费看高清| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| АⅤ资源中文在线天堂| tocl精华| 欧美最黄视频在线播放免费| av在线蜜桃| 国产精品九九99| 久99久视频精品免费| 脱女人内裤的视频| 999久久久国产精品视频| 国产av不卡久久| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 日本黄色视频三级网站网址| 美女黄网站色视频| 国产亚洲精品久久久com| 国产成人av激情在线播放| 国产午夜福利久久久久久| 美女黄网站色视频| 俺也久久电影网| 国产高清三级在线| 精品国产超薄肉色丝袜足j| 一二三四社区在线视频社区8| 毛片女人毛片| 亚洲在线自拍视频| av在线蜜桃| 欧美一区二区国产精品久久精品| 99久久国产精品久久久| 欧美高清成人免费视频www| 午夜影院日韩av| 黄频高清免费视频| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费| 1000部很黄的大片| 久久久久久久午夜电影| aaaaa片日本免费| 亚洲国产欧美网| 18禁观看日本| 少妇裸体淫交视频免费看高清| 成人亚洲精品av一区二区| 成人高潮视频无遮挡免费网站| av欧美777| 久久精品91无色码中文字幕| 真实男女啪啪啪动态图| 悠悠久久av| 嫩草影院精品99| 亚洲欧美精品综合久久99| 亚洲午夜精品一区,二区,三区| 亚洲精品一区av在线观看| 欧美成人性av电影在线观看| 成人18禁在线播放| 麻豆久久精品国产亚洲av| 综合色av麻豆| 欧美3d第一页| 一级作爱视频免费观看| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 久久香蕉国产精品| 很黄的视频免费| 搡老熟女国产l中国老女人| 亚洲国产看品久久| 国产成人影院久久av| 国产探花在线观看一区二区| 又粗又爽又猛毛片免费看| 特级一级黄色大片| 999精品在线视频| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 国产一级毛片七仙女欲春2| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 精品国产超薄肉色丝袜足j| 特大巨黑吊av在线直播| 欧美黑人欧美精品刺激| 日韩有码中文字幕| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 免费看十八禁软件| 亚洲av中文字字幕乱码综合| 日韩成人在线观看一区二区三区| 久久亚洲真实| 亚洲人成网站高清观看| 国产三级中文精品| 亚洲精华国产精华精| 美女被艹到高潮喷水动态| 18禁黄网站禁片免费观看直播| 中亚洲国语对白在线视频| 国产av麻豆久久久久久久| 欧美在线黄色| 久99久视频精品免费| 又黄又爽又免费观看的视频| 99精品欧美一区二区三区四区| 久久久久性生活片| 小说图片视频综合网站| 一个人免费在线观看的高清视频| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 亚洲天堂国产精品一区在线| 又粗又爽又猛毛片免费看| 国产精品久久久久久人妻精品电影| 午夜精品一区二区三区免费看| 男人舔奶头视频| 亚洲精华国产精华精| 国产激情偷乱视频一区二区| 亚洲国产看品久久| av女优亚洲男人天堂 | 美女高潮喷水抽搐中文字幕| 99久久国产精品久久久| 亚洲色图av天堂| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 精品电影一区二区在线| 亚洲精华国产精华精| 亚洲午夜理论影院| 18禁国产床啪视频网站| av片东京热男人的天堂| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 观看免费一级毛片| 亚洲真实伦在线观看| 男人的好看免费观看在线视频| 亚洲专区字幕在线| 天堂√8在线中文| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 欧美乱妇无乱码| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 国产综合懂色| 一级a爱片免费观看的视频| 欧美色视频一区免费| 国产精品国产高清国产av| 久久久久久国产a免费观看| 制服人妻中文乱码| 少妇人妻一区二区三区视频| 精品熟女少妇八av免费久了| 九色国产91popny在线| 好男人电影高清在线观看| 成人无遮挡网站| 黑人操中国人逼视频| 国产野战对白在线观看| 国产淫片久久久久久久久 | 国产男靠女视频免费网站| 禁无遮挡网站| 国产精品一区二区三区四区免费观看 | 国产精品久久视频播放| 中文字幕av在线有码专区| 亚洲av美国av| 亚洲国产中文字幕在线视频| 最好的美女福利视频网| 99精品久久久久人妻精品| 精品国产亚洲在线| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看 | 亚洲成人精品中文字幕电影| 99精品久久久久人妻精品| 在线观看免费视频日本深夜| av视频在线观看入口| 麻豆一二三区av精品| 岛国视频午夜一区免费看| 国产成人啪精品午夜网站| 亚洲成人精品中文字幕电影| 欧美日韩福利视频一区二区| 熟女电影av网| 一个人观看的视频www高清免费观看 | 国产成人啪精品午夜网站| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 午夜福利在线观看吧| 曰老女人黄片| 性色av乱码一区二区三区2| 波多野结衣巨乳人妻| 19禁男女啪啪无遮挡网站| 国模一区二区三区四区视频 | av在线天堂中文字幕| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 国内精品久久久久精免费| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 男人舔女人下体高潮全视频| 91麻豆av在线| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 国产黄a三级三级三级人| 91在线观看av| 欧美黑人巨大hd| 麻豆一二三区av精品| 免费在线观看影片大全网站| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 欧美大码av| 噜噜噜噜噜久久久久久91| 级片在线观看| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| 91久久精品国产一区二区成人 | 日本撒尿小便嘘嘘汇集6| av欧美777| 成人三级做爰电影| 国产精品久久久久久亚洲av鲁大| 欧洲精品卡2卡3卡4卡5卡区| 日本精品一区二区三区蜜桃| 中文资源天堂在线| 午夜福利在线观看吧| 伊人久久大香线蕉亚洲五| 亚洲一区高清亚洲精品| 久久婷婷人人爽人人干人人爱| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 不卡av一区二区三区| 国产成人影院久久av| 亚洲 国产 在线| 成人亚洲精品av一区二区| 亚洲国产欧洲综合997久久,| 一本综合久久免费| 一边摸一边抽搐一进一小说| 精品福利观看| 精品一区二区三区视频在线 | 日韩成人在线观看一区二区三区| 高清在线国产一区| 国产一区二区激情短视频| 久久久久国产精品人妻aⅴ院| 久久九九热精品免费| 久久久久亚洲av毛片大全| 欧美国产日韩亚洲一区| 欧美日韩中文字幕国产精品一区二区三区| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 日本黄大片高清| 老司机午夜福利在线观看视频| 精品国产美女av久久久久小说| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 精品国产超薄肉色丝袜足j| av片东京热男人的天堂|