• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of charge size on explosives thermal initiation critical temperature under constrained conditions

    2015-03-03 07:50:56WANGHongweiZHIXiaoqi
    關(guān)鍵詞:烤燃中北大學(xué)臨界溫度

    WANG Hong-wei, ZHI Xiao-qi

    (National Defense Key Laboratory of Underground Damage Technology,North University of China, Taiyuan 030051, China)

    王洪偉, 智小琦

    (中北大學(xué) 地下目標(biāo)毀傷技術(shù)國(guó)防重點(diǎn)實(shí)驗(yàn)室, 山西 太原 030051)

    ?

    Effects of charge size on explosives thermal initiation critical temperature under constrained conditions

    WANG Hong-wei, ZHI Xiao-qi

    (NationalDefenseKeyLaboratoryofUndergroundDamageTechnology,NorthUniversityofChina,Taiyuan030051,China)

    In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions, cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min using self-designed cook-off experiment setup based on thermostatic control technology. Numerical simulation was conducted to study the effects of different charge sizes on thermal initiation critical temperature of explosives with FLUENT software. Experiment results show that there is a thermal initiation critical temperature in cook-off bomb. Simulation results show that when the ratio of the length to diameter of explosives grains is a fixed value, the thermal initiation critical temperature of explosives decreases with the increase of the diameter of explosives grains. When the grains diameter of explosives increase up to a certain value, the influence of charge size on thermal initiation critical temperature tends to be weakened. Charge size has no influence on the ignition point of explosives. The ignition point is always in the center of the grain.

    heating rate; thermal initiation thermostatic critical temperature; slow cook-off

    0 Introduction

    In the process of manufacturing, transportation and storage and in battlefield environment, the energetic materials are susceptible to ignition or explosion, which causes unacceptable disaster when ammunition is exposed to accidental thermal stimulation. Therefore, the study on ammunition thermal vulnerability has attracted the world’s attention. Cook-off test is one of the most important methods to evaluate the thermal vulnerability of ammunition[1]. Researchers at home and abroad have done a lot of researches on the ammunition response characteristics of cook-off tests. Many valuable conclusions have been obtained. A cook-off test about HMX based high energy explosives of LX-04 was carried out by Garcia F, et al[2]to study the effects of different constraints on the response characteristics of cook-off test. Experiment results show that the response intense of cook-off test weakens with the reducing of constraints. FENG Xiao-jun, et al[3]studied the effects of charge size of explosives (JB-B, TNT and R852 explosives) on the response characteristics of slow cook-off tests. Experiments results show that the ambient temperature of cook-off reaction will increase when the charge size increases. Furthermore, the response intense of cook-off will increase when charge size increases to a certain value, while the effects on the ambient temperature of cook-off test will be weakened. Through the cook-off test of passivation RDX, ZHI Xiao-qi, et al[4]investigated the effects of explosive charge density on slow cook-off response characteristics. Experiment results show that charge density has a significant influence on the response intense of cook-off. In addition, there are also some papers about the effects of heating rate, physical interface and free-space on the response characteristics of cook-off[5-7]. However, there are few researches about the effects of charge size on explosives thermal initiation critical temperature in defined conditions.

    The explosive used in the experiment is RDX based JH explosive. Cook-off bomb was heated to different preset temperatures at the heating rate of 1 ℃/min and kept it at the preset temperature for a period of time. Then the thermal initiation critical temperature of explosives was obtained by using FLUENT software and the response characteristics at different ambient temperatures were observed. This will be of significance to the design and safe use of insensitive munitions.

    In this paper, thermal initiation critical temperature in defined conditions is the smallest temperature that makes cook-off bomb ignite when cook-off bomb is heated to a thermostatic temperature and this temperature is kept for a long time.

    1 Experiments

    1.1 Experiment devices

    The cook-off experiment set up is composed of computer, cook-off burner, MR13 temperature controller and thermocouple. Cook-off burner is the thermal source of the whole system. Temperature controller is used to ensure that the temperature will increase at the preset heating rate. The case temperature of cook-off bomb is measured by the thermocouple whose measure accuracy is one level. The temperature-time curves during cook-off process can be acquired by self-designed SFO software. Heating rate should be calibrated before experiment to ensure that heating rate of cook-off is 1 ℃/min during heating period. When case temperature was heated to 160, 170, 180, 185, 195 ℃ and kept for 50 min, respectively, and their response characteristics can be got. What should be noted is that two groups of cook-off tests were conducted at every thermostatic temperature to ensure the reliability of test results.

    1.2 Structure of cook-off romb

    Fig.1 is the physical model of cook-off bomb, which is composed of the case, the cover and some explosives. The case material is No.45 steel. The inner wall size of the cook-off bomb is Ф19 mm×38 mm. The cover wall size is 1±0.03 mm. Whorls are used to connect the case and the covers. Explosive mass ratio is that RDX occupies 95.0% and additive occupies 5.0%. Explosive grain diameter is Φ19 mm. The density of grain is 1.628 g/cm3.

    Fig.1 Physical model of cook-off bomb

    1.3 Experiment results

    Table 1 shows the cook-off experiment results. Fig.2 is the explosive decomposition rate curve at different thermostatic temperatures.

    It can be seen that the explosive decomposition percentage increases with the increase of thermostatic temperature.

    Table 1 Experiment results of cook-off test

    It can be seen from Table 1 and Fig.2 that the decomposition rate of RDX based explosives is very slow when thermostatic temperature is smaller than 185 ℃. And the relationship between thermostatic temperature and explosives decomposition rate is liner. However, when thermostatic temperature is greater than 185 ℃, the decomposition rate of RDX increases absolutely and is strong non-linear relationship. In a word, there is an inflection temperature. When ambient temperature is greater than this inflection temperature, decomposition rate increases sharply and self-heating reaction occurs, which results in ignition.

    Fig.2 Curve of decomposition rate of explosive at different temperatures

    The thermal initiation thermostatic critical temperature of explosive and others in different charge sizes has not been studied due to the limited thermostatic time and economic reasons[8]. Therefore, numerical simulation will be conducted to study grains thermal initiation critical temperature with explosive grain diameter of 19, 30, 40, 50 mm respectively and the ratio of length to diameter of 2∶1.

    2 Numerical simulaton

    2.1 Establishment of physical model

    When conducting numerical simulation of cook-off process of RDX based explosives, the following assumptions should be made:

    1) There is no gap between the cook-off bomb case

    and the explosives grains.

    2) The material parameters of the case and the inner wall are constant during cook-off process.

    3) Thermal reaction and thermal conductivity of explosive grains follow Frank-Kamenetskill equation.

    The grain appears cylindrical. In order to decrease the calculation work, calculation model is a 1/2 model. Fig.3 is the physical model.

    Fig.3 Physical model of cook-off system

    2.2 Establishment of mathematical model

    In cylindrical coordinates, temperature field control equations[9]can be expressed as

    whereρis reactant density (kg/m3);cv, specific heat capacity (J/(kg·K));λ, thermal conductivity (J/(m·K·s));a, reaction score;Q, reaction thermal of reactants(J/kg);A, pre-exponential factor(s-1);E, activation energy(J/mol); R, gas constant (J/(mol·K)).

    The chemical reaction exothermic section of JH explosive was embedded in FLUENT[10]main program by self-written subroutine. Material parameters[11]used in simulation are listed in Table 2.

    Table 2 Material parameters

    2.3 Numerical simulation of critical temperature of JH explosives

    Fig.4 shows the temperature-time curves of the projectile body outer wall in the heating process at 185 ℃. It can be seen that the temperature-time curves of experiment and simulation results are almost the same, which means that simulation parameter values are suitable.

    Fig.4 Temperature-time curves of simulation and experimental results of projectile body outer wall at 185 ℃

    Fig.5 presents the critical temperature distribution of cook-off bombs with diameters of 19, 30, 40 and 50 mm and the ratio of length to diameter of 2∶1. From Figs.5(a) and (b), we can see that no matter the thermostatic time is 180 min or 1 500 min, the highest temperature (center) in grain is 199 ℃ with thermostatic temperature of 191 ℃ and the grain diameter of 19 mm. The thermal decomposition reaction of solid state dynamite advances very slowly under these conditions. Cook-off system is in thermal equilibrium status and self-heating ignition reaction can not occur. However, when the thermostatic temperature is 192 ℃, the highest temperature (center) in grain is 202 ℃ with thermostatic time of 90 min. The highest temperature (center) in grain is 238 ℃ when thermostatic time is 207 min. In these conditions, thermal released by decomposition reaction can not be completely lost to the environment and cause thermal accumulation phenomenon. The thermal equilibrium of cook-off system is imbalance and leads to ignition. All in all, when the diameter of cook-off bomb is 19 mm, its thermal initiation critical temperature is 192 ℃.

    Fig.5 Temperature distribution of case at different thermostatic temperatures and different charge sizes

    Using the same analysis method, it can be seen fromFigs.5(c) and (d)that the thermal initiation thermostatic critical temperature is 187 ℃ when the diameter of cook-off bomb is 30 mm. In Figs.5(e) and (f), the thermal initiation critical temperature is 183 ℃ when the diameter of cook-off bomb is 40 mm. In Figs.5(g) and (h), the thermal initiation critical temperature is 181 ℃ when the diameter of cook-off bomb is 50 mm.

    We can also draw the conclusion that the highest temperature is always in the center of the grain when explosives are ignited, as shown in Fig.5. Therefore, charge size has no influence on the ignition point, which is always in the center of the grain.

    Fig.6 shows the relationship between the charge size and the thermal initiation critical temperature.

    Fig.6 Relationship between charge size and thermal initiation thermostatic critical temperature

    It can be seen from Fig.6 that the thermal initiation critical temperature decreases with the increase of the charge size when the ratio of length to diameter is identical. When the charge size increases to a certain value, the influence it has will decline. When cook-off bomb is heated to a certain thermostatic temperature and kept at the thermostatic temperature for a long time, the cook-off bomb ignites because the heat generation rate is greater than the heat loss rate if the thermostatic temperature is large enough. Then, heat will be accumulated in explosive grains and accelerate the self-heating reaction, which results in ignition. The larger the charge size is, the greater the explosives quantity is. Heat release by explosives decomposition will be larger at the same thermostatic temperature and thermal feedback will be intenser. The thermal initiation critical temperature will be lower. When the explosive amount(charge size) is large enough, this influence will be weakened. These conclusions are similar to HE Guang-bin’s research results who studied the thermal initiation critical environment of explosive[8].

    3 Conclusions

    1) The charge size of explosives grain has influence on explosive thermal initiation critical temperature in defined conditions.The thermal initiation critical temperature decreases with the increase of the charge size. When the charge size increases to a certain value, the influence it has on thermal initiation critical temperature will be weakened.

    2) Charge size has no influence on the ignition point of explosives in defined conditions. The ignition point is always in the center of the grain.

    [1] MIL-STD-2105C. Military standard-hazard assessment tests for non-nuclear munitions. 2003.

    [2] Garcia F, Vandersall K S, Forbes J W, et al. Thermal cook-off experiments of the HMX based high explosive LX-04 to characterize violence with varying confinement. In: Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, 2006: 1061-1064.

    [3] FENG Xiao-jun, WANG Xiao-feng, HAN Zhu-long. The study of charge size influence on the response of explosires in slow cook-off test.Explosion and Shock Waves, 2005, 25(3): 285-288.

    [4] ZHI Xiao-qi, HU shuang-qi. Influence of charge densities on responses of explosives to slow cook off. Explosive and Shock Waves, 2013, 33(2): 221-224.

    [5] NIU Yu-lei, NAN Hai, FENG Xiao-jun. The cook-off experiment and numerical simulation of RDX based PBX explosive. Chinese Journal of Explosives & Propellants, 2011, 34(1): 436-441.

    [6] GAO Feng, ZHI Xiao-qi. Effect of physical interface on slow cook-off characteristics of explosives. Chinese Journal of Explosives & Propellants, 2014, 37(6): 53-57.

    [7] YU Yong-li, ZHI Xiao-qi.The research of free-space influence on response of characteristic of explosive on slow cook-off condition. Science Technology and Engineering, 2015, 33(2): 221-224.

    [8] FENG Chang-gen. Thermal explosion theory. Beijing: Science Press, 1988.

    [9] DONG Hai-shan, ZHOU Fen-fen.High energy explosives and related properties. Beijing: Science Press, 1989.

    [10] ZHU Hong-jun, LIN Yuan-hua, XIE Long-han. Fluent12 fluid analysis and engineering simulation. Beijing: Tsinghua University Press, 2011.

    [11] HE Guang-bin, FENG Chang-gen. A study on the critical ambient temperature for the thermal explosion of explosive cylinders. Journal of Beijing Institute of Technology, 1995, 15(3): 251-256.

    裝藥尺寸對(duì)限定條件下炸藥熱起爆臨界溫度的影響

    為研究裝藥尺寸與限定條件下炸藥熱起爆臨界溫度之間的關(guān)系, 利用自行設(shè)計(jì)的烤燃試驗(yàn)裝置, 以RDX為主的JH炸藥為試驗(yàn)材料, 在1 ℃/min的升溫速率下, 采用恒溫控制技術(shù)進(jìn)行了不同溫度下的烤燃試驗(yàn)。 利用FLUENT軟件對(duì)不同裝藥尺寸下炸藥的熱起爆恒溫臨界溫度進(jìn)行了數(shù)值計(jì)算, 研究了裝藥尺寸對(duì)炸藥熱起爆恒溫臨界溫度的影響。 試驗(yàn)結(jié)果表明, 烤燃彈存在一個(gè)熱起起爆恒溫臨界溫度。 仿真結(jié)果表明:當(dāng)藥柱的長(zhǎng)徑比相同時(shí), 隨著藥柱尺寸的增加, 炸藥的熱起爆恒溫臨界溫度逐步降低。 當(dāng)藥柱尺寸增大到一定值時(shí), 裝藥尺寸對(duì)烤燃彈的熱起爆恒溫臨界溫度的影響將減弱。 裝藥尺寸對(duì)點(diǎn)火點(diǎn)的位置無(wú)影響, 均為中心點(diǎn)火。

    升溫速率; 熱起爆恒溫臨界溫度; 慢速烤燃

    WANG Hong-wei, ZHI Xiao-qi. Effects of charge size on explosives thermal initiation critical temperature under constrained conditions. Journal of Measurement Science and Instrumentation, 2015, 6(3): 234-239. [

    王洪偉, 智小琦

    (中北大學(xué) 地下目標(biāo)毀傷技術(shù)國(guó)防重點(diǎn)實(shí)驗(yàn)室, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.006]

    WANG Hong-wei (1290303565@qq.com)

    1674-8042(2015)03-0234-06 doi: 10.3969/j.issn.1674-8042.2015.03.006

    Received date: 2015-06-18

    CLD number: TJ55 Document code: A

    猜你喜歡
    烤燃中北大學(xué)臨界溫度
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    2種低射速下火炮膛內(nèi)模塊裝藥烤燃特性的對(duì)比與分析
    不同升溫速率下模塊裝藥的烤燃特性分析
    Bogoliubov-Tolmachev-Shirkov模型臨界溫度和能隙解的數(shù)值方法
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    GHL01炸藥烤燃實(shí)驗(yàn)的尺寸效應(yīng)與數(shù)值計(jì)算
    高固含量HMX基澆注PBX的烤燃試驗(yàn)研究
    RDX基炸藥熱起爆臨界溫度的測(cè)試及數(shù)值計(jì)算
    国产野战对白在线观看| 午夜成年电影在线免费观看| 99riav亚洲国产免费| 嫩草影院精品99| 亚洲精品国产精品久久久不卡| 国产真人三级小视频在线观看| 成人国产一区最新在线观看| 欧美日韩精品网址| www日本在线高清视频| 精品久久久久久久久久免费视频 | svipshipincom国产片| e午夜精品久久久久久久| 99精品久久久久人妻精品| 亚洲五月天丁香| 亚洲av熟女| 国产精品自产拍在线观看55亚洲| 99热只有精品国产| 亚洲精品久久成人aⅴ小说| 在线视频色国产色| 亚洲 国产 在线| 国产成人欧美在线观看| 免费搜索国产男女视频| 另类亚洲欧美激情| 美女大奶头视频| 国产野战对白在线观看| 国产深夜福利视频在线观看| 成人av一区二区三区在线看| 色哟哟哟哟哟哟| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| svipshipincom国产片| www.精华液| 91麻豆av在线| 亚洲精品国产一区二区精华液| 可以免费在线观看a视频的电影网站| 热99re8久久精品国产| 麻豆国产av国片精品| 一区二区三区精品91| 国产精品 国内视频| 人成视频在线观看免费观看| 最近最新中文字幕大全免费视频| 中文字幕人妻丝袜制服| 少妇裸体淫交视频免费看高清 | 亚洲成人久久性| 老司机靠b影院| 午夜视频精品福利| 午夜视频精品福利| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网| 一进一出抽搐gif免费好疼 | 欧美在线一区亚洲| 久久精品国产亚洲av高清一级| 日韩欧美免费精品| 久久精品国产亚洲av高清一级| 久久精品国产亚洲av高清一级| 久久亚洲精品不卡| 涩涩av久久男人的天堂| 女人爽到高潮嗷嗷叫在线视频| 欧美最黄视频在线播放免费 | 又紧又爽又黄一区二区| 国产精品98久久久久久宅男小说| 亚洲av五月六月丁香网| 一二三四在线观看免费中文在| 在线观看66精品国产| 黑人巨大精品欧美一区二区mp4| 97人妻天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 国产精品99久久99久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| www日本在线高清视频| 亚洲av五月六月丁香网| 一二三四在线观看免费中文在| 精品少妇一区二区三区视频日本电影| 亚洲av五月六月丁香网| 亚洲欧美日韩另类电影网站| 脱女人内裤的视频| 精品国产乱子伦一区二区三区| 日日夜夜操网爽| 黄色毛片三级朝国网站| 男男h啪啪无遮挡| 免费观看精品视频网站| 91精品国产国语对白视频| 美女福利国产在线| 国产亚洲精品综合一区在线观看 | 黑人操中国人逼视频| 香蕉久久夜色| 久久精品亚洲熟妇少妇任你| 欧美性长视频在线观看| 曰老女人黄片| 精品少妇一区二区三区视频日本电影| 妹子高潮喷水视频| 亚洲一区二区三区色噜噜 | 精品一区二区三卡| 精品国产一区二区三区四区第35| 久久国产乱子伦精品免费另类| 在线视频色国产色| 亚洲片人在线观看| 国产一卡二卡三卡精品| 欧美黄色片欧美黄色片| 国产午夜精品久久久久久| 成年人免费黄色播放视频| 国产一区二区在线av高清观看| av在线天堂中文字幕 | 日韩一卡2卡3卡4卡2021年| 亚洲免费av在线视频| 精品日产1卡2卡| 国产高清videossex| 久久人妻av系列| 日日摸夜夜添夜夜添小说| 国产伦一二天堂av在线观看| 欧美乱色亚洲激情| 老司机在亚洲福利影院| 亚洲三区欧美一区| 成人av一区二区三区在线看| 精品人妻1区二区| av天堂在线播放| 搡老岳熟女国产| 国产精品国产av在线观看| 国产精品一区二区三区四区久久 | 一进一出抽搐动态| 在线av久久热| 欧美另类亚洲清纯唯美| 欧美久久黑人一区二区| 国产精品野战在线观看 | 长腿黑丝高跟| 亚洲人成77777在线视频| 欧美在线一区亚洲| 国产精品久久视频播放| 99在线视频只有这里精品首页| 国产成人一区二区三区免费视频网站| 首页视频小说图片口味搜索| www.精华液| 99国产精品99久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 美女午夜性视频免费| 国产精品国产av在线观看| 国产欧美日韩精品亚洲av| 露出奶头的视频| 日日干狠狠操夜夜爽| 麻豆av在线久日| 久久久国产成人免费| 女警被强在线播放| 免费不卡黄色视频| 亚洲成国产人片在线观看| 一边摸一边抽搐一进一小说| 日日干狠狠操夜夜爽| 国产一区二区激情短视频| 中文字幕另类日韩欧美亚洲嫩草| www.www免费av| 日本wwww免费看| 国产亚洲欧美精品永久| 最近最新中文字幕大全电影3 | 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 啦啦啦免费观看视频1| 亚洲激情在线av| 19禁男女啪啪无遮挡网站| 国产免费现黄频在线看| 一级片免费观看大全| 别揉我奶头~嗯~啊~动态视频| 首页视频小说图片口味搜索| 黑人猛操日本美女一级片| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 国产免费现黄频在线看| av网站免费在线观看视频| 午夜精品久久久久久毛片777| 在线av久久热| 搡老乐熟女国产| 9191精品国产免费久久| 在线观看免费视频日本深夜| ponron亚洲| 美女午夜性视频免费| 老汉色av国产亚洲站长工具| 51午夜福利影视在线观看| a级毛片在线看网站| 99热国产这里只有精品6| 精品午夜福利视频在线观看一区| 黑人欧美特级aaaaaa片| 国产免费男女视频| 热re99久久精品国产66热6| 韩国精品一区二区三区| 欧美黑人精品巨大| 国产免费现黄频在线看| 18美女黄网站色大片免费观看| 女警被强在线播放| 正在播放国产对白刺激| 久久久久久久久中文| 成年版毛片免费区| 国产精品综合久久久久久久免费 | 久久国产亚洲av麻豆专区| 欧美国产精品va在线观看不卡| 妹子高潮喷水视频| 在线观看一区二区三区| 国产黄a三级三级三级人| 狠狠狠狠99中文字幕| 99精品久久久久人妻精品| 国产精品久久电影中文字幕| 看黄色毛片网站| 国产乱人伦免费视频| 亚洲av成人不卡在线观看播放网| 婷婷六月久久综合丁香| 国产一区二区激情短视频| 免费看十八禁软件| 精品一区二区三区四区五区乱码| 国产成人啪精品午夜网站| 黄色毛片三级朝国网站| 国产视频一区二区在线看| 国产亚洲精品第一综合不卡| 免费高清视频大片| 男女之事视频高清在线观看| 国产国语露脸激情在线看| 午夜成年电影在线免费观看| 中文字幕高清在线视频| 侵犯人妻中文字幕一二三四区| 日韩精品青青久久久久久| 午夜福利一区二区在线看| 中文字幕人妻丝袜制服| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美在线二视频| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| 波多野结衣av一区二区av| 天堂动漫精品| 欧美在线一区亚洲| 黄色片一级片一级黄色片| 国产人伦9x9x在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美丝袜亚洲另类 | 多毛熟女@视频| 精品高清国产在线一区| 超碰97精品在线观看| 国产xxxxx性猛交| 露出奶头的视频| 久久午夜亚洲精品久久| 欧美黄色淫秽网站| 久久国产亚洲av麻豆专区| 女同久久另类99精品国产91| 搡老岳熟女国产| 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区| 中文字幕色久视频| av国产精品久久久久影院| 麻豆成人av在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 国产又色又爽无遮挡免费看| 美女高潮到喷水免费观看| 久久午夜亚洲精品久久| av网站在线播放免费| 国产熟女xx| 午夜视频精品福利| 88av欧美| 18禁裸乳无遮挡免费网站照片 | 老熟妇乱子伦视频在线观看| 亚洲精品一区av在线观看| 在线天堂中文资源库| 在线观看午夜福利视频| 亚洲avbb在线观看| av电影中文网址| 丝袜在线中文字幕| 国产免费av片在线观看野外av| 欧美 亚洲 国产 日韩一| 久久草成人影院| 欧洲精品卡2卡3卡4卡5卡区| 不卡av一区二区三区| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 交换朋友夫妻互换小说| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 老熟妇乱子伦视频在线观看| 久久国产乱子伦精品免费另类| 淫秽高清视频在线观看| 高清毛片免费观看视频网站 | 啦啦啦在线免费观看视频4| 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 日本a在线网址| 精品久久久久久电影网| 真人做人爱边吃奶动态| 国产成人欧美| 亚洲成av片中文字幕在线观看| 久久精品成人免费网站| 国产片内射在线| 一二三四在线观看免费中文在| 国产av一区二区精品久久| 99国产精品一区二区蜜桃av| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 三上悠亚av全集在线观看| 99在线人妻在线中文字幕| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩另类电影网站| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 男女高潮啪啪啪动态图| 欧美精品亚洲一区二区| 99re在线观看精品视频| а√天堂www在线а√下载| 久久久国产成人精品二区 | 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 国产激情欧美一区二区| 精品电影一区二区在线| 女生性感内裤真人,穿戴方法视频| 午夜精品在线福利| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| av有码第一页| 精品国产一区二区久久| 人人妻人人添人人爽欧美一区卜| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 国产色视频综合| 高潮久久久久久久久久久不卡| 国产一区二区三区视频了| www.999成人在线观看| 两性夫妻黄色片| 日韩大尺度精品在线看网址 | 久久精品91蜜桃| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 丁香六月欧美| 国产精品影院久久| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 在线观看一区二区三区激情| 亚洲九九香蕉| 少妇的丰满在线观看| 欧美 亚洲 国产 日韩一| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放 | 国产精品 欧美亚洲| 欧美日韩精品网址| 一区福利在线观看| 在线观看午夜福利视频| 国产成人av激情在线播放| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 成人国语在线视频| 曰老女人黄片| 精品国产美女av久久久久小说| 桃红色精品国产亚洲av| 久久热在线av| 麻豆久久精品国产亚洲av | 久久伊人香网站| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 色婷婷av一区二区三区视频| 国产免费男女视频| 久久亚洲精品不卡| 国产色视频综合| 一级毛片精品| 成人三级黄色视频| 最近最新中文字幕大全免费视频| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美 日韩 在线 免费| 十八禁网站免费在线| 精品无人区乱码1区二区| 亚洲自偷自拍图片 自拍| 久久狼人影院| 国产精品久久视频播放| 丰满迷人的少妇在线观看| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区 | 男女之事视频高清在线观看| 精品久久久久久成人av| 日韩中文字幕欧美一区二区| 久久久久久久午夜电影 | 国产成+人综合+亚洲专区| 美女午夜性视频免费| 99riav亚洲国产免费| 久久国产亚洲av麻豆专区| 久久久久亚洲av毛片大全| 91av网站免费观看| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 岛国在线观看网站| 国产一卡二卡三卡精品| 欧美日韩福利视频一区二区| 韩国av一区二区三区四区| 一区福利在线观看| 欧美成狂野欧美在线观看| 韩国av一区二区三区四区| 日韩欧美一区视频在线观看| 国产精品成人在线| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 69精品国产乱码久久久| 超碰成人久久| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 看片在线看免费视频| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 午夜久久久在线观看| 激情视频va一区二区三区| 淫秽高清视频在线观看| 久久伊人香网站| 91字幕亚洲| 电影成人av| 窝窝影院91人妻| 日韩 欧美 亚洲 中文字幕| 99riav亚洲国产免费| 国产亚洲精品综合一区在线观看 | 在线视频色国产色| 国产成年人精品一区二区 | 欧美日韩精品网址| 99国产精品免费福利视频| 国产精品亚洲av一区麻豆| 亚洲欧美日韩另类电影网站| 国产精品爽爽va在线观看网站 | 亚洲国产精品合色在线| 精品乱码久久久久久99久播| 色婷婷av一区二区三区视频| 麻豆成人av在线观看| 国产成人精品在线电影| 日韩欧美在线二视频| 嫩草影视91久久| 免费人成视频x8x8入口观看| 亚洲 欧美一区二区三区| av中文乱码字幕在线| 中亚洲国语对白在线视频| 男男h啪啪无遮挡| 在线观看免费视频网站a站| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 日韩欧美免费精品| 久久国产精品人妻蜜桃| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 精品国产国语对白av| 精品国产美女av久久久久小说| 很黄的视频免费| 欧美成人午夜精品| 亚洲狠狠婷婷综合久久图片| 制服人妻中文乱码| av天堂在线播放| 亚洲人成电影观看| 91九色精品人成在线观看| 久久中文看片网| 欧美中文日本在线观看视频| 丝袜在线中文字幕| 亚洲七黄色美女视频| 一级毛片精品| 在线永久观看黄色视频| e午夜精品久久久久久久| 超碰97精品在线观看| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 亚洲片人在线观看| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 18禁美女被吸乳视频| 我的亚洲天堂| 国产av在哪里看| 久久精品成人免费网站| 一本大道久久a久久精品| 免费高清视频大片| 午夜成年电影在线免费观看| 999久久久国产精品视频| 久久久久国内视频| 午夜福利影视在线免费观看| 亚洲,欧美精品.| 欧美中文日本在线观看视频| 老司机靠b影院| 日韩大码丰满熟妇| 高清欧美精品videossex| 琪琪午夜伦伦电影理论片6080| 夫妻午夜视频| 亚洲成人免费av在线播放| 久久久国产成人免费| 一级a爱视频在线免费观看| 久久人妻福利社区极品人妻图片| 91老司机精品| 精品国产一区二区三区四区第35| 精品熟女少妇八av免费久了| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 国产精品电影一区二区三区| 久久狼人影院| 欧美黄色淫秽网站| 女人被躁到高潮嗷嗷叫费观| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 露出奶头的视频| 国产精品电影一区二区三区| 国产免费av片在线观看野外av| 欧美中文日本在线观看视频| 韩国精品一区二区三区| 后天国语完整版免费观看| 麻豆成人av在线观看| 在线看a的网站| 丝袜美足系列| 国产一区二区在线av高清观看| 级片在线观看| 午夜a级毛片| 女人精品久久久久毛片| 欧美一区二区精品小视频在线| 欧美成狂野欧美在线观看| 激情在线观看视频在线高清| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 亚洲成人国产一区在线观看| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 在线观看免费午夜福利视频| 精品国产超薄肉色丝袜足j| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点 | 88av欧美| 国产av一区在线观看免费| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 两性夫妻黄色片| 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 久久久水蜜桃国产精品网| 久久热在线av| 亚洲第一青青草原| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 久久人人97超碰香蕉20202| 久久久国产成人免费| 亚洲精品国产区一区二| 嫁个100分男人电影在线观看| 一级a爱视频在线免费观看| 欧美在线一区亚洲| 国产免费男女视频| 精品国产乱码久久久久久男人| 久久久久久久久中文| 久久精品人人爽人人爽视色| 精品一区二区三区av网在线观看| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 在线永久观看黄色视频| 国产成人啪精品午夜网站| 搡老岳熟女国产| 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 亚洲第一欧美日韩一区二区三区| 免费看a级黄色片| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 亚洲 国产 在线| 热99re8久久精品国产| 三上悠亚av全集在线观看| 欧美色视频一区免费| 老司机靠b影院| 午夜精品久久久久久毛片777| 欧美亚洲日本最大视频资源| 一区在线观看完整版| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| 国产精华一区二区三区| 日韩中文字幕欧美一区二区| 香蕉国产在线看| 亚洲专区中文字幕在线| 热99re8久久精品国产| 嫩草影视91久久| av片东京热男人的天堂| 欧美av亚洲av综合av国产av| 色综合欧美亚洲国产小说| av欧美777| 成人影院久久| 日韩欧美三级三区| 欧美大码av| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 一区二区三区国产精品乱码| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 九色亚洲精品在线播放| 视频在线观看一区二区三区| 久久精品91蜜桃| 一级作爱视频免费观看| 999久久久国产精品视频| 热99re8久久精品国产| 男女午夜视频在线观看| 精品久久蜜臀av无| av欧美777| av天堂久久9| www.999成人在线观看| 国产精品野战在线观看 | av国产精品久久久久影院| 国产亚洲欧美在线一区二区|