• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吡啶并環(huán)脲硝基衍生物結(jié)構(gòu)和爆轟性能的量子化學(xué)研究

    2015-03-08 10:08:03馬叢明侯可輝劉祖亮姚其正
    火炸藥學(xué)報(bào) 2015年6期

    馬叢明,侯可輝,劉祖亮,姚其正,3

    (1.南京理工大學(xué)環(huán)境與生物工程學(xué)院,江蘇南京210094; 2.南京理工大學(xué)化工學(xué)院,江蘇南京210094;

    3.中國藥科大學(xué)藥學(xué)院,江蘇南京210009)

    ?

    吡啶并環(huán)脲硝基衍生物結(jié)構(gòu)和爆轟性能的量子化學(xué)研究

    馬叢明1,侯可輝2,劉祖亮2,姚其正2,3

    (1.南京理工大學(xué)環(huán)境與生物工程學(xué)院,江蘇南京210094; 2.南京理工大學(xué)化工學(xué)院,江蘇南京210094;

    3.中國藥科大學(xué)藥學(xué)院,江蘇南京210009)

    摘要:采用Guassian03程序,在DFT-B3LYP/6-31G**水平下得到吡啶并環(huán)脲硝基衍生物的分子幾何構(gòu)型、電子結(jié)構(gòu)、理論密度和生成熱,采用Kamlet-Jacobs方程計(jì)算了爆速和爆壓值。結(jié)果表明,化合物1,3,5,7-四硝基-5,7-二氫二咪唑[4,5-b:4′,5′-e]吡啶-2,6(1H,3H)-二酮和8-氨基-1,3,5,7-四硝基-5,7-二氫二咪唑[4,5-b:4′,5′-e]吡啶-2,6(1H,3H)-二酮具有良好的爆轟性能,但化合物1,3,5,7-四硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物、1,3,5,7,8-五硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物(8)和8-氨基-1,3,5,7-四硝基-2,6-二氧雜-1,2,3,5,6,7-六氫二咪唑[4,5-b:4′,5′-e]吡啶-4-氧化物的結(jié)構(gòu)不穩(wěn)定。分子的對稱性、空間位阻和氫鍵是影響分子穩(wěn)定性的3個(gè)主要因素。

    關(guān)鍵詞:量子化學(xué); 爆轟性能; 環(huán)脲硝胺; 吡啶環(huán);硝基衍生物

    Introduction

    Energetic materials (explosives, propellants andpyrotechnics) are used extensively for civil as well as military applications. Today the variety and number of high energy materials for various applications become innumerable; synthesis, properties and other salient features are available in the literature[1-4]. There are strong requirements for explosives with good thermal stability, impact and shock insensitivity and better performance. However, explosives having good thermal stability and impact insensitivity usually exhibit poorer explosive performance. Therefore, the foremost objective at the stage of synthesizing new explosives consists of finding the molecule having both a good energy capability and optimal safety to those in current use.

    Many studies reveal that pyridine ring based compounds have attracted renewed attention, and the potential use of nitro derivatives of pyridines and their bicyclic analogues have been reported for the synthesis of novel insensitive explosives[5-8]. The introduction of the alternate amino and nitro group in the pyridine ring system may increase the insensitivity of the parent molecule. Further increase in density and the thermal stability of the parent compound could be achieved by converting the tertiary amines into their corresponding N-oxide functionality.

    At present time, cyclourea nitramines increasingly gain importance as perspective and highly energetic materials. And an alternative approach to increase the performance of cyclourea nitramines involves incorporating a carbonyl group in place of methylene group between two nitramines to generate a dinitrourea. Several mono- and dinitroureas have been synthesized as energetic materials and have attractive densities and predicted performance.

    To date, information of the relationship between structure and property of nitro derivatives of pyrido-dicycloureas is very spare, and few systematic surveys are conducted to cover these compounds. In the present study, we report a systematic study on the density, heats of formation (HOF), thermal stability, and energetic properties of nitro derivatives of pyrido-dicycloureas by using density functional theory (DFT) method. Detonation velocities and pressures were predicted using the calculated HOF and densities. All energetic materials related were based on the concept of new nitro derivatives of pyrido-dicycloureas. So reacting with urea, 2,3,5,6-tetraaminepyridine yields a precursor with two five-membered rings, which provides more N-H sites for introducing nitro substituents, and thus generates a series of new energetic materials. These results provide theoretical support for molecular design of novel high energetic density compounds (HEDC).

    1Computational methods

    Calculations were carried out by using the Gaussian 09

    program suite[9]. The geometry optimization of the structures and frequency analyses were carried out by using the B3LYP functional with the 6-31G** basis set[10]. All of the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies. The gas phase heats of formation (HOF) of model molecules were calculated adopting isodesmic reactions[11].

    Detonation velocity and pressure are the most important parameters for evaluating detonation characteristics of energetic materials. For the explosives with CHNO elements, the Kamlet and Jacob empirical equations were used to determine these

    parameters[12-13]:

    p=1.558NM1/2Q1/2ρ2

    (1)

    D=1.01(NM1/2Q1/2)1/2(1+1.30ρ)

    (2)

    wherepis detonation pressure (GPa);Dis detonation velocity (km·s-1);Nis the number of moles of gaseous detonation products per gram of explosive;Mis the average molecular mass of the gaseous products;Qis the energy of explosion (J/g) of explosive andρis the crystal density (g/cm3);N,MandQare decided according to the largest exothermic principle, i.e., for the explosives with CHNO elements, all the N atom convert into N2, the O atom forms H2O with H atom first and the remainder forms CO2with C atom. The remainder of C atom will exist in solid state if O atom does not satisfy full oxidation of C atom. The remainder of O atom will exist in O2if O atom is superfluous.

    Table 1 presents the methods for calculating theN,M, andQparameters of the CaHbOcNad explosives[14].

    Table 1 Methods for calculating theN,MandQparameters of the CaHbOcNadexplosives

    2Results and Discussions

    2.1Optimized structures

    Fig.1 is the molecular structures of the ten title compounds. At the outset, we have performed structure optimizations of molecules 1-10 at the B3LYP/6-31G** level, and selected optimized bond lengths of nitro derivatives of pyrido-dicycloureas are tabulated in table 2, and corresponding dihedral angles are listed in table 3.

    Investigating the optimized geometries, variations (i.e. the differences between the maximum and minimum values) of the calculated results for the C-C, C-N, and N-N bond lengths and N-C-N, C-N-C, and C-N-N angles are much more different from all title compounds, indicating that these geometrical parameters are more sensitive to the environmental or molecular structures. Comparing to N11-N15 bond of molecule 1, which is 0.140 nm and can be seen as a original bond length with an introduction of one nitro group, N11-NO2, N13-NO2bond lengths of molecule 2 are 0.142, 0.145 nm, respectively, N9-NO2, N13-NO2bond lengths of molecule 3 are 0.141, 0.143 nm, and N11-NO2, N7-NO2are 0.141, 0.141 nm. It is of significance that two N-N bond lengths of molecules 2, 3 are different, while the same in molecule 4, and the values, showing that introduction of nitro group is the main energy origin of the series, and HOFs of molecules increase when the number of the nitro group increases, which may be attributed to repulsion of the nitro groups. For molecules 2, 3, and 4, it seems that the greater the steric hindrance is, the greater the HOF is, with two nitro groups attaching to pyrido-dicycloureas. For molecules 6 and 9, it can be seen that the HOF of substituted amino pyridine is higher than the corresponding pyridine, which indicates that -NH2group also improves HOF effectively. The result reveals that both nitro and amino groups are effective substituents for increasing the HOF of the nitro derivatives of pyrido-dicycloureas.

    Fig.1 The molecular structures of the ten title compounds

    CompoundBondBondlength/nmCompoundBondBondlength/nm1N11-N150.1406N9-N150.1431N7-C80.1406N7-N180.1461C4-N110.1416N11-N210.1431N11-C120.1456N13-N240.1461C8-O100.1216N11-C120.1442N11-C120.1447N11-N160.1432N13-C120.1427N9-N220.1432N13-N180.1457N9-C80.1442N11-N150.1427N13-N250.1522C4-N110.1417N7-N190.1523N9-C80.1458N9-C80.1443N13-C120.1448N9-N220.1493N11-C120.1398N7-N250.1523N13-N150.1438N11-N280.1493N9-N180.1418N13-N160.1514N11-N180.1419N11-N220.1434N11-C120.1459N11-C120.1454N9-C80.1459N13-N250.1464N9-N150.1419N9-N190.1434N9-C10.1419N7-N160.1465N11-N150.14210N9-N170.1445N11-C120.14410N11-N230.1445N7-C80.14410N13-N260.1465N13-N210.14510N16-C30.1355N7-N180.14410N7-N200.153

    Table 3 Dihedral anglesa of cyclourea nitramine compounds

    2.2Detonation performance

    The detonation velocity (D) and detonation pressure (p) of molecules are computed by Kamlet-Jacobs empirical equations on the basis of their theoretical densities (ρ) and calculated gas phase heats of formation, which are the important parameters to evaluate performances of explosion of energetic materials. Table 4 shows the predicted detonation properties of nitro derivatives of pyrido-dicycloureas.

    Table 4 Predicted detonation properties of cyclourea

    It can be found that all nitro derivatives of pyrido-dicycloureas have good detonation properties. Considering of the results that reveal the existence probability of compounds 7, 8, 10, the calculated detonation velocities of compounds 1, 2, 3, 4, 5, 6, 9 are 6.49, 7.50, 7.49, 7.48, 8.23, 8.81, 8.78 km/s, respectively. The calculated detonation pressures of compounds 1, 2, 3, 4, 5, 6, 9 are 18.77, 25.57, 25.52, 25.55, 31.43, 36.70, 36.20 GPa, respectively. So molecule 6 is calculated to have the highestDandpvalues among cyclourea nitramine compounds, and a replacement of hydrogen atom of pyridine ring by amino groups bringsDandpvalues a little down in molecule 9. Meanwhile, with the number of the nitro group increasing from one to five,ρ,Q,D, andpvalues of the corresponding compounds increase. Fig. 2 shows the relationship betweenρ,V,D,pvalues and the number of nitro groups (n), indicating thatρ,V,ppresent a good linear relationship withn, butDdoes whennis equal to 2, 3 and 4 (n=1, representative of compound 1;n=2, representative of compound 2;n=3, representative of compound 5;n=4, representative of compound 6). This phenomenon gives a curtain account for the importance of the numbers of nitro groups in increasing detonation properties. The above predictions indicate that the molecules e.g. 6 and 9 are appearing to be the most promising candidates.

    2.3Thermal stability

    Energies (a.u.) of frontier molecular orbital and their gaps (ΔELUMO-HOMO) of the nitro derivatives of pyrido-dicycloureas at B3LYP/6-31G** level are listed in Table 5. It is seen that the ΔELUMO-HOMOvalues are different from different positions of substituted groups, and molecule 6 has the largest value of 0.14762 a.u., while molecule 9 has the smallest of 0.11486 a.u., despite of the three unstable structures 7, 8 and 10, which can easily draw a conclusion from the too small values of 0.04651, 0.06466, 0.04786 a.u., respectively, and in constitution with the data from optimized structures. The results also reveal a phenomenon that thermal stability of a molecule might be mostly affected by the combination of molecular symmetry and the obvious steric hindrance. With an incorporation of one nitro group into the cyclourea structure, molecule 1 has a value of 0.13121, which can be seen as a model molecule. When two nitro groups are attached, molecules 2, 3, and 4 have values of 0.12272, 0.13616, and 0.14570 a.u., respectively. When four nitro groups are introduced symmetrically, it comes to a maximum value in molecule 6.

    Fig.2 Correlations between ρ, V, D, p and n for cycloureanitramine compounds

    CompoundsE/(a.u.)HOMOLUMOΔELUMO-HOMO/(a.u.)1-0.23330-0.102090.131212-0.25829-0.135570.122723-0.26198-0.125820.136164-0.26402-0.118320.145705-0.28729-0.148430.138866-0.31064-0.163020.147627-0.28950-0.242990.046518-0.29903-0.234370.064669-0.27540-0.160540.1148610-0.25152-0.203660.04786

    However, an introduction of the amino group makes ΔEUMO-HOMOvalue decrease, similar phenomenon occurs in molecules 6 and 9, in which N-N bond lengths are 0.143, 0.143, 0.146, 0.146 and 0.143, 0.143, 0.146, 0.146 nm, respectively, indicating that the molecular symmetry plays an important role in molecule stability.

    It appears that some N-NO2bonds break in molecules 7, 8, 10, after a formation of pyridine N-oxide. Among three molecules, four N-NO2groups in molecule 8 all break, which attributes to the obvious steric hindrance effect. The result also shows that the high instability of cyclic dinitrourea in the pyridine N-oxide structure. The dihedral angles of the pyridine ring are almost zero and six atoms can be considered as nearly coplanar. With nitro groups introduced, N-NO2should rotate by some degree from the pyridine ring to avoid too large steric effect.

    The hydrogen bonds between neighboring nonbonding atoms in cyclourea nitramine compounds are also investigated. As pointed out[15], in a moderate X-H……Y hydrogen bonding (H-bonding) system, normal Y……H separations are in the range of 0.15-0.22nm, while the separations betweenXandYare within 0.25-0.32nm. Hence, according to these criteria, there are moderate intramolecular H-bonding between neighboring O and H in molecules. For molecule 9 and 10, interatomic distance of O-H is more or less 0.20nm, which is substantially shorter than the sum of van der Waals radii and is known to be a typical distance for N-H……O hydrogen bond. There is no doubt that it is for this reason that molecule 10 can be more stable than 7 and 8 after introducing four nitro groups, one amino group and N-oxide, with only one nitro group breaking down. As a consequence, molecular symmetry, steric hindrance and hydrogen bonds are three main factors in contribution to molecular stability.

    2.4Density and oxygen balance

    In the present study, single-point molecular volume calculations at B3LYP/6-31G** level were performed based on geometry optimized structures. The densities and oxygen balance were calculated and listed in Table 6. As for the urea moiety has an inherent high molecular density, all mono- and nitrourea compounds containing the pyridine ring have attractive molecular densities[1], suggesting that they will make excellent candidates as highly energetic materials.

    Table 6 Predicted densities and detonation properties

    Table 6 predicted densities and oxygen balance of cyclourea nitramine compounds.The cyclourea nitramine compounds with different numbers or positions of nitro groups have different ρ values ranging from 1.81-2.08g/cm3, respectively. The calculated results indicate that compound 8 has the largest density bearing five nitro groups and N-O functionality, while 1 has the smallest density. However, compound 8 is not stable due to the most obvious steric hindrance effect, neither do 7 and 10. As a result, compound 6 has the largest density of 2.01g/cm3among all nitro derivatives of pyrido-dicycloureas, which will be a novel potential candidate for HEDC when it is successfully synthesized. It is clear that the density increases as an introduction of nitro groups, and there is not much difference with the same amount of nitro groups in different positions in the nitro derivatives of pyrido-dicycloureas. Besides, density is an essential factor in determining detonation properties of energetic materials, and detonation velocity increases with the increasing of density.

    It is found from Table 6 that all title compounds have a negative oxygen balance, and when the amount of nitro group increases, the oxygen balance is close to zero, ignoring of three unstable compounds 7, 8, 10, proving that the nitro group is a good substituent for improving oxygen balance in designing potential HEDC.

    2.5Heats of formation

    Heat of formation reflects to the nature of substituents, and high positive HOF is usually required for an effective energetic material. The zero point energies (ZPE), thermal correction to enthalpy (HT) and electronic energies calculated at B3LYP/6-31G** level for nitro derivatives of pyrido-dicycloureas are listed in Table 7. The result reveals that all HOFs of cyclourea nitramine compounds vary from negative to positive values mainly due to steric hindrance effect. The stability here refers to the chemical or photochemical processes with electron transfer or electron leap.

    In nitro compounds,N-NO2bond is the weakest in the molecule and the rupture of this bond is the initial step in the decomposition or detonation. The property ofN-NO2bond, i.e., charge is used to show the relationship with the impact sensitivity of compounds, and may reflect the ability of -NO2attracting electrons[16-17]. In the present study, the charge on nitro group (-QNO2) is considered for its correlation to impact sensitivity.

    QNO2=QN+QO1+QO2

    (3)

    The charge on nitro group (-QNO2) is calculated by the sum of atomic charges on nitrogen (QN) and oxygen (QO1andQO2) atoms in nitro group. Computed -QNO2values of molecules are presented in Table 8.

    Table 7 Calculated electronic energies (E0), zero-point

    Table 8 Computed nitro group charge (-QNO2) of molecules 1-6 and 9

    The higher the -QNO2, the larger the impact insensitivity, and hence, -QNO2can be regarded as the criterion for estimating impact sensitivities. Based on -QNO2values in Table 7 and the frame structure of the pyrido-dicyclourea in Fig.3, -QNO2values at β position are higher than α position, indicating that -NO2at β position is more stable than α position, probably because of electron deficiency of the pyridine ring. However, with an introduction of the amino group, the -QNO2value of compound 9 falls down, probably due to the steric hindrance, which is consistent with the result based on ΔELUMO-HOMO. The above investigations provide important theoretic information for molecular design of novel high energetic density nitramine explosives containing pyridine ring.

    Fig.3 The frame structure of the pyrido-dicyclourea

    3Conclusions

    (1)The full geometrical optimizations of nitro derivatives of pyrido-dicycloureas were performed using density functional theory at B3LYP/6-31G** level, without any symmetry restriction. The systematic structure property studies were performed on compounds 1-10 to achieve energetic performance for the first time.

    (2)Calculaed results indicate that molecular symmetry, steric hindrance and hydrogen bonds were three main factors in contribution to molecular stability, and molecule 6 (ρ= 2.01g/cm3,D=8.81km/s) and 9 (ρ=1.98g/cm3,D=8.78km/s) performs well as energetic materials, and can nearly satisfy the quantitative criteria for the energy as HEDCs.

    (3)These results provide theoretical support for molecular design of novel high energetic density compounds based on the successful experimental synthesis.

    References:

    [1]Pagoria P F, Mitchell A R, Jessop E S. Nitroureas II. synthesis of bicyclic mono- and dinitrourea compounds[J]. Propellants, Explosives, Pyrotechnics, 1996, 21: 14-18.

    [2]Sikder A K, Bhokare G M, Sarwade D B, et al. Synthesis, characterization and thermal behaviour of 2,4,6,8-tetranitro- 2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione (TNPDU) and one of its methylene analogues[J]. Propellants, Explosives, Pyrotechnics, 2001, 26: 63-68.

    [3]Zhou C, Zhou Y S, Huo H, et al. Synthesis and characterization of 1,3,5-trinitro-hexahydro-1,3,5-triazin- 2(1H)-one[J]. Chinese Journal of Explosives and Propellants, 2011, 34: 17-20.

    [4]Sikder N, Bulakh N R, Sikder A K, et al. Synthesis, characterization and thermal studies of 2-oxo-1,3,5-trinitro- 1,3,5-triazacyclohexane (Keto-RDX or K-6)[J]. Journal of Hazardous Materials, 2003, 96: 109-119.

    [5]Ma C M, Wang Y B, Hou K H, et al. Synthesis of new substituted 4-amino-3,5-dinitropyridine derivatives[J]. Chinese Journal of Chemistry, 2013, 31: 1299-1304.

    [6]Cheng J, Yao Q Z, Zhou X L, et al. Novel synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Organic Chemistry, 2008, 28: 1943-1947.

    [7]Thottempudi V, Gao H X, Shreeve J M. Trinitromethyl-substituted 5-nitro-or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties[J]. Journal of the American Chemical Society, 2011, 133: 6464-6471.

    [8]He Z W, Zhou S Q, Ju X H, et al. Computational investigation on 2,6-diamino-3,5-dinitropyridine-1-oxide crystal[J]. Structural Chemistry, 2010, 21: 651-656.

    [9]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[CP/CD].Wallingford CT: Gaussian, Inc, 2009.

    [10]Liu H, Wang F, Gong X D. DFT studies on 7-nitrotetrazolo[1,5]furazano[4,5-b]pyridine-1-oxide: crystal structure, detonation properties, sensitivity and effect of hydrostatic compression[J]. Structural Chemistry, 2014, 25(1): 239-249.

    [11]Pan Yong, Zhu Weihua, Xiao Heming. Design and selection of nitrogen-rich bridged di-1,3,5-triazine derivatives with high energy and reduced sensitivity[J]. Journal of molecular modeling, 2012, 18(7): 3125-3138.

    [12]Kamlet M J, Jacobs S T. Chemistry of detonations. I. a simple method for calculating detonation properties of C-H-N-O explosives[J]. The Journal of Chemical Physics, 1968, 48: 23-35.

    [13]Kamlet M J, Ablard J E. Chemistry of detonations. II. buffered equilibria[J]. The Journal of Chemical Physics, 1968, 48(1): 36-41.

    [14]Wang G X, Gong X D, Liu Y, et al. A theoretical investigation on the structures, densities, detonation properties and pyrolysis mechanism of the nitro derivatives of toluenes[J]. Journal of Hazardous Materials, 2010, 177: 703-710.

    [15]Zhao G Z, Lu M. Theoretical studies on the structures and detonation properties of nitramine explosives containing benzene ring[J]. Journal of Molecuar Modeling, 2012, 18: 2443-2451.

    [16]Zhang C Y. Review of the establishment of nitro group charge method and its applications[J]. Journal of Hazardous Materials, 2009, 161: 21-28.

    [17]Zhang C Y, Shu Y Y, Huang Y G, et al. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds[J]. The Journal of Physical Chemistry B, 2005, 109: 8978-8982.

    [9]Zou M S, Yang R J, Guo X Y, et al. The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater[J]. Fuel and Energy Abstracts, 2011, 36(11):6478-6483.

    在线观看免费高清a一片| 综合色丁香网| 国产黄频视频在线观看| 国产高清三级在线| 国产综合精华液| 天堂中文最新版在线下载| 在线亚洲精品国产二区图片欧美 | 国产在线免费精品| 中国美白少妇内射xxxbb| 在线精品无人区一区二区三| 亚洲,欧美,日韩| 日韩一区二区视频免费看| kizo精华| 国产精品.久久久| 插逼视频在线观看| 久久久精品免费免费高清| 女的被弄到高潮叫床怎么办| 曰老女人黄片| 卡戴珊不雅视频在线播放| 精品一区二区免费观看| av福利片在线观看| 免费看不卡的av| 丝瓜视频免费看黄片| 嫩草影院新地址| 午夜91福利影院| 久久99热6这里只有精品| 免费黄频网站在线观看国产| 免费少妇av软件| 久久鲁丝午夜福利片| 少妇的逼好多水| 草草在线视频免费看| 中国三级夫妇交换| 日韩av免费高清视频| 国产精品国产三级国产av玫瑰| 色94色欧美一区二区| 如何舔出高潮| 久久97久久精品| 成人国产麻豆网| 色94色欧美一区二区| 久久精品国产a三级三级三级| 国产免费一区二区三区四区乱码| 色婷婷av一区二区三区视频| 欧美日韩综合久久久久久| 国产深夜福利视频在线观看| 99久久综合免费| 亚洲国产av新网站| 婷婷色麻豆天堂久久| 日本-黄色视频高清免费观看| 人妻一区二区av| 免费黄频网站在线观看国产| 免费看日本二区| 久久久久网色| 久久午夜福利片| 久久6这里有精品| 午夜福利影视在线免费观看| 熟女人妻精品中文字幕| 丝袜在线中文字幕| 在线观看人妻少妇| av专区在线播放| 一个人看视频在线观看www免费| 国产熟女欧美一区二区| 国产精品久久久久久久电影| 女人久久www免费人成看片| 久久久精品免费免费高清| 久久国内精品自在自线图片| 一级毛片 在线播放| h日本视频在线播放| 久热这里只有精品99| 亚洲国产成人一精品久久久| 国产精品99久久99久久久不卡 | 18禁动态无遮挡网站| 亚洲人与动物交配视频| 成人无遮挡网站| 天堂8中文在线网| 精品久久久久久电影网| 欧美精品人与动牲交sv欧美| 少妇的逼水好多| 久久久久国产精品人妻一区二区| 啦啦啦视频在线资源免费观看| 欧美精品国产亚洲| 观看av在线不卡| 人妻夜夜爽99麻豆av| 人妻制服诱惑在线中文字幕| tube8黄色片| 在线观看www视频免费| 亚洲国产最新在线播放| 91久久精品国产一区二区三区| 哪个播放器可以免费观看大片| 国产一区二区在线观看日韩| 美女国产视频在线观看| 国产极品天堂在线| 最新的欧美精品一区二区| 精品熟女少妇av免费看| 男女边摸边吃奶| 99热国产这里只有精品6| 五月玫瑰六月丁香| 久久综合国产亚洲精品| 99久久精品国产国产毛片| 最近的中文字幕免费完整| 久久精品国产亚洲网站| 性色av一级| 午夜激情福利司机影院| 亚洲人成网站在线播| 日韩一区二区视频免费看| 久久久久久久久久成人| 人妻制服诱惑在线中文字幕| 美女大奶头黄色视频| 精品久久久久久久久亚洲| 免费av中文字幕在线| 卡戴珊不雅视频在线播放| 国产乱来视频区| 国产一区有黄有色的免费视频| 精品人妻熟女毛片av久久网站| 人妻一区二区av| 日本-黄色视频高清免费观看| av免费观看日本| 亚洲av福利一区| av国产精品久久久久影院| 乱系列少妇在线播放| 久久精品国产亚洲av天美| 国产伦理片在线播放av一区| 国产免费福利视频在线观看| 欧美精品一区二区免费开放| 亚洲熟女精品中文字幕| 午夜激情久久久久久久| 草草在线视频免费看| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久久电影| 国产男女超爽视频在线观看| 秋霞伦理黄片| 涩涩av久久男人的天堂| 亚洲精品中文字幕在线视频 | 乱人伦中国视频| 久久久久久久大尺度免费视频| 亚洲av综合色区一区| 99热6这里只有精品| 久久精品久久久久久久性| 嘟嘟电影网在线观看| 国产91av在线免费观看| 久久精品国产亚洲av天美| av线在线观看网站| 国产日韩欧美亚洲二区| 国产日韩欧美在线精品| 男女无遮挡免费网站观看| 美女中出高潮动态图| 亚洲国产精品999| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 91久久精品国产一区二区三区| 精品久久国产蜜桃| 国产成人精品婷婷| 日韩中文字幕视频在线看片| 97超视频在线观看视频| 亚洲自偷自拍三级| 97在线视频观看| 青青草视频在线视频观看| 91在线精品国自产拍蜜月| videossex国产| 中文乱码字字幕精品一区二区三区| 麻豆成人午夜福利视频| 欧美日韩av久久| 97精品久久久久久久久久精品| 青春草国产在线视频| 色视频www国产| 欧美成人午夜免费资源| 午夜影院在线不卡| 蜜桃在线观看..| 十八禁网站网址无遮挡 | 免费观看性生交大片5| 亚洲综合精品二区| 亚洲图色成人| 免费看光身美女| 这个男人来自地球电影免费观看 | 日韩不卡一区二区三区视频在线| 天美传媒精品一区二区| 久久人人爽人人片av| 久久婷婷青草| 男女免费视频国产| 日韩大片免费观看网站| 啦啦啦视频在线资源免费观看| 三级国产精品片| 国产日韩欧美亚洲二区| 不卡视频在线观看欧美| 日韩一本色道免费dvd| www.色视频.com| 国国产精品蜜臀av免费| 久久人人爽av亚洲精品天堂| 少妇猛男粗大的猛烈进出视频| 免费观看性生交大片5| 中国国产av一级| 高清av免费在线| 免费久久久久久久精品成人欧美视频 | a级一级毛片免费在线观看| 国产在线免费精品| 男女免费视频国产| 亚洲精品日韩av片在线观看| 亚洲伊人久久精品综合| 精品午夜福利在线看| 18禁在线无遮挡免费观看视频| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频 | 亚洲av欧美aⅴ国产| 亚洲国产av新网站| 亚洲精品久久午夜乱码| 乱系列少妇在线播放| 亚洲精品乱码久久久v下载方式| 日韩欧美一区视频在线观看 | 国产精品欧美亚洲77777| 亚洲高清免费不卡视频| 在线免费观看不下载黄p国产| 成人综合一区亚洲| 精品国产一区二区三区久久久樱花| 免费看av在线观看网站| 日韩视频在线欧美| 不卡视频在线观看欧美| av网站免费在线观看视频| 最新中文字幕久久久久| 夫妻午夜视频| 99九九在线精品视频 | av网站免费在线观看视频| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 久久午夜福利片| 最近2019中文字幕mv第一页| 国产欧美日韩一区二区三区在线 | 久久国产精品男人的天堂亚洲 | 99久久综合免费| 乱系列少妇在线播放| 又爽又黄a免费视频| 色5月婷婷丁香| 永久免费av网站大全| 精品一区二区免费观看| av卡一久久| 亚洲av在线观看美女高潮| a级片在线免费高清观看视频| 两个人的视频大全免费| 在线观看三级黄色| 亚洲精品国产色婷婷电影| 亚洲色图综合在线观看| 另类精品久久| 亚洲国产毛片av蜜桃av| 亚洲精品一二三| 欧美区成人在线视频| 午夜福利网站1000一区二区三区| 日本av免费视频播放| 日韩三级伦理在线观看| 国产综合精华液| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放| 一级毛片黄色毛片免费观看视频| av在线观看视频网站免费| 精品久久久久久久久av| 麻豆乱淫一区二区| 欧美日本中文国产一区发布| 美女主播在线视频| 99九九在线精品视频 | 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 午夜激情福利司机影院| 欧美高清成人免费视频www| 日韩av在线免费看完整版不卡| 亚洲欧洲精品一区二区精品久久久 | 免费黄色在线免费观看| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| av一本久久久久| 久久精品久久久久久久性| 免费大片黄手机在线观看| 精品久久久久久久久亚洲| 精品卡一卡二卡四卡免费| 国产成人精品一,二区| 日韩人妻高清精品专区| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 成人国产av品久久久| 久久免费观看电影| 国产精品熟女久久久久浪| 大香蕉久久网| av在线播放精品| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 国产熟女午夜一区二区三区 | 亚洲国产精品999| 2018国产大陆天天弄谢| 亚洲国产毛片av蜜桃av| 丰满人妻一区二区三区视频av| 久热久热在线精品观看| 国产精品成人在线| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 九草在线视频观看| 日韩成人av中文字幕在线观看| 国产在线男女| 一级毛片电影观看| 午夜视频国产福利| 日韩三级伦理在线观看| 久久久久久久亚洲中文字幕| 免费不卡的大黄色大毛片视频在线观看| 亚洲人成网站在线播| 街头女战士在线观看网站| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 免费观看性生交大片5| 久久亚洲国产成人精品v| 多毛熟女@视频| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 成年av动漫网址| 欧美日韩视频精品一区| 丝袜在线中文字幕| 婷婷色综合大香蕉| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区 | 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| 黄色毛片三级朝国网站 | videossex国产| 黄色一级大片看看| 美女福利国产在线| 成人免费观看视频高清| 六月丁香七月| 亚洲成人av在线免费| 久久韩国三级中文字幕| .国产精品久久| 久久国产亚洲av麻豆专区| 久久亚洲国产成人精品v| 久久久精品94久久精品| h视频一区二区三区| 啦啦啦在线观看免费高清www| 观看免费一级毛片| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂| 国产极品粉嫩免费观看在线 | 丝袜喷水一区| www.色视频.com| 熟妇人妻不卡中文字幕| 日韩精品有码人妻一区| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 狠狠精品人妻久久久久久综合| 中文字幕av电影在线播放| 精品视频人人做人人爽| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 在线观看国产h片| 久久久欧美国产精品| 一级毛片电影观看| 中文资源天堂在线| 天美传媒精品一区二区| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 一区二区三区免费毛片| 在线天堂最新版资源| 午夜福利影视在线免费观看| 寂寞人妻少妇视频99o| 国产精品久久久久成人av| 大陆偷拍与自拍| 能在线免费看毛片的网站| 国产av精品麻豆| 精品久久久精品久久久| 永久网站在线| 欧美精品亚洲一区二区| 免费高清在线观看视频在线观看| 亚洲av综合色区一区| 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频 | 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 亚洲成人一二三区av| 日本av免费视频播放| 国产一级毛片在线| 日韩中字成人| 国产欧美日韩一区二区三区在线 | 美女内射精品一级片tv| 日本免费在线观看一区| 精品一区二区三区视频在线| 午夜日本视频在线| 男人狂女人下面高潮的视频| 成人国产麻豆网| 亚洲精品一区蜜桃| 亚洲国产欧美在线一区| 少妇被粗大的猛进出69影院 | 91aial.com中文字幕在线观看| 国产精品一二三区在线看| 街头女战士在线观看网站| 亚洲精品456在线播放app| 如日韩欧美国产精品一区二区三区 | 欧美日韩av久久| 在线观看av片永久免费下载| 色视频www国产| 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 少妇人妻久久综合中文| 久久国产精品男人的天堂亚洲 | 成人国产av品久久久| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 国产精品蜜桃在线观看| 九九久久精品国产亚洲av麻豆| av在线app专区| 久久久久视频综合| 国产欧美日韩精品一区二区| 久久久久人妻精品一区果冻| 十八禁网站网址无遮挡 | 91久久精品电影网| 亚洲欧美日韩另类电影网站| 中文欧美无线码| 嘟嘟电影网在线观看| 免费播放大片免费观看视频在线观看| 精品亚洲成国产av| 国国产精品蜜臀av免费| 十八禁网站网址无遮挡 | 欧美精品人与动牲交sv欧美| 久久99热6这里只有精品| 日本午夜av视频| 自线自在国产av| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 免费黄色在线免费观看| 美女主播在线视频| 免费黄频网站在线观看国产| 一级毛片电影观看| 日韩,欧美,国产一区二区三区| 一二三四中文在线观看免费高清| 精品熟女少妇av免费看| 少妇熟女欧美另类| 69精品国产乱码久久久| 乱码一卡2卡4卡精品| av又黄又爽大尺度在线免费看| 免费人成在线观看视频色| av天堂久久9| 久久久久国产网址| 精品久久久精品久久久| 久久免费观看电影| 特大巨黑吊av在线直播| 97超视频在线观看视频| 免费看不卡的av| 啦啦啦中文免费视频观看日本| 老司机影院毛片| 色婷婷久久久亚洲欧美| 亚洲精品,欧美精品| 中文字幕免费在线视频6| 99热网站在线观看| 日韩视频在线欧美| 偷拍熟女少妇极品色| 少妇高潮的动态图| 2021少妇久久久久久久久久久| 男女啪啪激烈高潮av片| 国产黄色视频一区二区在线观看| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 国产乱来视频区| 精品国产乱码久久久久久小说| 亚洲国产精品国产精品| 午夜激情久久久久久久| 人人妻人人爽人人添夜夜欢视频 | av在线app专区| 免费久久久久久久精品成人欧美视频 | 美女xxoo啪啪120秒动态图| 在线观看免费视频网站a站| 国产综合精华液| 偷拍熟女少妇极品色| 久久久久久久国产电影| 亚洲自偷自拍三级| 午夜福利,免费看| 日本爱情动作片www.在线观看| 最近中文字幕2019免费版| 在线 av 中文字幕| 成人黄色视频免费在线看| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频| 久久久久久久久久久久大奶| 久久久久久久大尺度免费视频| 97超视频在线观看视频| 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 免费少妇av软件| av又黄又爽大尺度在线免费看| 高清黄色对白视频在线免费看 | 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 美女国产视频在线观看| 国产亚洲一区二区精品| 国产午夜精品久久久久久一区二区三区| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 精品久久久精品久久久| 九九在线视频观看精品| 国内精品宾馆在线| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 黄色配什么色好看| 91精品国产国语对白视频| 少妇高潮的动态图| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频 | 免费黄色在线免费观看| 亚洲av中文av极速乱| 三级国产精品片| 国产 一区精品| 欧美3d第一页| 国产欧美日韩综合在线一区二区 | 免费观看av网站的网址| 下体分泌物呈黄色| av在线观看视频网站免费| 国产一级毛片在线| 精品国产乱码久久久久久小说| 九九爱精品视频在线观看| 日日撸夜夜添| 国产色婷婷99| 夫妻午夜视频| 亚洲无线观看免费| 高清不卡的av网站| 看十八女毛片水多多多| 午夜老司机福利剧场| 亚洲第一区二区三区不卡| 亚洲精品日本国产第一区| 91久久精品电影网| 午夜激情福利司机影院| 免费观看a级毛片全部| 久久精品国产a三级三级三级| 亚洲精品色激情综合| 午夜视频国产福利| 色视频在线一区二区三区| 日韩,欧美,国产一区二区三区| 97在线视频观看| 少妇被粗大的猛进出69影院 | 久久精品国产亚洲av天美| 美女国产视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 婷婷色av中文字幕| 草草在线视频免费看| 中文字幕人妻熟人妻熟丝袜美| av又黄又爽大尺度在线免费看| 久久毛片免费看一区二区三区| 国产高清有码在线观看视频| 久久国产精品大桥未久av | 我的老师免费观看完整版| 日韩一区二区三区影片| 日韩伦理黄色片| 97在线人人人人妻| 色吧在线观看| 99久久精品一区二区三区| 国产日韩一区二区三区精品不卡 | 色5月婷婷丁香| av在线播放精品| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 免费高清在线观看视频在线观看| 欧美 日韩 精品 国产| 搡女人真爽免费视频火全软件| 又爽又黄a免费视频| 亚洲自偷自拍三级| 国产av一区二区精品久久| 免费大片18禁| 亚洲中文av在线| 最后的刺客免费高清国语| 国产成人精品无人区| 女性被躁到高潮视频| 国产精品成人在线| 久久精品国产鲁丝片午夜精品| 国产成人精品婷婷| kizo精华| 日本爱情动作片www.在线观看| 大陆偷拍与自拍| 五月天丁香电影| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 精品一区在线观看国产| 看免费成人av毛片| 国内精品宾馆在线| 国产精品成人在线| 久久精品国产亚洲av天美| 国产成人免费观看mmmm| 在线观看免费视频网站a站| 国产精品女同一区二区软件| 岛国毛片在线播放| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 纯流量卡能插随身wifi吗| 日本vs欧美在线观看视频 | 多毛熟女@视频| 女人久久www免费人成看片| 国产精品嫩草影院av在线观看| 亚洲av中文av极速乱| 久久精品国产亚洲av天美| 男女边吃奶边做爰视频| 久久久久国产网址| 2021少妇久久久久久久久久久| 最新的欧美精品一区二区| 嘟嘟电影网在线观看| 亚洲国产av新网站| 日韩电影二区| 成人影院久久| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 久久精品国产自在天天线|