• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吡啶并環(huán)脲硝基衍生物結(jié)構(gòu)和爆轟性能的量子化學(xué)研究

    2015-03-08 10:08:03馬叢明侯可輝劉祖亮姚其正
    火炸藥學(xué)報(bào) 2015年6期

    馬叢明,侯可輝,劉祖亮,姚其正,3

    (1.南京理工大學(xué)環(huán)境與生物工程學(xué)院,江蘇南京210094; 2.南京理工大學(xué)化工學(xué)院,江蘇南京210094;

    3.中國藥科大學(xué)藥學(xué)院,江蘇南京210009)

    ?

    吡啶并環(huán)脲硝基衍生物結(jié)構(gòu)和爆轟性能的量子化學(xué)研究

    馬叢明1,侯可輝2,劉祖亮2,姚其正2,3

    (1.南京理工大學(xué)環(huán)境與生物工程學(xué)院,江蘇南京210094; 2.南京理工大學(xué)化工學(xué)院,江蘇南京210094;

    3.中國藥科大學(xué)藥學(xué)院,江蘇南京210009)

    摘要:采用Guassian03程序,在DFT-B3LYP/6-31G**水平下得到吡啶并環(huán)脲硝基衍生物的分子幾何構(gòu)型、電子結(jié)構(gòu)、理論密度和生成熱,采用Kamlet-Jacobs方程計(jì)算了爆速和爆壓值。結(jié)果表明,化合物1,3,5,7-四硝基-5,7-二氫二咪唑[4,5-b:4′,5′-e]吡啶-2,6(1H,3H)-二酮和8-氨基-1,3,5,7-四硝基-5,7-二氫二咪唑[4,5-b:4′,5′-e]吡啶-2,6(1H,3H)-二酮具有良好的爆轟性能,但化合物1,3,5,7-四硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物、1,3,5,7,8-五硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物(8)和8-氨基-1,3,5,7-四硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物的結(jié)構(gòu)不穩(wěn)定。分子的對稱性、空間位阻和氫鍵是影響分子穩(wěn)定性的3個(gè)主要因素。

    關(guān)鍵詞:量子化學(xué); 爆轟性能; 環(huán)脲硝胺; 吡啶環(huán);硝基衍生物

    Introduction

    Energetic materials (explosives, propellants andpyrotechnics) are used extensively for civil as well as military applications. Today the variety and number of high energy materials for various applications become innumerable; synthesis, properties and other salient features are available in the literature[1-4]. There are strong requirements for explosives with good thermal stability, impact and shock insensitivity and better performance. However, explosives having good thermal stability and impact insensitivity usually exhibit poorer explosive performance. Therefore, the foremost objective at the stage of synthesizing new explosives consists of finding the molecule having both a good energy capability and optimal safety to those in current use.

    Many studies reveal that pyridine ring based compounds have attracted renewed attention, and the potential use of nitro derivatives of pyridines and their bicyclic analogues have been reported for the synthesis of novel insensitive explosives[5-8]. The introduction of the alternate amino and nitro group in the pyridine ring system may increase the insensitivity of the parent molecule. Further increase in density and the thermal stability of the parent compound could be achieved by converting the tertiary amines into their corresponding N-oxide functionality.

    At present time, cyclourea nitramines increasingly gain importance as perspective and highly energetic materials. And an alternative approach to increase the performance of cyclourea nitramines involves incorporating a carbonyl group in place of methylene group between two nitramines to generate a dinitrourea. Several mono- and dinitroureas have been synthesized as energetic materials and have attractive densities and predicted performance.

    To date, information of the relationship between structure and property of nitro derivatives of pyrido-dicycloureas is very spare, and few systematic surveys are conducted to cover these compounds. In the present study, we report a systematic study on the density, heats of formation (HOF), thermal stability, and energetic properties of nitro derivatives of pyrido-dicycloureas by using density functional theory (DFT) method. Detonation velocities and pressures were predicted using the calculated HOF and densities. All energetic materials related were based on the concept of new nitro derivatives of pyrido-dicycloureas. So reacting with urea, 2,3,5,6-tetraaminepyridine yields a precursor with two five-membered rings, which provides more N-H sites for introducing nitro substituents, and thus generates a series of new energetic materials. These results provide theoretical support for molecular design of novel high energetic density compounds (HEDC).

    1Computational methods

    Calculations were carried out by using the Gaussian 09

    program suite[9]. The geometry optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the 6-31G** basis set[10]. All of the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies. The gas phase heats of formation (HOF) of model molecules were calculated adopting isodesmic reactions[11].

    Detonation velocity and pressure are the most important parameters for evaluating detonation characteristics of energetic materials. For the explosives with CHNO elements, the Kamlet and Jacob empirical equations were used to determine these

    parameters[12-13]:

    p=1.558NM1/2Q1/2ρ2

    (1)

    D=1.01(NM1/2Q1/2)1/2(1+1.30ρ)

    (2)

    wherepis detonation pressure (GPa);Dis detonation velocity (km·s-1);Nis the number of moles of gaseous detonation products per gram of explosive;Mis the average molecular mass of the gaseous products;Qis the energy of explosion (J/g) of explosive andρis the crystal density (g/cm3);N,MandQare decided according to the largest exothermic principle, i.e., for the explosives with CHNO elements, all the N atom convert into N2, the O atom forms H2O with H atom first and the remainder forms CO2with C atom. The remainder of C atom will exist in solid state if O atom does not satisfy full oxidation of C atom. The remainder of O atom will exist in O2if O atom is superfluous.

    Table 1 presents the methods for calculating theN,M, andQparameters of the CaHbOcNad explosives[14].

    Table 1 Methods for calculating theN,MandQparameters of the CaHbOcNadexplosives

    2Results and Discussions

    2.1Optimized structures

    Fig.1 is the molecular structures of the ten title compounds. At the outset, we have performed structure optimizations of molecules 1-10 at the B3LYP/6-31G** level, and selected optimized bond lengths of nitro derivatives of pyrido-dicycloureas are tabulated in table 2, and corresponding dihedral angles are listed in table 3.

    Investigating the optimized geometries, variations (i.e. the differences between the maximum and minimum values) of the calculated results for the C-C, C-N, and N-N bond lengths and N-C-N, C-N-C, and C-N-N angles are much more different from all title compounds, indicating that these geometrical parameters are more sensitive to the environmental or molecular structures. Comparing to N11-N15 bond of molecule 1, which is 0.140 nm and can be seen as a original bond length with an introduction of one nitro group, N11-NO2, N13-NO2bond lengths of molecule 2 are 0.142, 0.145 nm, respectively, N9-NO2, N13-NO2bond lengths of molecule 3 are 0.141, 0.143 nm, and N11-NO2, N7-NO2are 0.141, 0.141 nm. It is of significance that two N-N bond lengths of molecules 2, 3 are different, while the same in molecule 4, and the values, showing that introduction of nitro group is the main energy origin of the series, and HOFs of molecules increase when the number of the nitro group increases, which may be attributed to repulsion of the nitro groups. For molecules 2, 3, and 4, it seems that the greater the steric hindrance is, the greater the HOF is, with two nitro groups attaching to pyrido-dicycloureas. For molecules 6 and 9, it can be seen that the HOF of substituted amino pyridine is higher than the corresponding pyridine, which indicates that -NH2group also improves HOF effectively. The result reveals that both nitro and amino groups are effective substituents for increasing the HOF of the nitro derivatives of pyrido-dicycloureas.

    Fig.1 The molecular structures of the ten title compounds

    CompoundBondBondlength/nmCompoundBondBondlength/nm1N11-N150.1406N9-N150.1431N7-C80.1406N7-N180.1461C4-N110.1416N11-N210.1431N11-C120.1456N13-N240.1461C8-O100.1216N11-C120.1442N11-C120.1447N11-N160.1432N13-C120.1427N9-N220.1432N13-N180.1457N9-C80.1442N11-N150.1427N13-N250.1522C4-N110.1417N7-N190.1523N9-C80.1458N9-C80.1443N13-C120.1448N9-N220.1493N11-C120.1398N7-N250.1523N13-N150.1438N11-N280.1493N9-N180.1418N13-N160.1514N11-N180.1419N11-N220.1434N11-C120.1459N11-C120.1454N9-C80.1459N13-N250.1464N9-N150.1419N9-N190.1434N9-C10.1419N7-N160.1465N11-N150.14210N9-N170.1445N11-C120.14410N11-N230.1445N7-C80.14410N13-N260.1465N13-N210.14510N16-C30.1355N7-N180.14410N7-N200.153

    Table 3 Dihedral anglesa of cyclourea nitramine compounds

    2.2Detonation performance

    The detonation velocity (D) and detonation pressure (p) of molecules are computed by Kamlet-Jacobs empirical equations on the basis of their theoretical densities (ρ) and calculated gas phase heats of formation, which are the important parameters to evaluate performances of explosion of energetic materials. Table 4 shows the predicted detonation properties of nitro derivatives of pyrido-dicycloureas.

    Table 4 Predicted detonation properties of cyclourea

    It can be found that all nitro derivatives of pyrido-dicycloureas have good detonation properties. Considering of the results that reveal the existence probability of compounds 7, 8, 10, the calculated detonation velocities of compounds 1, 2, 3, 4, 5, 6, 9 are 6.49, 7.50, 7.49, 7.48, 8.23, 8.81, 8.78 km/s, respectively. The calculated detonation pressures of compounds 1, 2, 3, 4, 5, 6, 9 are 18.77, 25.57, 25.52, 25.55, 31.43, 36.70, 36.20 GPa, respectively. So molecule 6 is calculated to have the highestDandpvalues among cyclourea nitramine compounds, and a replacement of hydrogen atom of pyridine ring by amino groups bringsDandpvalues a little down in molecule 9. Meanwhile, with the number of the nitro group increasing from one to five,ρ,Q,D, andpvalues of the corresponding compounds increase. Fig. 2 shows the relationship betweenρ,V,D,pvalues and the number of nitro groups (n), indicating thatρ,V,ppresent a good linear relationship withn, butDdoes whennis equal to 2, 3 and 4 (n=1, representative of compound 1;n=2, representative of compound 2;n=3, representative of compound 5;n=4, representative of compound 6). This phenomenon gives a curtain account for the importance of the numbers of nitro groups in increasing detonation properties. The above predictions indicate that the molecules e.g. 6 and 9 are appearing to be the most promising candidates.

    2.3Thermal stability

    Energies (a.u.) of frontier molecular orbital and their gaps (ΔELUMO-HOMO) of the nitro derivatives of pyrido-dicycloureas at B3LYP/6-31G** level are listed in Table 5. It is seen that the ΔELUMO-HOMOvalues are different from different positions of substituted groups, and molecule 6 has the largest value of 0.14762 a.u., while molecule 9 has the smallest of 0.11486 a.u., despite of the three unstable structures 7, 8 and 10, which can easily draw a conclusion from the too small values of 0.04651, 0.06466, 0.04786 a.u., respectively, and in constitution with the data from optimized structures. The results also reveal a phenomenon that thermal stability of a molecule might be mostly affected by the combination of molecular symmetry and the obvious steric hindrance. With an incorporation of one nitro group into the cyclourea structure, molecule 1 has a value of 0.13121, which can be seen as a model molecule. When two nitro groups are attached, molecules 2, 3, and 4 have values of 0.12272, 0.13616, and 0.14570 a.u., respectively. When four nitro groups are introduced symmetrically, it comes to a maximum value in molecule 6.

    Fig.2 Correlations between ρ, V, D, p and n for cycloureanitramine compounds

    CompoundsE/(a.u.)HOMOLUMOΔELUMO-HOMO/(a.u.)1-0.23330-0.102090.131212-0.25829-0.135570.122723-0.26198-0.125820.136164-0.26402-0.118320.145705-0.28729-0.148430.138866-0.31064-0.163020.147627-0.28950-0.242990.046518-0.29903-0.234370.064669-0.27540-0.160540.1148610-0.25152-0.203660.04786

    However, an introduction of the amino group makes ΔEUMO-HOMOvalue decrease, similar phenomenon occurs in molecules 6 and 9, in which N-N bond lengths are 0.143, 0.143, 0.146, 0.146 and 0.143, 0.143, 0.146, 0.146 nm, respectively, indicating that the molecular symmetry plays an important role in molecule stability.

    It appears that some N-NO2bonds break in molecules 7, 8, 10, after a formation of pyridine N-oxide. Among three molecules, four N-NO2groups in molecule 8 all break, which attributes to the obvious steric hindrance effect. The result also shows that the high instability of cyclic dinitrourea in the pyridine N-oxide structure. The dihedral angles of the pyridine ring are almost zero and six atoms can be considered as nearly coplanar. With nitro groups introduced, N-NO2should rotate by some degree from the pyridine ring to avoid too large steric effect.

    The hydrogen bonds between neighboring nonbonding atoms in cyclourea nitramine compounds are also investigated. As pointed out[15], in a moderate X-H……Y hydrogen bonding (H-bonding) system, normal Y……H separations are in the range of 0.15-0.22nm, while the separations betweenXandYare within 0.25-0.32nm. Hence, according to these criteria, there are moderate intramolecular H-bonding between neighboring O and H in molecules. For molecule 9 and 10, interatomic distance of O-H is more or less 0.20nm, which is substantially shorter than the sum of van der Waals radii and is known to be a typical distance for N-H……O hydrogen bond. There is no doubt that it is for this reason that molecule 10 can be more stable than 7 and 8 after introducing four nitro groups, one amino group and N-oxide, with only one nitro group breaking down. As a consequence, molecular symmetry, steric hindrance and hydrogen bonds are three main factors in contribution to molecular stability.

    2.4Density and oxygen balance

    In the present study, single-point molecular volume calculations at B3LYP/6-31G** level were performed based on geometry optimized structures. The densities and oxygen balance were calculated and listed in Table 6. As for the urea moiety has an inherent high molecular density, all mono- and nitrourea compounds containing the pyridine ring have attractive molecular densities[1], suggesting that they will make excellent candidates as highly energetic materials.

    Table 6 Predicted densities and detonation properties

    Table 6 predicted densities and oxygen balance of cyclourea nitramine compounds.The cyclourea nitramine compounds with different numbers or positions of nitro groups have different ρ values ranging from 1.81-2.08g/cm3, respectively. The calculated results indicate that compound 8 has the largest density bearing five nitro groups and N-O functionality, while 1 has the smallest density. However, compound 8 is not stable due to the most obvious steric hindrance effect, neither do 7 and 10. As a result, compound 6 has the largest density of 2.01g/cm3among all nitro derivatives of pyrido-dicycloureas, which will be a novel potential candidate for HEDC when it is successfully synthesized. It is clear that the density increases as an introduction of nitro groups, and there is not much difference with the same amount of nitro groups in different positions in the nitro derivatives of pyrido-dicycloureas. Besides, density is an essential factor in determining detonation properties of energetic materials, and detonation velocity increases with the increasing of density.

    It is found from Table 6 that all title compounds have a negative oxygen balance, and when the amount of nitro group increases, the oxygen balance is close to zero, ignoring of three unstable compounds 7, 8, 10, proving that the nitro group is a good substituent for improving oxygen balance in designing potential HEDC.

    2.5Heats of formation

    Heat of formation reflects to the nature of substituents, and high positive HOF is usually required for an effective energetic material. The zero point energies (ZPE), thermal correction to enthalpy (HT) and electronic energies calculated at B3LYP/6-31G** level for nitro derivatives of pyrido-dicycloureas are listed in Table 7. The result reveals that all HOFs of cyclourea nitramine compounds vary from negative to positive values mainly due to steric hindrance effect. The stability here refers to the chemical or photochemical processes with electron transfer or electron leap.

    In nitro compounds,N-NO2bond is the weakest in the molecule and the rupture of this bond is the initial step in the decomposition or detonation. The property ofN-NO2bond, i.e., charge is used to show the relationship with the impact sensitivity of compounds, and may reflect the ability of -NO2attracting electrons[16-17]. In the present study, the charge on nitro group (-QNO2) is considered for its correlation to impact sensitivity.

    QNO2=QN+QO1+QO2

    (3)

    The charge on nitro group (-QNO2) is calculated by the sum of atomic charges on nitrogen (QN) and oxygen (QO1andQO2) atoms in nitro group. Computed -QNO2values of molecules are presented in Table 8.

    Table 7 Calculated electronic energies (E0), zero-point

    Table 8 Computed nitro group charge (-QNO2) of molecules 1-6 and 9

    The higher the -QNO2, the larger the impact insensitivity, and hence, -QNO2can be regarded as the criterion for estimating impact sensitivities. Based on -QNO2values in Table 7 and the frame structure of the pyrido-dicyclourea in Fig.3, -QNO2values at β position are higher than α position, indicating that -NO2at β position is more stable than α position, probably because of electron deficiency of the pyridine ring. However, with an introduction of the amino group, the -QNO2value of compound 9 falls down, probably due to the steric hindrance, which is consistent with the result based on ΔELUMO-HOMO. The above investigations provide important theoretic information for molecular design of novel high energetic density nitramine explosives containing pyridine ring.

    Fig.3 The frame structure of the pyrido-dicyclourea

    3Conclusions

    (1)The full geometrical optimizations of nitro derivatives of pyrido-dicycloureas were performed using density functional theory at B3LYP/6-31G** level, without any symmetry restriction. The systematic structure property studies were performed on compounds 1-10 to achieve energetic performance for the first time.

    (2)Calculaed results indicate that molecular symmetry, steric hindrance and hydrogen bonds were three main factors in contribution to molecular stability, and molecule 6 (ρ= 2.01g/cm3,D=8.81km/s) and 9 (ρ=1.98g/cm3,D=8.78km/s) performs well as energetic materials, and can nearly satisfy the quantitative criteria for the energy as HEDCs.

    (3)These results provide theoretical support for molecular design of novel high energetic density compounds based on the successful experimental synthesis.

    References:

    [1]Pagoria P F, Mitchell A R, Jessop E S. Nitroureas II. synthesis of bicyclic mono- and dinitrourea compounds[J]. Propellants, Explosives, Pyrotechnics, 1996, 21: 14-18.

    [2]Sikder A K, Bhokare G M, Sarwade D B, et al. Synthesis, characterization and thermal behaviour of 2,4,6,8-tetranitro- 2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione (TNPDU) and one of its methylene analogues[J]. Propellants, Explosives, Pyrotechnics, 2001, 26: 63-68.

    [3]Zhou C, Zhou Y S, Huo H, et al. Synthesis and characterization of 1,3,5-trinitro-hexahydro-1,3,5-triazin- 2(1H)-one[J]. Chinese Journal of Explosives and Propellants, 2011, 34: 17-20.

    [4]Sikder N, Bulakh N R, Sikder A K, et al. Synthesis, characterization and thermal studies of 2-oxo-1,3,5-trinitro- 1,3,5-triazacyclohexane (Keto-RDX or K-6)[J]. Journal of Hazardous Materials, 2003, 96: 109-119.

    [5]Ma C M, Wang Y B, Hou K H, et al. Synthesis of new substituted 4-amino-3,5-dinitropyridine derivatives[J]. Chinese Journal of Chemistry, 2013, 31: 1299-1304.

    [6]Cheng J, Yao Q Z, Zhou X L, et al. Novel synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Organic Chemistry, 2008, 28: 1943-1947.

    [7]Thottempudi V, Gao H X, Shreeve J M. Trinitromethyl-substituted 5-nitro-or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties[J]. Journal of the American Chemical Society, 2011, 133: 6464-6471.

    [8]He Z W, Zhou S Q, Ju X H, et al. Computational investigation on 2,6-diamino-3,5-dinitropyridine-1-oxide crystal[J]. Structural Chemistry, 2010, 21: 651-656.

    [9]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP/CD].Wallingford CT: Gaussian, Inc, 2009.

    [10]Liu H, Wang F, Gong X D. DFT studies on 7-nitrotetrazolo[1,5]furazano[4,5-b]pyridine-1-oxide: crystal structure, detonation properties, sensitivity and effect of hydrostatic compression[J]. Structural Chemistry, 2014, 25(1): 239-249.

    [11]Pan Yong, Zhu Weihua, Xiao Heming. Design and selection of nitrogen-rich bridged di-1,3,5-triazine derivatives with high energy and reduced sensitivity[J]. Journal of molecular modeling, 2012, 18(7): 3125-3138.

    [12]Kamlet M J, Jacobs S T. Chemistry of detonations. I. a simple method for calculating detonation properties of C-H-N-O explosives[J]. The Journal of Chemical Physics, 1968, 48: 23-35.

    [13]Kamlet M J, Ablard J E. Chemistry of detonations. II. buffered equilibria[J]. The Journal of Chemical Physics, 1968, 48(1): 36-41.

    [14]Wang G X, Gong X D, Liu Y, et al. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes[J]. Journal of Hazardous Materials, 2010, 177: 703-710.

    [15]Zhao G Z, Lu M. Theoretical studies on the structures and detonation properties of nitramine explosives containing benzene ring[J]. Journal of Molecuar Modeling, 2012, 18: 2443-2451.

    [16]Zhang C Y. Review of the establishment of nitro group charge method and its applications[J]. Journal of Hazardous Materials, 2009, 161: 21-28.

    [17]Zhang C Y, Shu Y Y, Huang Y G, et al. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds[J]. The Journal of Physical Chemistry B, 2005, 109: 8978-8982.

    [9]Zou M S, Yang R J, Guo X Y, et al. The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater[J]. Fuel and Energy Abstracts, 2011, 36(11):6478-6483.

    久久精品国产清高在天天线| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 男女视频在线观看网站免费| www日本黄色视频网| 99精品在免费线老司机午夜| 日韩欧美在线乱码| 国产一区二区在线av高清观看| 成人毛片a级毛片在线播放| 欧美变态另类bdsm刘玥| 成年免费大片在线观看| 97热精品久久久久久| 国产精品爽爽va在线观看网站| 精品一区二区免费观看| 久久精品国产自在天天线| 天天躁夜夜躁狠狠久久av| 99视频精品全部免费 在线| 联通29元200g的流量卡| 韩国av在线不卡| 禁无遮挡网站| a级毛片a级免费在线| 国产精品无大码| 天天躁夜夜躁狠狠久久av| 男的添女的下面高潮视频| 免费观看在线日韩| 成年女人看的毛片在线观看| 你懂的网址亚洲精品在线观看 | 久久久国产成人精品二区| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 免费不卡的大黄色大毛片视频在线观看 | 在现免费观看毛片| 亚洲欧美精品专区久久| av黄色大香蕉| 亚洲国产精品成人久久小说 | 国产精品蜜桃在线观看 | a级毛色黄片| 国产真实乱freesex| 99久久精品国产国产毛片| 国产一区二区激情短视频| 国产av不卡久久| 国产一区二区在线观看日韩| 国产免费一级a男人的天堂| 精品少妇黑人巨大在线播放 | 一级毛片久久久久久久久女| 久久久精品94久久精品| 日韩强制内射视频| 乱人视频在线观看| 婷婷六月久久综合丁香| 国产精品无大码| 日韩中字成人| 色噜噜av男人的天堂激情| 蜜臀久久99精品久久宅男| 亚洲电影在线观看av| 美女脱内裤让男人舔精品视频 | 一进一出抽搐gif免费好疼| av福利片在线观看| 夫妻性生交免费视频一级片| 国产乱人偷精品视频| 日本撒尿小便嘘嘘汇集6| 人妻系列 视频| 亚洲最大成人手机在线| 熟女人妻精品中文字幕| 成人鲁丝片一二三区免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲在线观看片| 免费在线观看成人毛片| 久久久久性生活片| 日韩一区二区三区影片| 亚洲不卡免费看| av在线播放精品| av卡一久久| 天美传媒精品一区二区| 女人十人毛片免费观看3o分钟| 亚洲av免费高清在线观看| 亚洲人与动物交配视频| 最近的中文字幕免费完整| 久99久视频精品免费| 国产精品蜜桃在线观看 | av在线老鸭窝| 亚洲在线观看片| 国产精品乱码一区二三区的特点| 免费无遮挡裸体视频| av黄色大香蕉| 国产69精品久久久久777片| 综合色丁香网| 高清日韩中文字幕在线| 亚洲欧美精品专区久久| 亚洲精品自拍成人| 我要搜黄色片| 国产高清激情床上av| 亚洲一级一片aⅴ在线观看| 少妇被粗大猛烈的视频| 亚洲精品久久久久久婷婷小说 | 十八禁国产超污无遮挡网站| 精品99又大又爽又粗少妇毛片| 人妻久久中文字幕网| 国产麻豆成人av免费视频| 国产真实乱freesex| 久久久色成人| 一级二级三级毛片免费看| 国产高清有码在线观看视频| 亚洲成人久久爱视频| 精品99又大又爽又粗少妇毛片| 国内精品久久久久精免费| kizo精华| 岛国毛片在线播放| 高清午夜精品一区二区三区 | 女人十人毛片免费观看3o分钟| 久久久精品94久久精品| 一级毛片电影观看 | 亚洲无线观看免费| 成人永久免费在线观看视频| 尾随美女入室| 精品国内亚洲2022精品成人| 天堂网av新在线| 亚洲人成网站在线观看播放| 麻豆一二三区av精品| 中文资源天堂在线| 中文资源天堂在线| 国产av麻豆久久久久久久| 赤兔流量卡办理| 看黄色毛片网站| 国产伦一二天堂av在线观看| 成年女人看的毛片在线观看| 少妇丰满av| 国产精品,欧美在线| 日本色播在线视频| 欧美精品国产亚洲| 国产精品爽爽va在线观看网站| 日本免费a在线| 免费观看的影片在线观看| 一级毛片我不卡| 麻豆国产av国片精品| 午夜激情福利司机影院| 非洲黑人性xxxx精品又粗又长| 久久精品夜色国产| 国产视频内射| 日本在线视频免费播放| 日韩视频在线欧美| 日韩国内少妇激情av| 看十八女毛片水多多多| 亚洲电影在线观看av| eeuss影院久久| 国产一区二区亚洲精品在线观看| 国产亚洲91精品色在线| 国产伦精品一区二区三区视频9| 26uuu在线亚洲综合色| 久久精品影院6| 日韩强制内射视频| 在线观看美女被高潮喷水网站| 久久99蜜桃精品久久| 国内揄拍国产精品人妻在线| 国产av不卡久久| 亚洲aⅴ乱码一区二区在线播放| 男插女下体视频免费在线播放| 日韩一区二区三区影片| 日本撒尿小便嘘嘘汇集6| 国产久久久一区二区三区| 国产色爽女视频免费观看| 成人午夜精彩视频在线观看| 尾随美女入室| 高清午夜精品一区二区三区 | 国产精品国产三级国产av玫瑰| 久久久久久久午夜电影| 99九九线精品视频在线观看视频| 2021天堂中文幕一二区在线观| 国产极品天堂在线| 精品国产三级普通话版| av又黄又爽大尺度在线免费看 | 亚洲成人久久性| 国产伦精品一区二区三区视频9| 91aial.com中文字幕在线观看| 美女黄网站色视频| 成人漫画全彩无遮挡| 1024手机看黄色片| 亚洲国产精品久久男人天堂| 在线播放无遮挡| 边亲边吃奶的免费视频| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 午夜激情福利司机影院| 十八禁国产超污无遮挡网站| 日本熟妇午夜| 国产黄片美女视频| av在线观看视频网站免费| 综合色av麻豆| 少妇熟女欧美另类| 日韩强制内射视频| 一本久久中文字幕| 成人无遮挡网站| 国产麻豆成人av免费视频| 午夜爱爱视频在线播放| 美女 人体艺术 gogo| 99热这里只有是精品在线观看| 国产日本99.免费观看| 成人二区视频| 国产成人精品一,二区 | av天堂在线播放| 国产成人精品婷婷| av卡一久久| 99久久人妻综合| 亚洲av中文字字幕乱码综合| 欧美区成人在线视频| 国产 一区精品| 免费电影在线观看免费观看| 亚洲七黄色美女视频| 久久99热6这里只有精品| 亚洲人成网站高清观看| 国产毛片a区久久久久| 高清午夜精品一区二区三区 | 给我免费播放毛片高清在线观看| 最近2019中文字幕mv第一页| 老司机福利观看| 国产伦理片在线播放av一区 | 亚洲激情五月婷婷啪啪| 91aial.com中文字幕在线观看| 丰满的人妻完整版| 午夜激情福利司机影院| 亚洲av不卡在线观看| 日本三级黄在线观看| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 久久久久久国产a免费观看| 插阴视频在线观看视频| 蜜桃久久精品国产亚洲av| 亚洲在线自拍视频| 国产毛片a区久久久久| 少妇丰满av| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆| 一级黄色大片毛片| 国产精品无大码| 精品人妻偷拍中文字幕| 日本免费a在线| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 欧美日韩综合久久久久久| 爱豆传媒免费全集在线观看| 国产美女午夜福利| 亚洲电影在线观看av| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 国产激情偷乱视频一区二区| 最好的美女福利视频网| 国产精品一区www在线观看| 欧美极品一区二区三区四区| 身体一侧抽搐| 亚洲精品久久久久久婷婷小说 | 国产一级毛片七仙女欲春2| 亚洲av成人av| 国产精品久久久久久精品电影小说 | 国产精品爽爽va在线观看网站| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| www.色视频.com| 久久国内精品自在自线图片| 亚洲性久久影院| 日韩欧美三级三区| 国产精品伦人一区二区| 2022亚洲国产成人精品| 国产成人影院久久av| 欧美激情国产日韩精品一区| 99久久中文字幕三级久久日本| 性欧美人与动物交配| 国内精品一区二区在线观看| 中国国产av一级| 91精品国产九色| 男女啪啪激烈高潮av片| 免费搜索国产男女视频| 久久久久国产网址| 国产精品一区二区三区四区久久| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 欧美zozozo另类| 又黄又爽又刺激的免费视频.| www日本黄色视频网| 一边摸一边抽搐一进一小说| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷六月久久综合丁香| 国产精品蜜桃在线观看 | 最近视频中文字幕2019在线8| 99热6这里只有精品| 欧美日韩国产亚洲二区| 淫秽高清视频在线观看| 成人综合一区亚洲| 国产三级中文精品| 日日干狠狠操夜夜爽| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 美女大奶头视频| 日本-黄色视频高清免费观看| 长腿黑丝高跟| 午夜福利成人在线免费观看| 成人永久免费在线观看视频| 日韩强制内射视频| 日韩欧美精品免费久久| 久久久久免费精品人妻一区二区| 亚州av有码| 好男人在线观看高清免费视频| 亚洲性久久影院| 久久精品综合一区二区三区| 日本欧美国产在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 亚洲成人久久性| 一区二区三区高清视频在线| av在线观看视频网站免费| 国产精品久久久久久精品电影| av又黄又爽大尺度在线免费看 | 69av精品久久久久久| 亚洲av电影不卡..在线观看| 国产探花在线观看一区二区| 国产精品一区二区在线观看99 | 97热精品久久久久久| 国产日本99.免费观看| 欧美日本视频| 日韩av不卡免费在线播放| 亚洲国产欧洲综合997久久,| av.在线天堂| 一个人免费在线观看电影| 亚洲人成网站高清观看| 美女国产视频在线观看| 婷婷色av中文字幕| 日本色播在线视频| 99热6这里只有精品| 久久精品国产亚洲av涩爱 | 真实男女啪啪啪动态图| 九九在线视频观看精品| 性插视频无遮挡在线免费观看| 国产成人freesex在线| 国产成人福利小说| 亚洲av成人精品一区久久| 成人三级黄色视频| 欧美丝袜亚洲另类| 欧美区成人在线视频| 哪里可以看免费的av片| 九九爱精品视频在线观看| 久久精品人妻少妇| 亚洲欧美清纯卡通| 国产成人一区二区在线| 国产一区二区激情短视频| 久久久精品大字幕| 国产不卡一卡二| 亚洲国产精品成人久久小说 | 欧美一区二区国产精品久久精品| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验 | 亚洲不卡免费看| 少妇高潮的动态图| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 国产私拍福利视频在线观看| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 成人欧美大片| 国产一区二区激情短视频| 久久久国产成人精品二区| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 在线播放无遮挡| or卡值多少钱| 中文字幕久久专区| av国产免费在线观看| 老司机影院成人| 国产精品永久免费网站| 日本一本二区三区精品| 男人舔女人下体高潮全视频| 亚洲最大成人av| 日韩在线高清观看一区二区三区| 久久精品国产清高在天天线| 亚洲av不卡在线观看| 国产不卡一卡二| 最近的中文字幕免费完整| 黄色配什么色好看| 久久久久久久午夜电影| 亚洲欧美日韩高清在线视频| 精品人妻视频免费看| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 听说在线观看完整版免费高清| 久久久久久久久久久丰满| 久久精品人妻少妇| 男人的好看免费观看在线视频| 国产精品99久久久久久久久| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 一级黄片播放器| 国产极品精品免费视频能看的| 春色校园在线视频观看| 欧美不卡视频在线免费观看| 天天躁日日操中文字幕| 激情 狠狠 欧美| 成熟少妇高潮喷水视频| 十八禁国产超污无遮挡网站| 亚洲av男天堂| 精品无人区乱码1区二区| 永久网站在线| 成人无遮挡网站| 国产精品99久久久久久久久| 久久精品国产清高在天天线| 久久久久久久亚洲中文字幕| 亚洲中文字幕日韩| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 青青草视频在线视频观看| 日本熟妇午夜| 床上黄色一级片| 国产精品永久免费网站| 只有这里有精品99| 乱系列少妇在线播放| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 99久久九九国产精品国产免费| 欧美精品国产亚洲| 亚洲av中文字字幕乱码综合| 国产成人91sexporn| 国产黄色视频一区二区在线观看 | 99精品在免费线老司机午夜| 亚洲av.av天堂| 最后的刺客免费高清国语| 国产一级毛片七仙女欲春2| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 国产私拍福利视频在线观看| 99热这里只有精品一区| 亚洲精品日韩在线中文字幕 | 国产精品无大码| 久久久久久大精品| 国产精品乱码一区二三区的特点| 国产三级中文精品| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 欧美另类亚洲清纯唯美| 在线播放无遮挡| av国产免费在线观看| 丰满乱子伦码专区| 免费看日本二区| 国产成人freesex在线| 又粗又爽又猛毛片免费看| 久久精品影院6| 亚洲va在线va天堂va国产| 国产色婷婷99| 22中文网久久字幕| 九九热线精品视视频播放| 内地一区二区视频在线| 国产成人aa在线观看| 日韩欧美在线乱码| 黑人高潮一二区| 真实男女啪啪啪动态图| 久久这里只有精品中国| 晚上一个人看的免费电影| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 美女国产视频在线观看| 日本在线视频免费播放| 亚洲精品亚洲一区二区| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡免费网站照片| 一进一出抽搐gif免费好疼| 欧美性感艳星| h日本视频在线播放| 亚洲人成网站在线播放欧美日韩| 99riav亚洲国产免费| 色综合色国产| 在现免费观看毛片| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 国产午夜精品一二区理论片| 91久久精品国产一区二区三区| 看片在线看免费视频| 国产一区二区在线av高清观看| 免费观看精品视频网站| av又黄又爽大尺度在线免费看 | 在线观看午夜福利视频| 亚洲色图av天堂| 久久精品综合一区二区三区| a级一级毛片免费在线观看| 丰满乱子伦码专区| 青春草视频在线免费观看| 深夜精品福利| 午夜精品一区二区三区免费看| av又黄又爽大尺度在线免费看 | 男人和女人高潮做爰伦理| 一级黄色大片毛片| 国产美女午夜福利| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 亚洲中文字幕日韩| 亚洲欧美清纯卡通| 永久网站在线| av女优亚洲男人天堂| 不卡一级毛片| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 能在线免费观看的黄片| 精品人妻视频免费看| 夜夜夜夜夜久久久久| 搡女人真爽免费视频火全软件| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 丰满的人妻完整版| 狠狠狠狠99中文字幕| 日本黄色视频三级网站网址| 午夜免费激情av| 身体一侧抽搐| 成人av在线播放网站| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 欧美激情久久久久久爽电影| 国产真实伦视频高清在线观看| 日本在线视频免费播放| 丰满人妻一区二区三区视频av| 国产精品不卡视频一区二区| 中文字幕熟女人妻在线| 国产成人一区二区在线| 日本爱情动作片www.在线观看| 日韩国内少妇激情av| 亚洲七黄色美女视频| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频| 成年女人看的毛片在线观看| 日本一二三区视频观看| 寂寞人妻少妇视频99o| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 免费观看在线日韩| 最近手机中文字幕大全| 91久久精品电影网| 久久国内精品自在自线图片| 国产成人精品久久久久久| 麻豆成人午夜福利视频| 国产精品国产高清国产av| 99久久无色码亚洲精品果冻| 免费av不卡在线播放| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 亚洲最大成人手机在线| 日韩精品青青久久久久久| 韩国av在线不卡| 深夜a级毛片| 成人综合一区亚洲| 国产精品av视频在线免费观看| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 男女啪啪激烈高潮av片| 青春草国产在线视频 | 青春草亚洲视频在线观看| 一个人看视频在线观看www免费| 亚洲高清免费不卡视频| 日本黄色视频三级网站网址| 国内精品宾馆在线| 欧美bdsm另类| 一区二区三区免费毛片| 神马国产精品三级电影在线观看| 99热这里只有是精品在线观看| 丰满的人妻完整版| 久久久精品大字幕| 97在线视频观看| 日韩成人伦理影院| 久久久成人免费电影| 国产精品人妻久久久久久| 一夜夜www| 我的老师免费观看完整版| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 国产在视频线在精品| av免费观看日本| 一级黄片播放器| 日韩欧美精品v在线| 联通29元200g的流量卡| 美女国产视频在线观看| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 国产精品日韩av在线免费观看| 亚洲成av人片在线播放无| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 18禁在线无遮挡免费观看视频| 亚洲电影在线观看av| 久久人人爽人人片av| 精品人妻视频免费看| 一本精品99久久精品77| 久久精品影院6| av在线老鸭窝| 久久精品久久久久久噜噜老黄 | 九九在线视频观看精品| 观看美女的网站| 直男gayav资源| 日本-黄色视频高清免费观看| 偷拍熟女少妇极品色| 岛国毛片在线播放| or卡值多少钱| 精品少妇黑人巨大在线播放 | 1000部很黄的大片| 禁无遮挡网站| 在线a可以看的网站| 丝袜美腿在线中文| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 国产高清激情床上av| 久久人妻av系列|