周兆偉(綜述),李長貴(審校)
(青島大學附屬醫(yī)院代謝病科,山東 青島266003)
?
分子生物學
原發(fā)性高尿酸血癥及痛風相關易患基因的研究進展
周兆偉△(綜述),李長貴※(審校)
(青島大學附屬醫(yī)院代謝病科,山東 青島266003)
摘要:原發(fā)性高尿酸血癥及痛風屬于多基因遺傳病,其發(fā)病及臨床特征具有明顯的遺傳特異性:不同地域、不同種族、不同性別的人群遺傳易患性顯著不同,與遺傳易患性密切相關的基因單核苷酸多態(tài)性位點也存在著明顯的差異。約90%的原發(fā)性高尿酸血癥和痛風與尿酸排泄減少相關,尿酸排泄減少與多基因遺傳有關?,F(xiàn)已通過全基因組掃描和候選基因的方法發(fā)現(xiàn)多個易患基因與尿酸代謝水平及原發(fā)性痛風相關,為痛風疾病的診斷、預測及治療提供依據(jù)。
關鍵詞:高尿酸血癥;痛風;易患基因
原發(fā)性高尿酸血癥及痛風是由于人體內長期嘌呤代謝紊亂產(chǎn)生尿酸過多或者尿酸排泄減少,血尿酸水平持續(xù)增高,其高濃度的尿酸以鈉鹽的形式沉積在關節(jié)腔、軟組織、軟骨和腎臟中,從而引起組織炎癥反應的一組代謝性疾病。近年來,隨著人們生活水平的不斷提高,高尿酸血癥和痛風的發(fā)病率有上升趨勢。研究發(fā)現(xiàn),血清尿酸水平是高度遺傳的,遺傳度估計約為40%[1]。遺傳因素對血尿酸水平及痛風發(fā)病起重要作用。近幾年國內外針對血清尿酸水平及痛風的全基因組關聯(lián)研究以及薈萃分析研究較多,確定了多個復雜基因與血清尿酸濃度和或痛風相關,為痛風疾病的病因診斷、預測及治療提供依據(jù)?,F(xiàn)就近年來發(fā)現(xiàn)的主要的原發(fā)性高尿酸血癥及痛風相關易患基因予以綜述。
1SLC2A9基因和ABCG2基因
SLC2A9基因編碼葡萄糖轉運體9是位于腎小管上皮細胞的一種電壓性尿酸轉運體,通過交換葡萄糖參與尿酸的轉運及重吸收。該基因定位于染色體4p16.1,含1個非編碼外顯子和13個編碼外顯子,長度214 kb[1]。SLC2A9基因突變可導致尿酸排泄分數(shù)降低,從而引起高尿酸血癥及痛風,并且女性患者該基因的突變率是男性患者的2倍[2-3]。通過對爪蟾卵母細胞的基因功能研究發(fā)現(xiàn),該基因編碼的蛋白對尿酸轉運效率及底物特異性比SLC22A12更強,且與血糖、三酰甘油、胰島素等水平的變化不相關[4-5]。多個全基因組關聯(lián)研究(genome-wide association study,GWAS)發(fā)現(xiàn),SLC2A9基因rs6855911、rs6449213、rs7442295、ra12510549、rs1014290、rs737267等單核苷酸多態(tài)性(single nucleotide polymorphisms,SNP)位點與尿酸水平密切相關,且女性更加顯著[2-3,6-7]。最近一項大規(guī)模Meta分析證實,rs12498742與高尿酸血癥和痛風均密切相關[8]。最近的一些研究顯示,SLC2A9的常見變異位點 rs16890979、rs3733591與血尿酸水平顯著降低密切相關[9];功能失調性突變R198C(rs121908322)和R380W(rs121908321)可降低腎近端小管細胞尿酸的重吸收,進而導致2型腎性低尿酸血癥的發(fā)生[10-13]。然而,其他研究則顯示,rs16890979、rs3733591與高尿酸血癥密切相關[14-15]。其中,rs16890979在弗明漢和鹿特丹人群(尤其是女性)[2]及克羅地亞的亞得里亞海岸的島嶼人群[16]與高尿酸血癥密切相關,非洲裔美國人則不存在此關聯(lián)[2];在中國漢族人群、所羅門群島及日本人群中,rs3733591都與高尿酸血癥和痛風密切相關[15,17],但是此關聯(lián)并未在東方波利尼西亞人、西方波利尼西亞人和歐洲人群中得到驗證[14,16],說明該基因對痛風的影響具有種屬間特異性。
ABCG2基因位于染色體4q22,編碼ABC家族轉運體人乳癌耐藥蛋白,表達于腎臟近端小管刷狀緣,參與尿酸的頂端分泌[18];也表達于小腸和肝臟上皮細胞頂端膜,提示該蛋白可能參與尿酸的腎外排泄途徑[19-20]。ABCG2基因的功能障礙是痛風和高尿酸血癥的一個主要原因[18,21-23]。其SNP位點rs2231142(Q141K)在西方白人、黑人以及日本人、中國人中都得到了驗證[24-29]。日本一項研究表明,ABCG2基因的功能障礙對高尿酸血癥進展的影響比其他熟悉的風險因素更大[25]。最近一項關于中國漢族男性痛風人群的研究證實,ABCG2的126X和Q141K SNP與痛風的發(fā)病風險有關,而12M SNP的最小等位基因A對中國漢族男性人群有保護作用[26]。
來自歐洲的一項大規(guī)模Meta分析確定了18個新的基因位點與尿酸水平相關(不包括曾經(jīng)報道過的10個位點),它們僅能解釋7.7%的尿酸水平變異,其中3.4%由SLC2A9和ABCG2解釋[8]。最近,來自中國的一項GWAS證實了兩個先前報道過的尿酸水平相關位點SLC2A9(rs11722228,結合P=8.98×10-31)和ABCG2(rs2231142,結合P=3.34×10-42);這兩個獨立的單核苷酸多態(tài)性分別解釋尿酸水平總變異的1.03%和1.09%;更重要的是,這兩個獨立的單核苷酸多態(tài)性rs11722228和rs2231142對血清尿酸水平的影響與性別顯著相關;SLC2A9(rs11722228)的最小等位基因(T)對女性尿酸水平的升高影響更大,而ABCG2(rs2231142)的最小等位基因(T)對男性尿酸水平的影響更大[30]。這些證據(jù)表明,SLC2A9和ABCG2對尿酸代謝的影響在不同人群中的功能是基本一致的。
2cGMP依賴的蛋白激酶Ⅱ基因
cGMP依賴的蛋白激酶Ⅱ基因(cGKⅡ)基因是cGMP依賴的蛋白激酶Ⅱ基因,定位于染色體4q13.1~q21.1,是一類被cGMP激活,催化蛋白質的絲氨酸或蘇氨酸磷酸化的酶。該基因在腎臟中的作用是腎素抑制劑,可以阻止血管緊張素原轉變?yōu)檠芫o張素Ⅰ。cGKⅡ基因突變可導致cGMP依賴的蛋白激酶Ⅱ功能紊亂,從而使腎素活性增加,血壓增高,腎血流量減少,最終導致血尿酸水平增高[31]。 Chang等[32]通過GWAS發(fā)現(xiàn),該基因中rs7688672和rs6837293 SNP與痛風的發(fā)病密切相關,并推斷cGKⅡ基因突變對痛風的影響是不依賴于高尿酸血癥的,而是通過激活內皮細胞活動及促炎因子的產(chǎn)生而影響痛風的發(fā)病,但機制尚不明確。然而,日本近期的一項研究卻顯示該基因的4個常見變異位點rs7688672、rs6837293、rs11736177、rs10033237與痛風發(fā)病并無關聯(lián),說明其對痛風的影響具有種屬間特異性。該基因單核苷酸多態(tài)性在中國人群中尚未得到驗證[33]。
3SLC22A12基因和SLC22A11基因
SLC22A12基因編碼尿酸鹽轉運蛋白1,是有機陰離子轉運體家族的成員之一,主要作用于腎近端小管上皮細胞管腔膜,參與尿酸在腎臟的重吸收[34]。該基因定位于染色體11q13,包含10個外顯子和9個內含子。Flynn等[35]通過對新西蘭不同種族人群的研究證實,SLC22A12基因的4個位點rs475688、rs7932775、rs3825018、rs476037與痛風發(fā)生存在關聯(lián),且具有明顯的種族差異性。Graessler等[36]研究表明,hURATI 基因啟動子788 T>A、第1外顯子的C258T、第2外顯子的C426T多態(tài)性與腎臟尿酸排泄率下降及高尿酸血癥顯著相關,其中C426T的相關性最強。rs12800450 SNP在非洲裔美國人中與高尿酸血癥和痛風存在相關性[37]。本課題組對SLC22A12 SNP基因分析顯示,第3內含子區(qū)11(G>A)及第8外顯子區(qū)rs7932775位點SNP與高尿酸血癥密切相關[38-39]。此外,研究發(fā)現(xiàn)嚴重低尿酸血癥患者的SLC22A12基因功能缺陷,并證明該基因的變異可能導致遺傳性低尿酸血癥[12]。日本[40]及韓國[41]也有研究證實,腎性低尿酸血癥與SLC22A12的W258X位點突變顯著有關。Shima等[42]對日本人群的研究中發(fā)現(xiàn),該基因的rs893006位點與血尿酸水平相關,且TT基因型的患者血尿酸水平最低。
SLC22A11基因編碼有機陰離子轉運體4(organic anion transporter 4,OAT4)與URAT1有53%的同源性,與其他OAT家族蛋白有38%~44%的氨基酸同源,主要表達于近端腎小管頂膜和胎盤中,其可將有機陰離子轉運入腎小管腔,作用底物尿酸由管腔進入腎臟近端小管細胞內[34]。該基因同樣定位于11q13。日本最近一項研究顯示[43],rs17300741 SNP與所有痛風的發(fā)生不相關,卻與腎臟低分泌型痛風密切相關,提示該基因可能通過影響尿酸的重吸收導致高尿酸血癥和痛風的發(fā)生。新西蘭的研究顯示,rs2078267 SNP與歐洲白人的痛風發(fā)生不存在相關性,卻與波利尼西亞人的痛風發(fā)生存在相關性[35]。目前OAT4對血尿酸的作用機制尚不明確。
4PDZK1基因
PDZK1基因編碼PDZK1蛋白,具有4個PDZ結構結合域。該基因定位于染色體1q21。已有研究表明,URAT1、OAT4和Na+依賴性磷酸鹽轉運蛋白體1等尿酸鹽轉運體的合成受PDZK1、SLC17A1、SLC22A12、SLC22A11基因共同作用的影響,據(jù)此推測該基因可能對尿酸轉運體具有調節(jié)功能[44]。GWAS及Meta研究發(fā)現(xiàn),PDZK1上游2 kb左右區(qū)域的rs12129861和rs1171614、rs1471633與血尿酸水平關系密切[4,8,24]。
5葡萄糖激酶調節(jié)蛋白基因
葡萄糖激酶調節(jié)蛋白基因(glucokinase regulatory protein gene,GCKR)編碼葡萄糖激酶調節(jié)蛋白,主要作用于肝臟和胰腺,抑制葡萄糖激酶活性,從而調節(jié)血糖和三酰甘油水平。該基因定位于染色體2p23,其基因的變異可引起成人發(fā)病型糖尿病及2型糖尿病[45]。GWAS及相關研究發(fā)現(xiàn),該基因中rs780094、rs780093的SNP與血尿酸水平顯著相關[24,46],該SNP主要影響血糖和三酰甘油水平,升高空腹血糖,降低三酰甘油,已有相關研究表明胰島素抵抗的增加可使尿酸的清除率下降,因此考慮 GCKR基因可能與高尿酸血癥及痛風相關。
6LRRC16A基因
LRRC16A基因編碼細胞骨架蛋白,主要作用于腎臟和上皮組織,參與肌動蛋白細胞骨架的組成。該基因定位于染色體6p22.2。Meta分析發(fā)現(xiàn)該基因內含子rs742132 SNP與血尿酸水平顯著相關,但其作用機制尚不明確[4]。日本最近的一項研究證實,rs742132 SNP與痛風發(fā)生存在相關性,并推測可能是由于影響尿酸轉運體的活動影響尿酸轉運而導致高尿酸血癥和痛風的發(fā)生[47]。
7SLC16A9基因
SLC16A9基因編碼單羧酸鹽轉運體9,主要作用于腎臟、甲狀旁腺、腎上腺等,其對尿酸的作用機制目前尚不清楚,推測可能是鈉依賴性尿酸鹽轉運體。GWAS發(fā)現(xiàn)該基因中與血尿酸水平關系密切的SNP位于rs1235619[4]。日本的研究顯示,rs2242206與腎臟超負荷型痛風密切相關[48]。
8SLC17A1和 SLC17A3
SLC17A1和SLC17A3定位于染色體6p21.3~p23這一區(qū)域中,GWAS及Meta研究發(fā)現(xiàn),rs1183201 SNP和rs1165205與血尿酸水平及痛風發(fā)作相關[2,49-50]。
9結語
痛風屬多基因遺傳缺陷,國際上以痛風和高尿酸血癥GWAS為熱點,GWAS以鎖定相關易患基因為目的。我國對于國外GWAS鎖定的相關基因位點進行初步驗證,對于SLC2A9、ABCG2、SLC22A12等研究較為深入,但尚存不足:首先,僅通過PCR序列測試尿酸排泄相關基因位點及多態(tài)性,缺乏基因作用機制的詳盡論述;其次,東方人群的資料匱乏,亟需擴充樣本量進行SNP位點篩查與驗證;最后,目前發(fā)現(xiàn)的痛風易感基因也比較多,但攜帶致病等位基因的患者發(fā)生痛風的相對風險值多很低,提示這些易患基因是微效基因,因此尋找痛風的主效基因是未來的發(fā)展方向。隨著分子遺傳學和分子生物學技術的迅猛推進,高尿酸血癥和痛風易患基因的研究有望取得突破。
參考文獻
[1]Vitart V,Rudan I,Hayward C,etal.SLC2A9 is a newly identified urate transporter influencing serum urate concentration,urate excretion and gout[J].Nat Genet,2008,40(4):437-442.
[2]Dehghan A,K?ttgen A,Yang Q,etal.Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J].Lancet,2008,372(9654):1953-1961.
[3]D?ring A,Gieger C,Mehta D,etal.SLC2A9 influences uric acid concentrations with pronounced sex-specific effects[J].Nat Genet,2008,40(4):430-436.
[4]Kolz M,Johnson T,Sanna S,etal.Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J].PLoS Genet,2009,5(6):e1000504.
[5]Anzai N,Ichida K,Jutabha P,etal.Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1(SLC2A9) in humans[J].J Biol Chem,2008,283(40):26834-
28838.
[6]Wallace C,Newhouse SJ,Braund P,etal.Genome-wide associationstudy identifies genes for biomarkers of cardiovascular disease:serum urate and dyslipidemia[J].Am J Hum Genet,2008,82(1):139-149.
[7]Li S,Sanna S,Masehio A,etal.The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts[J].PLoS Genet,2007,3(11):e194.
[8]K?ttgen A,Albrecht E,Teumer A,etal.Genome-wide association analysis identify 18 new loci associated with serum urate concentrations[J].Nat Genet,2013,45(2):145-154.
[10]Chiba T,Matsuo H,Nagamori S,etal.Identification of a hypouricemia patient with SLC2A9 R380W,a pathogenic mutation for renal hypouricemia type 2[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):261-265.
[11]Kawamura Y,Matsuo H,Chiba T,etal.Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2)[J].Nucleosides Nucleotides Nucleic Acids,2011,30(12):1105-1111.
[12]Sebesta I,Stiburkova B.Purine disorders with hypouricemia[J].Prilozi,2014,35(1):87-92.
[13]Shen H,Feng C,Jin X,etal.Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review[J].BMC Pediatr,2014,14:73.
[14]Hollis-Moffatt JE,Gow PJ,Harrison AA,etal.The SLC2A9 nonsynonymous Arg265His variant and gout:evidence for a population-specific effect on severity[J].Arthritis Res Ther,2011,13(3):R85.
[15]Tu HP,Chen CJ,Tovosia S,etal.Associations:a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders[J].Ann Rheum Dis,2010,69(5):887-890.
[16]Karns R,Zhang G,Sun G,etal.Genome-wide association of serum uric acid concentration:replication of sequence variants in an island population of the Adriatic coast of Croatia[J].Ann Hum Genet,2012,76(2):121-127.
[17]Urano W,Taniguchi A,Anzai N,etal.Association between GLUT9 and gout in Japanese men[J].Ann Rheum Dis,2010,69(5):932-933.
[18]Woodward OM,K?ttgen A,Coresh J,etal.Identification of a urate transporter,ABCG2,with a common functional polymorphism causing gout[J].Proc Natl Acad Sci U S A,2009,106(25):10338-10342.
[19]Hosomi A,Nakanishi T,Fujita T,etal.Extra-renal limination of uric acid via intestinal efflux transporter BCRP/ABCG2[J].PLoS One,2012,7(2):e30456.
[20]Takada T,Ichida K,Matsuo H,etal.ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):275-281.
[21]Matsuo H,Takada T,Ichida K,etal.Common defects of ABCG2,a high-capacity urate exporter,cause gout:a function-based genetics analysis in a Japanese population[J].Sci Transl Med,2009,1(5):5ra11.
[22]Matsuo H,Ichida K,Takada T,etal.Common dysfunctional variants in ABCG2 are a major cause of early-onset gout[J].Sci Rep,2013,3:2014.
[23]Matsuo H,Takada T,Nakayama A,etal.ABCG2 dysfunction increases the risk of renal overload hyperuricemia[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):266-274.
[24]Wang B,Miao Z,Liu S,etal.Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population[J].Hum Genet,2010,127(2):245-246.
[25]Nakayama A,Matsuo H,Nakaoka H,etal.Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors[J].Sci Rep,2014,4:5227.
[26]Zhou D,Liu Y,Zhang X,etal.Functional Polymorphisms of the ABCG2 Gene Are Associated with Gout Disease in the Chinese Han Male Population[J].Int J Mol Sci,2014,15(5):9149-9159.
[27]Ichida K.Recent progress and prospects for research on urate efflux transporter ABCG2[J].Nihon Rinsho,2014,72(4):757-765.
[28]Zhang L,Spencer KL,Voruganti VS,etal.Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations:the PAGE Study[J].Am J Epidemiol,2013,177(9):923-932.
[29]Tabara Y,Kohara K,Kawamoto R,etal.Association of four genetic loci with uric acid levels and reduced renal function:the J-SHIPP Suita study[J].Am J Nephrol,2010,32(3):279-286.
[30]Yang B,Mo Z,Wu C,etal.A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population[J].BMC Med Genomics,2014,7:10.
[31]Zhou X,Matavelli L,Frohlich ED,etal.Uric acid:its relationship to renal hemodynamics and the renal renin-angiotensin system[J].Curr Hypertens Rep,2006,8:120-124.
[32]Chang SJ,Tsai MH,Ko YC,etal.The cyclic GMP-dependent protein kinase Ⅱ gene associates with gout disease:identified by genome-wide analysis and case-control study[J].Ann Rheum Dis,2009,68(7):1213-1219.
[33]Sakiyama M,Matsuo H,Chiba T,etal.Common variants of cGKⅡ/PRKG2 are not associated with gout susceptibility[J].J Rheumatol,2014,41(7):1395-1397.
[34]Anthony M,Reginato,David B,etal.The genetics of hyperuricaemia and gout[J].Nat Rev Rheumatol,2012,8(10):610-621.
[35]Flynn TJ,Phipps-Green A,Hollis-Moffatt JE,etal.Association analysis of the SLC22A11(organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects[J].Arthritis Res Ther,2013,15(6):R220.
[36]Graessler J,Graessler A,Unger S,etal.Association of the human urate transporter 1 with reduced renal uric acid excretion and hypemricemia in a German Caucasian population[J].Arthritis Rheum,2006,54(1):292-300.
[37]Tin A,Woodward OM,Kao WH,etal.Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT 1 loss-of-function allele[J].Hum Mol Genet,2011,20(20):4056-4068.
[38]Li C,Han L,Levin AM,etal.Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese[J].J Med Genet,2010,47(3):204-210.
[39]孟冬梅,韓琳,苗志敏.SLC22A12基因第8外顯子和第8內含子多態(tài)與中國漢族人原發(fā)性高尿酸血癥關聯(lián)研究[J].中華醫(yī)學遺傳學雜志,2010,27(6):659-663.
[40]Komeda F,Sekine T,Inatomi J,etal.The 258X mutation in SLC22A12 is the predominant Cause of Japanese renal hypourieemia[J].Pediatr Nephrol,2004,19(7):728-733.
[41]Cheong HI,Kang JH,Lee JH,etal.Mutational analysis of idiopathic renal hypourieemia in Korea[J].Pediatr Nephrol,2005,20(7):886-890.
[42]Shima Y,Teruya K,Ohta H,etal.Association between intronic SNP in urate-anion exchanger gene,SLC22A12,and serum uric acid levels in Japanese[J].Life Sci,2006,79(23):2234-2237.
[43]Sakiyama M,Matsuo H,Shimizu S,etal.A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout[J].Drug Metab Pharmacokinet,2014,29(2):208-210.
[44]Roddy E,Doherty M.Epidemiology of gout [J].Arthritis Res Ther,2010,12(6):223.
[45]Warner JP,Leek JP,Intody S,etal.Human glucokinase regulatory protein (GCKR):cDNA and genomic cloning,complete primary structure,and chromosomal localization[J].Mamm Genome,1995,6(8):532-536.
[46]Wang J,Liu S,Wang B,etal.Association between gout and polymorphisms in GCKR in male Han Chinese[J].Hum Genet,2012,131(7):1261-1265.
[47]Sakiyama M,Matsuo H,Shimizu S,etal.A common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility[J].Hum Cell,2014,27(1):1-4.
[48]Nakayama A,Matsuo H,Shimizu T,etal.Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout,but not with all gout susceptibility[J].Hum Cell,2013,26(4):133-136.
[49]Hollis-Moffatt JE,Phipps-Green AJ,Chapman B,etal.The renal urate transporter SLC17A1 locus:confirmation of association with gout[J].Arthritis Res Ther,2012,14(2):R92.
[50]Dalbeth N,House ME,Gamble GD,etal.Population-specific effects of SLC17A1 genotype on serum urate concentrations and renal excretion of uric acid during a fructose load[J].Ann Rheum Dis,2014,73(1):313-314.
Progress in Primary Hyperuricemia and Gout-related Susceptibility GenesZHOUZhao-wei,LIChang-gui. (DepartmentofMetabolicDiseases,QingdaoUniversityAffiliatedHospital,Qingdao266003,China)
Abstract:Primary hyperuricemia and gout are polygenic disease.The incidence and clinical features have obvious genetic specificity:genetic susceptibility and SNP loci related to genetic susceptibility are significantly different among different regions,different races,and different genders.About 90% of primary hyperuricemia and gout relates to decreased uric acid excretion associated with polygenic inheritance.Now multiple susceptibility genes have been found associated with uric acid metabolism and primary gout through genome-wide scan and candidate gene approach,which may provide a basis for the etiological diagnosis,prediction and intervention.
Key words:Hyperuricemia; Gout; Susceptible genes
收稿日期:2014-10-11修回日期:2014-12-25編輯:伊姍
基金項目:國家自然科學基金(31371272)
doi:10.3969/j.issn.1006-2084.2015.13.001
中圖分類號:R589.7
文獻標識碼:A
文章編號:1006-2084(2015)13-2305-04