徐義賢, 羅銀河
1 中國(guó)地質(zhì)大學(xué)(武漢)地球內(nèi)部多尺度成像湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074 2 中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430074
?
噪聲地震學(xué)方法及其應(yīng)用
徐義賢1,2, 羅銀河1,2
1 中國(guó)地質(zhì)大學(xué)(武漢)地球內(nèi)部多尺度成像湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074 2 中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430074
基于背景噪聲的地震方法發(fā)展迅速,已廣泛應(yīng)用于全球和區(qū)域地球內(nèi)部結(jié)構(gòu)研究、淺地表地質(zhì)調(diào)查及油氣田勘探開(kāi)發(fā).本文簡(jiǎn)要介紹了背景噪聲的來(lái)源,回顧了噪聲地震學(xué)的發(fā)展歷程.給出了基于背景噪聲的全波場(chǎng)和面波格林函數(shù)恢復(fù)的公式,較為詳細(xì)綜述了噪聲源的分布和記錄臺(tái)站間距對(duì)格林函數(shù)恢復(fù)的影響.討論了兩臺(tái)站互相關(guān)法和空間自相關(guān)法獲取面波頻散特性的區(qū)別與理論連接.對(duì)基于噪聲的面波層析成像法、程函方程層析成像法、空間自相關(guān)法的原理進(jìn)行了總結(jié).介紹了噪聲地震學(xué)方法在各領(lǐng)域特別是淺地表方面的應(yīng)用現(xiàn)狀.最后簡(jiǎn)要展望了噪聲地震學(xué)的發(fā)展前景.
背景噪聲; 格林函數(shù)恢復(fù); 噪聲層析成像; 虛源法; 空間自相關(guān); 淺地表
隨著人類(lèi)對(duì)自身生活環(huán)境質(zhì)量的日益重視,應(yīng)用傳統(tǒng)且污染嚴(yán)重的震源(如炸藥等)進(jìn)行地震勘探的生產(chǎn)和研究方法,受到越來(lái)越苛刻的限制.例如,在不可破壞性地區(qū)(交通網(wǎng)絡(luò)密集區(qū)、自然或文化保護(hù)區(qū)、城市等)開(kāi)展地球物理勘探工作,傳統(tǒng)工作方式越來(lái)越難以適應(yīng),如關(guān)于震源和觀測(cè)系統(tǒng)設(shè)計(jì)方面的難題,正在困擾著己經(jīng)習(xí)慣了鉆孔、使用炸藥震源、以及采用常規(guī)二維和三維地震勘探觀測(cè)系統(tǒng)的工程人員.探索以新型震源為代表的全新地震勘探方法的任務(wù)已經(jīng)擺在了地球物理勘探工作者的面前.不僅所有的勘探家希望,而且大多數(shù)地震學(xué)家也期盼:如果有能夠達(dá)到甚至在某些場(chǎng)合能夠超過(guò)主動(dòng)源地震成像效果的被動(dòng)源地震方法,將是地震學(xué)的一場(chǎng)革命.本文介紹的基于背景噪聲的地震學(xué)為我們展示了這樣一種可能性.
利用地球背景噪聲信號(hào)研究地球內(nèi)部結(jié)構(gòu)和構(gòu)造成為了一個(gè)新的、重要的探索方向.多個(gè)本領(lǐng)域國(guó)際期刊《Geophysics》、《Geophysical Prospecting》、《Earthquake Science》、《Comptes Rendus Geoscience》分別于2006、2008、2010及2011年以專(zhuān)輯形式展示了這一領(lǐng)域所取得的令人振奮的進(jìn)展.迄今為止,法國(guó)科學(xué)研究中心、美國(guó)斯坦福大學(xué)和科羅拉多礦院及科羅拉多大學(xué)、荷蘭德芙特技術(shù)大學(xué)、英國(guó)愛(ài)丁堡技術(shù)大學(xué)等,在噪聲地震學(xué)的理論和應(yīng)用方面做出了巨大努力.
國(guó)內(nèi)雖然已有大量學(xué)者開(kāi)展了噪聲地震學(xué)的研究,但多以區(qū)域性地殼或巖石圈尺度的應(yīng)用研究為主,用于淺地表領(lǐng)域的少見(jiàn),且成果大多發(fā)表在英文期刊上.齊誠(chéng)等(2007)和陶毅等(2010)較早以中文介紹了噪聲地震學(xué)的原理及其應(yīng)用,但鑒于這一領(lǐng)域發(fā)展迅速,仍覺(jué)有必要向國(guó)內(nèi)學(xué)者特別是初學(xué)者介紹和推薦,并且主要希望為其在淺地表地球物理領(lǐng)域的推廣應(yīng)用提供參考.為了內(nèi)容的可讀性,本文與前人(齊誠(chéng)等,2007;陶毅等,2010)不可避免有所重復(fù),但力圖控制在最小程度.
2.1 背景噪聲的類(lèi)型和起因
背景噪聲是指那些通過(guò)各種拾震器采集的、按照常規(guī)的地震數(shù)據(jù)處理方法難以識(shí)別出有效信號(hào)的、常常作為干擾剔除或壓制的地震數(shù)據(jù).背景噪聲可以采用不同的拾震器進(jìn)行觀測(cè),如擺、壓力計(jì)、速度計(jì)及加速度計(jì)等.為了簡(jiǎn)潔考慮,本文將觀測(cè)噪聲所利用的不同類(lèi)型的拾震器所組成的陣列統(tǒng)稱(chēng)為臺(tái)陣.
根據(jù)產(chǎn)生背景噪聲的震源屬性的不同,可分為隨機(jī)性背景噪聲和確定性背景噪聲.在噪聲源的位置、激發(fā)方式以及能量的大小范圍等條件都不明確的情況下,拾震器所接收到的噪聲信號(hào)稱(chēng)之為隨機(jī)性背景噪聲.在噪聲源的位置、激發(fā)方式、能量的大小范圍等屬性部分或全部己知的前提下,拾震器所接收到的噪聲信號(hào)稱(chēng)之為確定性背景噪聲.
根據(jù)產(chǎn)生背景噪聲的起因進(jìn)行分類(lèi),可將地球上的噪聲分為自然因素和人為因素兩大類(lèi)(齊誠(chéng)等,2007).自然噪聲中,地殼運(yùn)動(dòng)是其主要來(lái)源.地殼運(yùn)動(dòng)的方式分為兩類(lèi):一類(lèi)是非劇烈的,如由于太陽(yáng)系中的太陽(yáng)和其他行星的引力作用于地球而產(chǎn)生的潮汐運(yùn)動(dòng),地球內(nèi)部各層間相互作用而產(chǎn)生的海陸升降運(yùn)動(dòng),等等.一般地,非劇烈的地殼運(yùn)動(dòng)產(chǎn)生低頻噪聲;另一類(lèi)是劇烈的地殼運(yùn)動(dòng),如地震(天然地震結(jié)束之后記錄到的地震尾波(coda wave)信號(hào)可視為隨機(jī)性背景噪聲)、火山活動(dòng)、巖漿脈動(dòng)、滑坡、巖崩、泥石流、巖溶塌陷、海浪、隨機(jī)性的熱擾動(dòng)引起的大氣壓變化,等等.這類(lèi)地殼運(yùn)動(dòng)可以產(chǎn)生中高頻背景噪聲.人類(lèi)活動(dòng)可以產(chǎn)生大量的背景噪聲,如火車(chē)/汽車(chē)/輪船等的運(yùn)動(dòng)、飛機(jī)起降、鉆探、采礦、打樁、工廠內(nèi)的機(jī)械振動(dòng)、學(xué)校和部隊(duì)操練,等等.
低頻背景噪聲(0.005~0.3 Hz)主要?dú)w因于海洋與大陸架和海岸帶的相互作用(Haubrich and McCamy,1969;Barstow et al.,1989;Bromirski et al.,1999;Bromirski,2001;Bromirski and Duennebier,2002;Webb,2007;Yang et al.,2008;Bromirski and Gerstoft,2009;魯來(lái)玉等,2009)、深?;虼笱笊畈繀^(qū)域的洋流作用(Haubrich and McCamy,1969;Webb et al.,1991;Cessaro, 1994;Webb,1998,2008;Bromirski,2001;Tanimoto,2005,2007;Stehly et al.,2006;Chevrot et al.,2007;Kedar et al.,2008;Koper and de Foy,2008;Koper et al.,2009)、地震Coda(Aki and Chouet,1975;Campillo and Paul,2003;Campillo,2006;Snieder et al.,2006b)以及大氣變化(Gutenberg,1947;Hasselmann,1963;Astiz and Creager,1994;Grevemeyer et al.,2000;Hoerling and Kumar,2002).高頻背景噪聲(>1 Hz)顯示晝夜和周變化規(guī)律,主要起因于人類(lèi)活動(dòng)(Bonnefoy-Claudet et al.,2006;Díaz et al.,2010).在傳統(tǒng)的微震頻帶(5~20 s),背景噪聲以基階R和L面波為主(例如Barstow et al.,1989;Tanimoto et al.,2006;Bonnefoy-Claudet et al.,2006),而在較高頻帶(4 Hz~2.5 s)背景噪聲的成分很復(fù)雜,不僅含有基階和高階模式的面波(Backus et al.,1964),體波成分也很豐富(例如Backus,1966;Tanimoto et al.,2006;Koper et al.,2010).利用國(guó)際監(jiān)測(cè)系統(tǒng)(IMS,International Monitoring System)的18個(gè)臺(tái)陣(臺(tái)陣尺寸2~28 km)的長(zhǎng)期記錄,Koper等(2010)分析了4 Hz~2.5 s頻帶噪聲的來(lái)源,發(fā)現(xiàn)在全球年度平均意義上Lg波成分約占50%,P波成分約占28%,其余為Rg波,并且在遠(yuǎn)離海岸帶的北太平洋(165°W,40°N)附近區(qū)域存在一個(gè)P波噪聲源的激發(fā)中心.臺(tái)灣車(chē)龍鋪斷層鉆探項(xiàng)目(TCDP)在井下950~1270 m深度段布設(shè)了垂向50 m臺(tái)間距的地震觀測(cè)陣列,對(duì)觀測(cè)記錄進(jìn)行的分析表明,高頻(>1 Hz)噪聲震源主要來(lái)自于人類(lèi)活動(dòng),其次來(lái)自于海洋噪聲源在地下介質(zhì)中的多次散射(Hillers et al.,2012).王奡等(2014)1)報(bào)道了遠(yuǎn)離海岸帶的西準(zhǔn)噶爾地區(qū)地震臺(tái)陣(離最近的海洋孟加拉灣約2800 km)可以觀測(cè)到周期為10~25 s來(lái)自北太平洋和北大西洋海岸帶產(chǎn)生的強(qiáng)噪聲,并且鑒別出來(lái)自5000 km之外的北大西洋風(fēng)暴潮所產(chǎn)生的頻散的Rg波.
關(guān)于背景噪聲起因問(wèn)題的爭(zhēng)論還會(huì)繼續(xù),但在一定程度上與人們布設(shè)臺(tái)陣所處的環(huán)境、采用拾震器響應(yīng)、觀測(cè)時(shí)間(時(shí)長(zhǎng)和時(shí)段)等相關(guān);客觀上與地球內(nèi)部過(guò)程、海陸相互作用、海洋和大氣的耦合及人類(lèi)活動(dòng)等密切相關(guān).對(duì)于區(qū)域性研究,一般利用1 Hz以下的低頻背景噪聲,主要關(guān)心背景噪聲的強(qiáng)度、成分、頻率范圍及方向性,而不必關(guān)心噪聲的起因.對(duì)于更小尺度的近地表研究,由于所利用的高頻背景噪聲主要由臺(tái)陣附近人類(lèi)活動(dòng)的時(shí)間和空間特性所決定,背景噪聲中的面波和體波成分都是重要的研究對(duì)象,因此分析噪聲源的起因?qū)τ诤侠聿荚O(shè)觀測(cè)臺(tái)陣、選擇觀測(cè)分量及利用何種噪聲成分等都十分重要.
1) 王奡, 羅銀河, 吳樹(shù)成等. 2014. 西準(zhǔn)噶爾地區(qū)地震背景噪聲源分析.
2.2 臺(tái)陣響應(yīng)函數(shù)和聚束分析
即使產(chǎn)生噪聲的震源屬性不清,由于記錄的噪聲來(lái)自地下,其中必然包含著傳播路徑上介質(zhì)速度分布的信息.但是,需要提取的信息不可避免地與觀測(cè)噪聲的臺(tái)陣幾何參數(shù)和噪聲的來(lái)源方位、頻率和慢度緊密相關(guān).因此,在說(shuō)明從噪聲中提取有效信號(hào)的原理之前,簡(jiǎn)單介紹臺(tái)陣響應(yīng)函數(shù)的概念和噪聲振幅-頻率-方位-慢度分析的聚束技術(shù).
臺(tái)陣響應(yīng)指一個(gè)臺(tái)陣可分辨信號(hào)的頻率-波數(shù)域特性,可以采用如下的臺(tái)陣響應(yīng)函數(shù)描述(Rost and Thomas,2002,2009):
(1)
式中A表示臺(tái)陣響應(yīng)函數(shù),k為波矢,k0為參考站(一般為臺(tái)陣中心)波矢,M表示臺(tái)站數(shù),rj表示第j個(gè)臺(tái)站相對(duì)于參考臺(tái)站的位置矢量,i是虛數(shù)單位.由(1)式可見(jiàn),臺(tái)陣響應(yīng)函數(shù)對(duì)任意一個(gè)臺(tái)站接收到波矢為k(也就是慢度矢量u)的波前相對(duì)于參考臺(tái)站波矢為k0(即慢度矢量u0)的波前的時(shí)間延遲給出一個(gè)估計(jì).因此,臺(tái)陣響應(yīng)函數(shù)可以刻畫(huà)一個(gè)臺(tái)陣對(duì)來(lái)自某一方向、具有不同頻率和慢度的波前的分辨能力.臺(tái)陣本質(zhì)上可視為一個(gè)空間濾波器,陣列大小和臺(tái)站間距決定了一個(gè)臺(tái)陣的波數(shù)選擇范圍,也就是一個(gè)臺(tái)陣可以分辨的最大波長(zhǎng)不會(huì)超過(guò)其最大展布范圍的1/2,可以分辨的最小波長(zhǎng)不會(huì)超過(guò)其最小臺(tái)站間距的1/2.同時(shí)地,臺(tái)陣還具有方向選擇性,例如一個(gè)線(xiàn)型臺(tái)陣對(duì)于平行于排列方向的波的分辨力總是最好,而對(duì)于垂直于排列方向的波則幾乎沒(méi)有分辨能力.另外,臺(tái)陣響應(yīng)函數(shù)是一個(gè)疊加過(guò)程,因此其輸出的信噪比與臺(tái)站數(shù)M的平方根成正比.
仔細(xì)考察(1)式可知,臺(tái)陣響應(yīng)函數(shù)是一個(gè)相位函數(shù)經(jīng)臺(tái)站數(shù)歸一化的量,僅決定于臺(tái)陣的幾何參數(shù),反映在單位振幅平面波進(jìn)入臺(tái)陣的前提下,參考臺(tái)站與其余臺(tái)站間對(duì)某一方位的某一頻率-慢度區(qū)間內(nèi)信號(hào)時(shí)延(由相位決定)的相干性測(cè)度,輸出的數(shù)值越大反映這種相干性越好,但它不能反映臺(tái)站之間所測(cè)信號(hào)的振幅相干性.當(dāng)需要分析實(shí)際臺(tái)陣記錄的振幅-頻率-方位-慢度的四維特性時(shí),僅利用(1)式顯然不夠.簡(jiǎn)單的做法是將參考臺(tái)站記錄的振幅譜乘以(1)式定義的臺(tái)陣響應(yīng)函數(shù)作為輸出,即形成了參考臺(tái)站的聚束輸出.
由于信號(hào)具有空間上的相干性,可以引入互譜密度矩陣來(lái)測(cè)度任意兩個(gè)臺(tái)站之間在某個(gè)頻率的相位延遲,并以此作為聚束輸出的加權(quán)矩陣.用所有臺(tái)站記錄在特定頻率的系綜平均可以形成互譜密度矩陣(Gerstoft et al.,2006;Gerstoft and Tanimoto,2007).
由于背景噪聲源的廣泛存在,不僅在地震學(xué)領(lǐng)域,在聲學(xué)、統(tǒng)計(jì)物理學(xué)等領(lǐng)域,學(xué)者們均對(duì)背景噪聲開(kāi)展了理論與實(shí)驗(yàn)研究.
在勘探地震學(xué)領(lǐng)域,1968年Claerbout發(fā)表了里程碑式論文“Synthesis of a layered medium from its acoustic transmission response”,論證了在水平層狀介質(zhì)中自由地表接收到的從底部來(lái)的透射地震記錄進(jìn)行自相關(guān)等價(jià)于其自激自收模擬記錄(包含負(fù)時(shí)間記錄以及零時(shí)刻的脈沖響應(yīng))(Claerbout,1968).由于勘探地震學(xué)界長(zhǎng)期采用近地表人工可控震源進(jìn)行激發(fā),Claerbout的這一思想長(zhǎng)期沒(méi)有得到重視,而被其學(xué)生稱(chēng)為Claerbout猜想(Rickett and Claerbout,1999):通過(guò)計(jì)算地表兩點(diǎn)噪聲記錄的互相關(guān),可以重建在其中一點(diǎn)激發(fā)而在另一點(diǎn)接收的波場(chǎng).1987年,Steve Cole在美國(guó)斯坦福大學(xué)進(jìn)行了無(wú)源三維觀測(cè)實(shí)驗(yàn).他在校園內(nèi)約0.5 km2的面積上布設(shè)了4056個(gè)檢波器,識(shí)別出從美國(guó)中西部傳來(lái)的頻率高達(dá)10 Hz的地震波,天然地震學(xué)家們當(dāng)時(shí)很驚異于能記錄到如此遠(yuǎn)的高頻地震波.由于該實(shí)驗(yàn)僅記錄了20 min的背景噪聲,Cole沒(méi)有更多的收獲(Cole,1995),該成果也沒(méi)有引起學(xué)界足夠的重視.與Claerbout(1968)類(lèi)似的想法,25年后出現(xiàn)在太陽(yáng)地震學(xué)中.Duvall等(1993)對(duì)太陽(yáng)表面的噪聲進(jìn)行測(cè)量,通過(guò)對(duì)噪聲進(jìn)行互相關(guān)分析近似獲取了太陽(yáng)地震波旅行時(shí)距曲線(xiàn),從而得到了太陽(yáng)外層的三維流速度結(jié)構(gòu).這項(xiàng)技術(shù)被稱(chēng)為“acoustic daylight imaging”(聲學(xué)日光成像)技術(shù)(Rickett and Claerbout,1999).太陽(yáng)地震學(xué)家搶在地球物理學(xué)家之前證實(shí):對(duì)噪聲的互相關(guān)計(jì)算能夠提供脈沖響應(yīng)地震圖.兩年之后,太陽(yáng)物理學(xué)家們發(fā)明了米切爾森多普勒成像儀(Michelson Doppler Imager, MDI),并采用上述技術(shù)對(duì)太陽(yáng)耀斑內(nèi)部的聲學(xué)速度進(jìn)行成像.荷蘭Delft理工大學(xué)Wapenaar(2004)將Claerbout猜想推廣到不均勻介質(zhì)的情況,此后其領(lǐng)導(dǎo)的研究組發(fā)表了一系列文章,用積分理論和互易定理論證了Claerbout猜想對(duì)三維復(fù)雜的聲學(xué)和彈性介質(zhì)以及不同類(lèi)型的震源均成立(Wapenaar and Fokkema,2006;Wapenaar et al.,2006;2008),并通過(guò)數(shù)值模擬合成地震數(shù)據(jù)和實(shí)際數(shù)據(jù)進(jìn)行了驗(yàn)證(Draganov et al.,2006,2009).值得提及的是,猶他大學(xué)的Schuster在文章中首次使用了地震干涉法(Seismic Interferometry,SI)這一稱(chēng)謂(Schuster et al.,2004),在此之前他曾在斯坦福大學(xué)Claerbout教授領(lǐng)導(dǎo)的勘探地震項(xiàng)目組(Seismic Exploration Project, SEP)做過(guò)訪(fǎng)問(wèn)教授.Schuster把Claerbout的思想推廣到四種情況下的成像問(wèn)題:(1)被動(dòng)源地震成像;(2)反射地震CDP道集多次波成像;(3)透射的轉(zhuǎn)換波如PS波成像;(4)震源位置成像.特別地,他們?cè)诰碌卣鸪上穹矫嫒〉昧嗣黠@進(jìn)展(Schuster,2005;Xiao et al.,2006;Xue et al.,2009).這些成果集中體現(xiàn)在著作《Seismic Interferometry》中(Schuster,2009).
可以用以證明Claerbout猜想的重要進(jìn)展幾乎同時(shí)期地發(fā)生在聲學(xué)領(lǐng)域.Fink等(1989)證實(shí)了在無(wú)損耗介質(zhì)中,瞬時(shí)聲場(chǎng)滿(mǎn)足時(shí)間反轉(zhuǎn)不變性和空間互換性,并提出了時(shí)間反轉(zhuǎn)鏡像(Time-reversal Mirror, TRM)的概念.Bakulin和Calvert(2004,2006)基于時(shí)間反轉(zhuǎn)不變性提出了勘探地震學(xué)上的虛源法(Virtual Source Method,VSM),這種方法巧妙地解決了復(fù)雜近地表結(jié)構(gòu)對(duì)傳統(tǒng)的基于速度模型的方法在深部成像方面的巨大影響.近年來(lái)快速發(fā)展的根據(jù)單邊(反射或透射)地震響應(yīng)的聚焦成像算法(Rose,2002;Wapenaar et al.,2011,2012)是虛源法或地震干涉法和經(jīng)典逆散射理論結(jié)合的結(jié)果(Broggini and Snieder,2012),可以讓層間多次波正確歸位(Slob et al.,2014;Broggini et al.,2014),算法上與薛定諤方程的列維坦-劉維爾-馬琴柯迭代積分解法類(lèi)似(Wapenaar et al.,2013,2014a,2014b),但其主要得益于VSM或SI的概念.
在實(shí)驗(yàn)物理學(xué)方面,Weaver和Lobkis通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)對(duì)兩個(gè)傳感器接收到的由于電子撞擊晶格缺陷或者空氣分子與物體表面碰撞引起的熱擾動(dòng)噪聲進(jìn)行互相關(guān)計(jì)算,得到的波形近似兩點(diǎn)間的格林函數(shù)(Weaver and Lobkis,2001, 2003;Lobkis and Weaver,2001).這一結(jié)論不久就從封閉系統(tǒng)推廣到開(kāi)放系統(tǒng)(Weaver and Lobkis,2002,2005).這一發(fā)現(xiàn)的理論貢獻(xiàn)在物理學(xué)上可以理解為:刻畫(huà)物理系統(tǒng)的本征性質(zhì)時(shí),熱動(dòng)力學(xué)平衡并非是必不可少的條件.正如Snieder等(2009)所指出的:由于地球系統(tǒng)上的場(chǎng)并不具備熱動(dòng)力學(xué)平衡的條件,因此這項(xiàng)工作為地震學(xué)家們利用背景噪聲來(lái)對(duì)地球內(nèi)部進(jìn)行成像準(zhǔn)備了理論前提.
在天然地震學(xué)領(lǐng)域,地震學(xué)家們對(duì)地震尾波(Coda)已經(jīng)進(jìn)行了長(zhǎng)達(dá)半個(gè)多世紀(jì)的研究,而與此相關(guān)的研究工作的源頭可以追溯到Aki在20世紀(jì)50年代奠定的基礎(chǔ),他提出了用局部微震(microtremor)產(chǎn)生的背景噪聲研究地下結(jié)構(gòu)的設(shè)想,建立了在空間上觀測(cè)微震來(lái)提取面波頻散性質(zhì)的基本公式(Aki,1957).Asten(1976,1978)將Aki的思想進(jìn)行了詳細(xì)論證,并推廣到微震多分量記錄和多模式面波情形.在工程地震方面,基于Aki建立的理論基礎(chǔ),日本學(xué)者提出了利用噪聲或微震的空間自相關(guān)(SPatial Auto-Correlation, SPAC)方法獲取近地表剪切波速度(Okada,2003).雖然人們?cè)缫颜J(rèn)識(shí)到噪聲的空間自相關(guān)(SPAC)與時(shí)域互相關(guān)利用的是同一個(gè)物理事實(shí),但直到最近才由Tsai和Moschetti(2010)給出了SPAC方法與噪聲時(shí)域互相關(guān)之間的顯式聯(lián)系.在Aki思想的啟發(fā)下,Campillo和Paul(2003)建立了空間兩點(diǎn)觀測(cè)到的尾波互相關(guān)函數(shù)與格林函數(shù)之間的聯(lián)系.通過(guò)對(duì)臺(tái)站記錄的101個(gè)遠(yuǎn)震事件的相同時(shí)間段的尾波記錄進(jìn)行兩兩互相關(guān)計(jì)算,經(jīng)過(guò)疊加后發(fā)現(xiàn)結(jié)果與理論模型合成的格林函數(shù)一致,并且得到的波形具有R和L面波的極化特征及相應(yīng)的群速度(Campillo and Paul,2003).這篇論文可以視為地震學(xué)家利用背景噪聲進(jìn)行地球內(nèi)部速度成像的開(kāi)山之作.隨即,Shapiro和Campillo等合作研究,發(fā)表了2篇引用率很高的著名論文(Shapiro and Campillo, 2004; Shapiro et al., 2005),成為推動(dòng)地震背景噪聲研究和應(yīng)用的重要標(biāo)志.與此同時(shí),科羅拉多礦業(yè)學(xué)院波動(dòng)現(xiàn)象研究中心的Snieder(2004)揭示了隨機(jī)場(chǎng)源在空間上對(duì)格林函數(shù)恢復(fù)有貢獻(xiàn)的僅分布在“穩(wěn)相”區(qū)域.這一發(fā)現(xiàn)同時(shí)奠定了研究噪聲源分布、面波高階模式及不同模式間能量轉(zhuǎn)換的基礎(chǔ).隨后,他相繼證明了非時(shí)間反轉(zhuǎn)不變系統(tǒng),如擴(kuò)散方程(Snieder,2006a)、不均勻耗散介質(zhì)中的聲波方程(Snieder,2007)、電磁場(chǎng)及勢(shì)場(chǎng)方程(Slob et al.,2007,2010),對(duì)空間兩點(diǎn)的擾動(dòng)時(shí)間序列進(jìn)行互相關(guān)同樣能給出兩點(diǎn)間介質(zhì)格林函數(shù)的結(jié)論.
需要指出,利用背景噪聲的互相關(guān)運(yùn)算提取的格林函數(shù)并非數(shù)學(xué)上嚴(yán)格定義的格林函數(shù),而是格林函數(shù)和噪聲源功率譜的乘積(Wapenaar et al.,2010a, 2010b),因此常稱(chēng)之為經(jīng)驗(yàn)格林函數(shù)(Empirical Green′s Function,EGF).利用互相關(guān)的自聯(lián)算子,也就是采用反褶積運(yùn)算所獲得的也不是嚴(yán)格意義上的格林函數(shù),因?yàn)楫?dāng)兩臺(tái)站合并為一處時(shí),該點(diǎn)的波場(chǎng)必須消失(Wapenaar et al.,2010b),即需要滿(mǎn)足“固支(clamped)邊界條件”(Vasconcelos and Snieder,2008).
4.1 無(wú)限大空間存在無(wú)限多隨機(jī)噪聲源的格林函數(shù)恢復(fù)公式
Cox(1973)證明了速度為c的介質(zhì)中,空間距離為r的任意兩點(diǎn)A和B的噪聲記錄的歸一化互譜密度CAB(ω)為:
(2)
(2)式的時(shí)間域表達(dá)式為:
(3)
對(duì)(3)式兩端求導(dǎo)數(shù),可以得到:
(4)
(4)式右端中的兩項(xiàng)對(duì)應(yīng)于A和B兩點(diǎn)之間相向而行的波的格林函數(shù),說(shuō)明將A和B點(diǎn)噪聲記錄進(jìn)行互相關(guān)后對(duì)時(shí)間求導(dǎo)數(shù)即可以獲得這兩點(diǎn)間介質(zhì)的格林函數(shù).雖然(4)式在數(shù)學(xué)上是精確的,但由于是從歸一化相關(guān)函數(shù)導(dǎo)出的,因此要求在無(wú)損耗的無(wú)限大介質(zhì)中分布有無(wú)限的隨機(jī)噪聲源.
Roux等(2005a)導(dǎo)出了類(lèi)似的公式,并且證明了格林函數(shù)恢復(fù)的時(shí)間疊加性:只要噪聲源的空間位置不變,所有的噪聲源在同一時(shí)刻激發(fā)不會(huì)改變相關(guān)函數(shù)恢復(fù)的結(jié)果(圖1).
圖1 噪聲源在不同時(shí)刻激發(fā)后從臺(tái)站A和B記錄互相關(guān)恢復(fù)的格林函數(shù)與這些噪聲源累積在某一時(shí)刻同時(shí)激發(fā)等效示意圖 (修改自Roux et al.,2005a)圖中A和B表示兩個(gè)臺(tái)站,五角星表示噪聲源的位置,以不同顏色表示在不同時(shí)刻激發(fā).Fig.1 Retrieved Green′s function from cross-correlation of two-station records of A and B for noise sources at different times (e.g. at t1 and t2) is equivalent to accumulate all noise sources over time (all t) (modified from Roux et al., 2005a)Circled plus and star represent station and noise, respectively, with different color indicating different times.
4.2 彈性介質(zhì)中全波場(chǎng)格林函數(shù)恢復(fù)公式
業(yè)已證明在彈性介質(zhì)中任意兩點(diǎn)的格林函數(shù)滿(mǎn)足(Wapenaar,2004;van Manen et al.,2006;Curtis et al.,2009;Kimman and Trampert,2010):
(5)
(5)式左端項(xiàng)表示xB處m方向的點(diǎn)力脈沖在xA處產(chǎn)生的i方向的位移(頻率域),也即A和B點(diǎn)之間的格林函數(shù);*表示復(fù)數(shù)共軛,等同于時(shí)間域時(shí)間反轉(zhuǎn);(5)式右端的場(chǎng)源x位于一任意閉合面S上,dS表示該閉合面上的微元,其外法向?yàn)閚j;?kGil(xA,x,ω)表示位移的k方向?qū)?shù)(等效于k方向應(yīng)變),cnjkl表示場(chǎng)源處的剛度張量;njcnjkl?kGil(xA,x,ω)本質(zhì)上是牽引力(traction).若假定某一閉合面上的應(yīng)力、位移及其初值均為零,Knopoff和Gangi(1959)根據(jù)矩守恒導(dǎo)出了該閉合面所圍體積內(nèi)的互換原理表達(dá)式,與(5)式在本質(zhì)上一致(Wapenaaretal.,2010a).注意(5)式中的循環(huán)求和符號(hào)根據(jù)愛(ài)因斯坦求和習(xí)慣而省略了.(5)式對(duì)于完全彈性介質(zhì)中的全波場(chǎng)是精確成立的,采用反褶積的干涉原理可以外推到耗散介質(zhì)(Wapenaaretal.,2008).
根據(jù)(5)式可以重建彈性介質(zhì)中空間任意兩點(diǎn)間的格林函數(shù):將其中一個(gè)記錄點(diǎn)的格林函數(shù)和另一個(gè)記錄點(diǎn)與牽引力有關(guān)的格林函數(shù)進(jìn)行互相關(guān)并求和.牽引力可用偶極子源(dipole)表達(dá),在一般不知道噪聲源的位置,更不會(huì)知道源處剛度參數(shù)情況下,(5)式無(wú)法應(yīng)用.因此為實(shí)際應(yīng)用考慮,通常用標(biāo)度化的(scaled)格林函數(shù)或者直接用位移(可用單極子源等效)來(lái)代替,也就是用標(biāo)度化的單極子源(monopole)代替偶極子源(dipole),此時(shí),如果波場(chǎng)是擴(kuò)散的和閉合面上能量是等配分的(所有彈性波模式激發(fā)的幅度在閉合面上處處相等),則這種近似可以給出足夠精確的格林函數(shù)(WeaverandLobkis,2001).4.3 彈性介質(zhì)中面波格林函數(shù)恢復(fù)公式
對(duì)于非擴(kuò)散的波,遠(yuǎn)場(chǎng)單模式面波格林函數(shù)可以用(6)式恢復(fù)(Halliday and Curtis,2008):
(6)
式中A(ω)是與頻率有關(guān)的幅度因子,在格林函數(shù)恢復(fù)時(shí)是未知量.由于噪聲源的分布不均和數(shù)據(jù)處理中的各種運(yùn)算等均可能造成振幅誤差,因此一般認(rèn)為恢復(fù)的格林函數(shù)的振幅總是不正確的,在實(shí)際應(yīng)用中一般忽略幅度因子;下標(biāo)p表示在積分面S上任意場(chǎng)源位置處對(duì)x,y,z三個(gè)方向的求和;iω等效于時(shí)間求導(dǎo).(6)式對(duì)單模式面波總是成立的,要求右端項(xiàng)記錄到的波場(chǎng)是單一模式的面波,而實(shí)際記錄一定是多模式的.
4.4 基于噪聲的空間自相關(guān)(SPAC)法
空間自相關(guān)是理論上推導(dǎo)出來(lái)的一種提取背景噪聲中面波信息的方法(Aki,1957).定義空間自相關(guān)函數(shù)
(7)
式中x為空間區(qū)域A中的任意變量即x∈A,r0為不超出空間區(qū)域A的某一距離,φ為t時(shí)刻x點(diǎn)觀測(cè)的場(chǎng)值u(x,t)與x+r0點(diǎn)觀測(cè)的場(chǎng)值u(x+r0,t)相乘后在區(qū)域A進(jìn)行求和并歸一化后的函數(shù).式(7)要求在空間區(qū)域A內(nèi)所有點(diǎn)布臺(tái)站,并假定φ的值與時(shí)間t無(wú)關(guān),顯然不切實(shí)際且不可應(yīng)用.
假設(shè)噪聲波場(chǎng)在時(shí)空平穩(wěn),φ的值通過(guò)長(zhǎng)時(shí)間(如2T)平均應(yīng)趨于一個(gè)穩(wěn)定的值,因此可以用時(shí)間平均來(lái)代替空間平均,即
(8)
另外注意到φ在空間的均值滿(mǎn)足
(9)
式(9)說(shuō)明任意臺(tái)站間距的空間平均可以轉(zhuǎn)化為方位(角度域)平均.如果在一圓形區(qū)域進(jìn)行觀測(cè),將不同半徑上的臺(tái)站與圓心處臺(tái)站間的空間自相關(guān)函數(shù)對(duì)圓心處臺(tái)站自身的空間自相關(guān)函數(shù)歸一化,則可以定義一個(gè)新的函數(shù)——SPAC系數(shù)ρ(r,ω),可以證明(Aki,1957):
(10)
式中c(ω)為與頻率有關(guān)的相速度,J0為第一類(lèi)零階貝塞爾函數(shù).
這樣當(dāng)假設(shè)時(shí)空穩(wěn)態(tài)時(shí),兩臺(tái)站間的空間自相關(guān)系數(shù)與第一類(lèi)零階貝塞爾函數(shù)對(duì)應(yīng),從而可以利用(10)式估計(jì)c(ω),即提取兩臺(tái)站間距為r的頻散曲線(xiàn).當(dāng)時(shí)空非穩(wěn)態(tài)時(shí)(如入射波場(chǎng)具優(yōu)勢(shì)方位時(shí)),對(duì)應(yīng)于某一臺(tái)站距的空間自相關(guān)系數(shù)對(duì)所有方位進(jìn)行平均后仍然與第一類(lèi)零階貝塞爾函數(shù)對(duì)應(yīng),所以可以用于臺(tái)陣數(shù)據(jù).
5.1 場(chǎng)源分布
Kimman和Trampert(2010)利用數(shù)值仿真數(shù)據(jù)研究了(6)式恢復(fù)面波基階模式格林函數(shù)的適用性.在場(chǎng)源完美分布(perfect source distribution)情況下,基本結(jié)論是:1)恢復(fù)的瑞雷波基階模式振幅與真振幅存在差異.這一點(diǎn)顯然是忽略了未知的幅度因子A(ω)所造成;2)出現(xiàn)假的且能量不可忽略的到達(dá)波.Snieder等(2006b)第一次在不均勻場(chǎng)源分布的情況下識(shí)別出了這種假的到達(dá)波.Halliday和Curtis(2008)同樣在不完美場(chǎng)源分布情況下識(shí)別出了假的震動(dòng)信號(hào),并且解釋為產(chǎn)生于不同模式之間的交叉項(xiàng)(定義為不同模式之間的互相關(guān),由不同模式之間的能量轉(zhuǎn)換所產(chǎn)生).在Kimman和Trampert(2010)給出的數(shù)值試驗(yàn)中,當(dāng)場(chǎng)源的空間分布是均勻的或完美的,只要正確地恢復(fù)了每個(gè)模式的格林函數(shù),求和之后的交叉項(xiàng)之和為零;同時(shí),他們也證明了Love波與Rayleigh波之間的相互作用在場(chǎng)源完美分布時(shí)不會(huì)產(chǎn)生假的到達(dá)波.因此,實(shí)際應(yīng)用中所觀察到的假的能量,不僅可能與場(chǎng)源的不完美分布有關(guān),還有可能與其他因素如場(chǎng)源的性質(zhì)(參考對(duì)(5)式的討論)和場(chǎng)源距臺(tái)陣的距離等因素有關(guān).
需要指出,對(duì)于格林函數(shù)的高精度恢復(fù)來(lái)說(shuō),高階模式的面波能量識(shí)別是重要的.但是在場(chǎng)源具不完美分布時(shí),Love波與高階模式的Rayleigh波可能相互混疊,從而嚴(yán)重干擾高階模式Rayleigh波的恢復(fù),并且它們可能在同一時(shí)刻到達(dá),識(shí)別的難度非常大.
大量的研究業(yè)已表明,場(chǎng)源的空間分布對(duì)格林函數(shù)恢復(fù)的影響極大.前已述及,大量的研究表明背景噪聲主要起因于海岸帶區(qū)域并接近地球表面.因此當(dāng)臺(tái)陣接收到的噪聲主要由分布于自由表面附近的場(chǎng)源產(chǎn)生時(shí),前面導(dǎo)出的格林函數(shù)公式的前提條件(場(chǎng)源在空間完美分布)將不再成立,此時(shí)根據(jù)全波場(chǎng)相關(guān)恢復(fù)的格林函數(shù)與理論結(jié)果存在哪些偏差呢?我們知道,各向同性介質(zhì)中面波的傳播相速度與激發(fā)場(chǎng)源的深度無(wú)關(guān)(AkiandRichards,1980),因此在考慮場(chǎng)源的分布對(duì)面波格林函數(shù)恢復(fù)的影響時(shí)可以忽略介質(zhì)的速度因素.
數(shù)值試驗(yàn)表明(HallidayandCurtis,2008),當(dāng)場(chǎng)源僅位于地面時(shí),對(duì)全波場(chǎng)進(jìn)行相關(guān)處理會(huì)產(chǎn)生假的到達(dá)能量,而且依賴(lài)于地面上場(chǎng)源的性質(zhì)和分布,如當(dāng)只有單極子源時(shí)(即使在地表均勻分布)交叉項(xiàng)不能收斂到零.當(dāng)場(chǎng)源與接收對(duì)處于in-line方式或場(chǎng)源在地面完全均勻分布時(shí),虛假能量可以忽略不計(jì),說(shuō)明此時(shí)交叉項(xiàng)相互抵消;當(dāng)非均勻的場(chǎng)源分布與接收對(duì)處于cross-line或off-line方式時(shí),會(huì)產(chǎn)生具很強(qiáng)能量的假到達(dá)波;與接收對(duì)cross-line方向均勻分布大量場(chǎng)源時(shí),有利于正確恢復(fù)面波的振幅.上述結(jié)果與穩(wěn)相法給出的結(jié)論一致(Snieder,2004;Sniederetal.,2006b;SniederandLarose,2013).如圖2所示,假設(shè)介質(zhì)均勻,當(dāng)場(chǎng)源S在遠(yuǎn)離兩記錄點(diǎn)連線(xiàn)區(qū)域時(shí),由于從場(chǎng)源出發(fā)到達(dá)兩記錄點(diǎn)的時(shí)差tSA-tSB不等于兩記錄點(diǎn)間走時(shí)tAB,所以這些區(qū)域的場(chǎng)源只有在疊加過(guò)程中將其影響消除才能正確恢復(fù)兩記錄點(diǎn)間的格林函數(shù).當(dāng)有場(chǎng)源S′位于圖中陰影區(qū)域時(shí),可以近似滿(mǎn)足tAB≈tSA-tSB,因此疊加后來(lái)自這些區(qū)域場(chǎng)源的貢獻(xiàn)一定最大.格林函數(shù)恢復(fù)中的這種疊加(積分)過(guò)程,與數(shù)值積分中的穩(wěn)相法(Bleistein,1984)類(lèi)似,因此稱(chēng)其為穩(wěn)相區(qū)域.基于噪聲源時(shí)間-空間分布的隨機(jī)性,只要臺(tái)陣記錄的時(shí)間足夠長(zhǎng),我們總能得到信噪比很高的經(jīng)驗(yàn)格林函數(shù).已有的實(shí)驗(yàn)研究表明(如陳偉,2010;張寶龍,2013),信噪比隨疊加次數(shù)的變化具有飽和效應(yīng),并且嚴(yán)重依賴(lài)于場(chǎng)源分布和臺(tái)站對(duì)之間的空間關(guān)系.
由于地下的場(chǎng)源對(duì)激發(fā)高階模式的面波有利(Xuetal.,2010),因此當(dāng)缺乏深處的場(chǎng)源(即使場(chǎng)源在地表均勻分布)時(shí),無(wú)法正確恢復(fù)高階模式面波(HallidayandCurtis,2008).場(chǎng)源離接收站的距離變化不影響交叉項(xiàng)的能量大小,只是交叉項(xiàng)在時(shí)間上晚于高階模式面波到達(dá)(HallidayandCurtis,2008).當(dāng)場(chǎng)源僅分布在地面且環(huán)繞接收對(duì)均勻分布時(shí),恢復(fù)的一階高階模式的Rayleigh面波與理論格林函數(shù)僅有幅度上的差異,而且與頻率有關(guān)(KimmanandTrampert,2010).噪聲源不均勻分布且速度各向異性介質(zhì)對(duì)面波相速度(T=10~30 s)各向同性部分的影響非常小(Yao and van der Hilst,2009),一般小于1%(Harmon et al.,2010).但在介質(zhì)異常復(fù)雜的近地表,噪聲源分布不均勻可能導(dǎo)致面波相速度(1~5 Hz)出現(xiàn)~10%的偏差2).
圖2 對(duì)兩臺(tái)站A和B間格林函數(shù)恢復(fù)的二維震源分布穩(wěn)相區(qū)域示意圖(引自Snieder and Larose, 2013)Fig.2 The stations A and B in two dimensions and the stationary phase regions for sources (follow Snieder and Larose, 2013)
圖3 (a) 對(duì)于面波格林函數(shù)恢復(fù),噪聲源(紅色實(shí)心圓)可以分布在接收臺(tái)站對(duì)連線(xiàn)的任意位置. (b) 對(duì)于體波格林函數(shù)恢復(fù), 只有源S(紅色實(shí)心圓)有貢獻(xiàn), 而其他位置的噪聲源(空心紅色圓)沒(méi)有貢獻(xiàn)(修改自Snieder and Larose,2013)Fig.3 (a) For surface waves, noise sources (solid red circles) can be located anywhere on the receiver line. (b) For body waves, only the source S (solid red circle), and not the other noise sources (hollow red circles), gives the body wave that propagates between the receivers (modified from Snieder and Larose,2013)
如圖3所示,假設(shè)介質(zhì)均勻,所有震源(紅色實(shí)心圓)對(duì)A和B點(diǎn)記錄相關(guān)疊加后的面波格林函數(shù)均有貢獻(xiàn)(圖3a),但只有S處的震源對(duì)恢復(fù)的體波格林函數(shù)有貢獻(xiàn)(圖3b).因此,從噪聲中提取體波信息時(shí),場(chǎng)源分布的穩(wěn)相區(qū)域比面波小得多(Snieder and Larose,2013),面臨的技術(shù)困難要大得多.
2) Wang K, Luo Y, Yang Y. Correction of phase velocity bias caused by strong directional noise sources in high-frequency ambient noise tomography: a case study in Karamay, China.
圖4 某臺(tái)陣40°~70°方位(a)和130°~160°(b)方位噪聲互相關(guān)隨臺(tái)站間距排列圖及對(duì)應(yīng)頻帶的噪聲聚束分析輸出的能量隨方位(外圈標(biāo)注)和慢度(內(nèi)部圈層標(biāo)注,s/km) (c) (內(nèi)部資料)Fig.4 Noise cross-correlation changes with station separation for azimuthms of 40°~70° (a) and 130°~160° (b), and beamforming energy output at different azimuthm and slowness (c). The results are from a local seismic array (from technical report)
作為示例,圖4給出我們根據(jù)某地布設(shè)的臺(tái)陣觀測(cè)的噪聲記錄恢復(fù)的經(jīng)驗(yàn)格林函數(shù).比較圖4a和圖4b,對(duì)來(lái)自40°~70°的噪聲進(jìn)行互相關(guān)恢復(fù)的面波經(jīng)驗(yàn)格林函數(shù)的信噪比明顯高于其正交方向,而且因果和非因果部分的幅度并不對(duì)稱(chēng),這是因?yàn)樵撆_(tái)陣區(qū)域的噪聲主要來(lái)源于40°~70°方位(見(jiàn)圖4c).5.2 臺(tái)站間距
實(shí)際資料的處理實(shí)驗(yàn)表明(Chávez-García and Rodríguez,2007),臺(tái)站附近的局部速度結(jié)構(gòu)和臺(tái)站間距是控制面波格林函數(shù)恢復(fù)的最重要因素.對(duì)于局部速度結(jié)構(gòu)的影響將在后續(xù)部分討論.正確理解臺(tái)站間距對(duì)格林函數(shù)恢復(fù)的影響不僅可以指導(dǎo)實(shí)際中面向應(yīng)用對(duì)象的臺(tái)陣設(shè)計(jì),而且有利于理解噪聲地震學(xué)的原理和選擇數(shù)據(jù)處理方法.Bensen等(2007)根據(jù)大量的面波格林函數(shù)恢復(fù)的數(shù)據(jù)處理試驗(yàn),總結(jié)出如下經(jīng)驗(yàn)公式:
(11)
式中r表示臺(tái)站間距,λ為波長(zhǎng),T為周期,c為面波相速度.式(11)的含義是臺(tái)站間距必須大于或等于3倍波長(zhǎng)時(shí),才能可靠的恢復(fù)對(duì)應(yīng)波長(zhǎng)的面波格林函數(shù).換句話(huà)說(shuō),從兩臺(tái)站記錄的噪聲中可以恢復(fù)的面波格林函數(shù)的最長(zhǎng)周期小于臺(tái)站間距與速度比值的1/3.
為了進(jìn)一步厘清這一問(wèn)題,這里給出均勻介質(zhì)中導(dǎo)出的解析式進(jìn)行分析(Xu et al.,2013).噪聲互相關(guān)與兩臺(tái)站間格林函數(shù)的關(guān)系可以寫(xiě)為對(duì)場(chǎng)源進(jìn)行積分的形式(Roux et al.,2005a):
(12)式中rA、rB及rs分別為臺(tái)站A、B及場(chǎng)源的位置矢量;P為隨機(jī)噪聲源在時(shí)間-空間的系綜平均功率和記錄時(shí)間長(zhǎng)度內(nèi)噪聲源的產(chǎn)出量的乘積,此處假定為常數(shù);左端項(xiàng)為兩臺(tái)站記錄互相關(guān)的平均.假定3D自由空間中臺(tái)站A和B及場(chǎng)源rs點(diǎn)的坐標(biāo)分別為(a,0,0),(-a,0,0)及(x,y,z),若(12)式積分內(nèi)狄拉克Delta函數(shù)對(duì)互相關(guān)有意義(也就是對(duì)恢復(fù)的格林函數(shù)有貢獻(xiàn))的場(chǎng)源rs必須滿(mǎn)足
(13)
式中c為介質(zhì)面波相速度,t為時(shí)間.數(shù)學(xué)上,一平面內(nèi)與兩定點(diǎn)的距離之差為一定值的點(diǎn)的軌跡為雙曲線(xiàn),這兩定點(diǎn)稱(chēng)為雙曲線(xiàn)的焦點(diǎn).顯然,時(shí)間t滿(mǎn)足-2a≤ct≤2a,則由(13)式可知噪聲源必位于(14)式定義的一簇雙曲線(xiàn)上(假定z=0,即只討論噪聲源分布于地表的情形):
(14)
其標(biāo)準(zhǔn)雙曲線(xiàn)方程為:
(15)
(16)
(16)式所定義的角度可以用以度量噪聲源的分布范圍(參見(jiàn)圖5).如果要求兩臺(tái)站記錄的來(lái)自噪聲源的波產(chǎn)生相長(zhǎng)干涉,波從雙曲線(xiàn)上某源點(diǎn)到達(dá)A和B點(diǎn)的相位差應(yīng)不大于π/2(對(duì)應(yīng)1/4波長(zhǎng)),即從雙曲線(xiàn)上某點(diǎn)到達(dá)A和B點(diǎn)距離之差ct應(yīng)接近臺(tái)站間距2a(圖5)且滿(mǎn)足ct=nλ±d,d≤λ/4,n∈N(N為整數(shù)),此時(shí)
(17)
由式(17)易知,最小的臺(tái)站間距rmin當(dāng)且僅當(dāng)夾角θ為0°時(shí)取得,即場(chǎng)源位于兩臺(tái)站的連線(xiàn)上,此時(shí)rmin=λ/4.實(shí)際情況下,由于噪聲源的分布在空間是完全隨機(jī)的,根據(jù)(17)式計(jì)算的最小臺(tái)站間距與場(chǎng)源分布區(qū)域(以角度θ刻畫(huà))之間的關(guān)系示于圖6.當(dāng)場(chǎng)源分布區(qū)域超過(guò)±75.6°時(shí),要求最小的臺(tái)站間距必須大于一個(gè)波長(zhǎng),當(dāng)場(chǎng)源分布區(qū)域超過(guò)±85.3°時(shí),最小的臺(tái)站間距應(yīng)大于3倍波長(zhǎng).實(shí)際的地震噪聲記錄含有不相關(guān)的成分并隨機(jī)但不均勻分布,因此要求臺(tái)站間距大于3倍波長(zhǎng)是合理的.
另外,最小臺(tái)站間距還與在恢復(fù)的格林函數(shù)上可以分辨的走時(shí)問(wèn)題有關(guān)(Tsai, 2009).對(duì)于中心頻率為ω的平面波平行于臺(tái)站A和B的連線(xiàn)傳播,設(shè)兩臺(tái)站間的走時(shí)為t.一般地,為了準(zhǔn)確拾取走時(shí)t,要求t≥T/2(T為對(duì)應(yīng)于頻率ω的周期),也就是要求臺(tái)站間距至少大于1/2波長(zhǎng)(r≥cT/2).在實(shí)際應(yīng)用中,建議取上述兩種估計(jì)結(jié)果的較大者設(shè)計(jì)觀測(cè)臺(tái)陣.當(dāng)然,如果你有足夠多的臺(tái)站則可以忽略這一問(wèn)題.
圖5 由方程(15)定義的噪聲源分布雙曲線(xiàn), 接收臺(tái)站位于雙曲線(xiàn)焦點(diǎn)處(A和B), 其切線(xiàn)與接收臺(tái)站對(duì)連線(xiàn)所夾銳角(方程(16)定義) (引自Xu et al., 2013)Fig.5 Hyperbola by Eq.(15) with receivers of A and B at focus. The acute angle θ by Eq.(16) formed by the asymptote of a hyperbola with the x-axis in the first quadrant (from Xu et al., 2013)
圖6 最小臺(tái)站間距與噪聲源分布范圍的關(guān)系(引自Xu et al., 2013)Fig.6 Coverage angle versus minimum interstation distance. Mask (75.6°, 1) means the interstation distance is at least one wavelength when the noise coverage angle approaches 75.6° (from Xu et al., 2013)
根據(jù)美國(guó)USArray臺(tái)陣數(shù)據(jù),我們通過(guò)測(cè)試發(fā)現(xiàn),臺(tái)站間距至少在一個(gè)波長(zhǎng)時(shí)仍然和3倍波長(zhǎng)的頻散曲線(xiàn)是一致的(Luo et al.,2015).對(duì)于面波多道分析法(Multi-channel Analysis of Surface Waves,MASW)(Park et al.,1999),檢波器排列長(zhǎng)度等效于臺(tái)站間距(Xu et al.,2013),因此增加排列長(zhǎng)度有利于提高頻散曲線(xiàn)的時(shí)間-頻率域分辨率(Forbriger,2003;Xia et al.,2006).當(dāng)介質(zhì)的面波相速度越大,要求臺(tái)站間距越大,橫向分辨率隨之降低,因此密集布置臺(tái)站且覆蓋范圍大于成像區(qū)域是提高面波成像分辨率的必然要求.
另一個(gè)值得注意的問(wèn)題:3D格林函數(shù)的相位比2D格林函數(shù)提前π/4(Aki and Richards,1980),這是由于線(xiàn)源(2D源)可以視為點(diǎn)源(3D源)疊加(因而空間光滑平均)的結(jié)果.因此,進(jìn)行基于噪聲的面波勘探時(shí),實(shí)際測(cè)量的相位差應(yīng)該減去π/4才能用于計(jì)算相速度.對(duì)于近地表應(yīng)用來(lái)說(shuō),由于所利用的面波頻率高,臺(tái)站間距小,這一相移不能忽略.注意,不能混淆這一相移與對(duì)噪聲互相關(guān)函數(shù)的時(shí)間微分所產(chǎn)生的π/2相移.
6.1 ANT法
背景噪聲層析成像(Ambient Noise-based Tomography,ANT)法是目前區(qū)域和局部尺度上面波成像的主流方法.對(duì)于面波來(lái)說(shuō),大多數(shù)成像方法基于平面波入射到臺(tái)陣的假設(shè),因此經(jīng)典的思路是在獲得面波頻散曲線(xiàn)后,對(duì)每一個(gè)周期的頻散數(shù)據(jù)利用二維層析成像方法獲得光滑意義上優(yōu)化的群速度或相速度圖(Ditmar and Yanovskaya,1987;Yanovskaya and Ditmar,1990),然后再進(jìn)行逐點(diǎn)的一維反演(Xia et al.,1999),得到剪切波速度隨深度變化的信息.對(duì)于基于面波經(jīng)驗(yàn)格林函數(shù)恢復(fù)的ANT法,一個(gè)改進(jìn)是通過(guò)平面波模擬的迭代反演算法來(lái)校正噪聲源分布不均對(duì)面波相速度的影響,從而提高ANT結(jié)果的精度(Yao and van der Hilst,2009).
上述傳統(tǒng)的面波層析成像方法假設(shè)入射波沿著大圓路徑傳播,但實(shí)際上當(dāng)面波通過(guò)不均勻介質(zhì)時(shí),會(huì)發(fā)生散射和偏離大圓路徑傳播,同時(shí)使波前面扭曲,形成非平面波.為了克服這些問(wèn)題,相繼提出了雙平面波層析成像方法(TPWT)(Forsyth and Li,2005)及其改進(jìn)版(Yang and Forsyth, 2006; Yang,2014).其主要思路是:假定空間某點(diǎn)觀測(cè)到的每一個(gè)地震事件或背景噪聲都可以用兩列平面波入射后的干涉波場(chǎng)來(lái)表示,因此首先使用兩列平面波的干涉來(lái)擬合觀測(cè)到的入射波場(chǎng),以校正非平面波的影響,然后再進(jìn)行面波的層析成像.
6.2 ANET法
基于背景噪聲的程函方程層析成像(Ambient Noise-based Eikonal Tomography,ANET)方法(Lin et al.,2009)自提出以來(lái)就得到廣泛重視,并適用于近地表面波層析成像(de Ridder and Dellinger,2011),因此對(duì)其發(fā)展的背景作一介紹,以便有興趣的讀者追蹤歷史文獻(xiàn).
當(dāng)面波(即使是單模式面波)傳播路徑上存在橫向速度變化或地形影響時(shí),不僅會(huì)產(chǎn)生散射、繞射、共振等現(xiàn)象而改變波的振幅(例如Bostock and Kennett,1992;Friederich et al.,1993;Wielandt,1993;Van der Lee,1998;Kennett,1998;Maupin,2001;Wang et al.,2012),而且這種振幅的變化會(huì)引起計(jì)算的頻散曲線(xiàn)產(chǎn)生偏差(Wielandt,1993;Friederich et al.,2000;Xu et al.,2010).單色平面波在橫向均勻介質(zhì)中傳播遵循Helmholtz方程,傳播特性決定于波矢或結(jié)構(gòu)波數(shù)矢量(Wielandt,1993);而根據(jù)記錄的波場(chǎng)計(jì)算的波矢或動(dòng)態(tài)波數(shù)(Wielandt,1993)是將波場(chǎng)變換到頻域后對(duì)相位求負(fù)梯度的結(jié)果,兩者的偏差產(chǎn)生于實(shí)際波場(chǎng)振幅的空間變化(Friederich et al.,2000).可以簡(jiǎn)單證明(Wielandt,1993),面波相速度與幅度之間滿(mǎn)足如下關(guān)系:
(18)
(19)
對(duì)于基于噪聲的面波程函方程層析成像,關(guān)鍵是理解相位走時(shí)面的概念(Linetal.,2009).當(dāng)利用兩兩臺(tái)站記錄的互相關(guān)從噪聲中恢復(fù)EGFs(或者采用SI法獲得虛源地震記錄)后,將臺(tái)陣中的每一個(gè)有效臺(tái)站視為場(chǎng)源點(diǎn),設(shè)想從該源點(diǎn)出發(fā)的某一中心頻率的面波按照某個(gè)二維相位走時(shí)面到達(dá)其他臺(tái)站.為了構(gòu)建以某一臺(tái)站為源點(diǎn)的相位走時(shí)面,可以將所有與此臺(tái)站相關(guān)的EGFs按照距離排列成時(shí)間-距離剖面,然后逐一測(cè)量每一個(gè)EGFs中面波包絡(luò)的走時(shí),即拾取相對(duì)于所選定臺(tái)站的相位走時(shí),并通過(guò)空間插值形成有效頻帶內(nèi)任意中心頻率的二維規(guī)則網(wǎng)格的相位走時(shí)面.對(duì)某一網(wǎng)格內(nèi)的相位走時(shí)求波路徑方向(該網(wǎng)格與視作源點(diǎn)的臺(tái)站連線(xiàn)方向)的局部導(dǎo)數(shù),即可以獲得該方向的相速度.如果臺(tái)陣內(nèi)有n個(gè)臺(tái)站,重復(fù)上述過(guò)程,在每一個(gè)網(wǎng)格內(nèi)可生成n個(gè)具有方向的相速度值,顯然可以據(jù)此考察該臺(tái)陣覆蓋區(qū)域的面波相速度的各向異性.如果各向異性不顯著,可以通過(guò)n個(gè)值的簡(jiǎn)單平均求得每個(gè)網(wǎng)格點(diǎn)的相速度.為了提高層析成像的精度,可以根據(jù)EGFs的信噪比取舍其是否參與計(jì)算、采用全局光滑插值、剔除異常臺(tái)站等技術(shù)措施.
從上述對(duì)算法的描述易見(jiàn),該方法不依賴(lài)于速度模型,無(wú)需迭代,計(jì)算量小,還可以提供各向異性信息和相速度估計(jì)的不確定性信息,但空間分辨率不大于臺(tái)站間距(Lin et al.,2009).這是一種值得推薦在近地表調(diào)查中應(yīng)用和進(jìn)一步發(fā)展的方法.
6.3 SI或VSM法
地震干涉法(Schuster et al.,2004;Schuster,2009)或虛源法(Bakulin and Calvert,2004,2006)已從其最初的定義拓展到幾乎涵蓋噪聲地震學(xué)的所有方面(Snieder and Larose,2013).本文放棄從理論上建立它們之間聯(lián)系的努力,有興趣的讀者可以參考Wapenaar等(2010a, 2010b).由于這兩種方法都起源于勘探地震學(xué)領(lǐng)域,因此主要針對(duì)反射體波響應(yīng)的提取.對(duì)于圖7所示情形,將圖7a和圖7b進(jìn)行互相關(guān)可以得到圖7c,但圖7c等效于其中的一個(gè)記錄點(diǎn)處放置了并不存在的場(chǎng)源,互相關(guān)運(yùn)算可視為干涉算子,這就是地震干涉法或虛源法的1D簡(jiǎn)單解釋.顯然,自相關(guān)生成自激自收的地震記錄,互相關(guān)生成共虛源的炮道集.
在油氣勘探中,獲取勘探目標(biāo)的反射響應(yīng)是反射地震數(shù)據(jù)處理的主要任務(wù),但近地表復(fù)雜覆蓋層或者海洋油氣勘探中的鹽丘對(duì)獲取深部油氣藏目標(biāo)的有效反射構(gòu)成嚴(yán)重障礙.Bakulin和Calvert(2004,2006)提出了在井下觀測(cè)地震波場(chǎng),并利用井中兩道記錄之間的互相關(guān)消除上部地層的影響而獲得勘探目標(biāo)反射響應(yīng)的設(shè)想(圖8),并將其命名為虛源法.
頻率域相關(guān)型地震干涉法提取格林函數(shù)的公式可以寫(xiě)為(Wapenaar et al.,2010a):
(20)
圖7 SI法示意圖(a) 地下某一場(chǎng)源激發(fā)的地震波被地表某處一檢波器記錄到,(b) 被第一個(gè)檢波器接收到的波向下傳播被地下某點(diǎn)反射后返回地表而被第二個(gè)檢波器記錄到,(c) 將2個(gè)檢波器記錄進(jìn)行互相關(guān)運(yùn)算消除了從場(chǎng)源出發(fā)的波到第一個(gè)檢波器的傳播信息,這等效于將震源置于第一個(gè)檢波器而在第二個(gè)檢波器處接收(引自Schuster,2009).Fig.7 Principle of seismic interferometry(a) A wave from a subsurface source to a surface receiver, (b) the wave rebound downward to a reflecting point then propagate to the second surface receiver, (c) cross-correlation of two-receiver records can eliminate propagation information between source to the first receiver and results in a record at second receiver from a virtual source at the first receiver (from Schuster, 2009).
圖8 VSM法示意圖震源Sk在地表,井中放置檢波器接收,將xA和xB兩道記錄進(jìn)行互相關(guān)運(yùn)算將消除場(chǎng)源到達(dá)井位深度之前的傳播信息,而近似獲得xA處的場(chǎng)源(虛源)出發(fā)的下行波經(jīng)目標(biāo)界面反射后到達(dá)xB處的傳播信息(紅色實(shí)線(xiàn)表示的路徑)(引自Bakulin and Calvert, 2006).Fig.8 Illustration of virtual source method (VSM)For a surface source Sk and borehole receivers of xA and xB, cross-correlation of two records will obtain a wavefield recorded at xB from a virtual source at xA propagating through a new pathway (red solid line) (from Bakulin and Calvert, 2006).
G(xA,xB,ω)表示xB點(diǎn)脈沖激發(fā)xA點(diǎn)接收的波場(chǎng)即這兩點(diǎn)之間的格林函數(shù),R表示取實(shí)部;u(xA,x,ω)和u(xB,x,ω)分別表示在xA和xB點(diǎn)接收到的任意體積?v內(nèi)某一場(chǎng)源x激發(fā)的波場(chǎng),*表示復(fù)數(shù)共軛;S2(x,ω)表示x處場(chǎng)源的功率,〈·〉表示任意體積?v內(nèi)場(chǎng)源功率的系綜平均.(20)式本質(zhì)上和式(6)類(lèi)似,只是為了提取體波的需要,包含了觀測(cè)區(qū)域內(nèi)的場(chǎng)源激發(fā)的波場(chǎng).
SI法中和式(20)對(duì)偶的方法是反褶積(Sniederetal.,2006a).對(duì)于密集臺(tái)陣還可以采用多維反褶積(WapenaarandvanderNeut,2010c;Wapenaaretal.,2011).Snieder等(2009)將實(shí)現(xiàn)SI法的相關(guān)、反褶積及多維反褶積的優(yōu)缺點(diǎn)進(jìn)行了歸納(表1),系統(tǒng)的對(duì)比工作見(jiàn)Wapenaar等(2011).
表1 相關(guān)、反褶積及多維反褶積實(shí)現(xiàn)SI法的優(yōu)缺點(diǎn) (據(jù)Snieder et al., 2009)Table 1 The advantages and disadvantages of the correlation method, the deconvolution method, and the multidimensional deconvolution method (follow Snieder et al., 2009)
在理論研究繼續(xù)發(fā)展的同時(shí),基于背景噪聲的經(jīng)驗(yàn)格林函數(shù)恢復(fù)方法在區(qū)域尺度的面波層析成像方面得到迅速和大量的推廣應(yīng)用,這主要?dú)w功于:1)背景噪聲可以彌補(bǔ)地震事件產(chǎn)生的面波高頻成分(<20 s周期)的不足,對(duì)地殼的成像分辨率明顯提高(例如Yang et al.,2008;Yao et al.,2008;Zheng et al.,2008;Liang and Langston,2008;Bensen et al.,2009;Lin et al.,2009;Li et al.,2009;Fang et al.,2010;Zheng et al.,2011;Luo et al.,2012,2013);2)可以彌補(bǔ)地球表面很多區(qū)域地震事件的不足,而且只需要臺(tái)陣較短時(shí)間高質(zhì)量的噪聲觀測(cè)就可以獲得很好的成像效果(例如 Luo et al.,2013);3)由于采用了大量的疊加,可以獲得更為可靠的面波群速度.
相較于面波,背景噪聲記錄中體波的能量弱,而且恢復(fù)體波經(jīng)驗(yàn)格林函數(shù)需要更為苛刻的震源條件,因此從背景噪聲中提取體波格林函數(shù)相對(duì)困難,但通過(guò)研究者們的不懈努力,近年來(lái)在全球和區(qū)域尺度上取得了突破性進(jìn)展(O′Connell,2007;Gerstoft et al.,2008;Ruigrok et al.,2010,2012a;Zhan et al.,2010;Ryberg,2011;Poli et al.,2012;Nishida et al.,2008).利用地震干涉法不僅有監(jiān)測(cè)稠油儲(chǔ)層的成像試驗(yàn)(Miyazawa et al.,2008),也有有效改善鹽下成像效果的應(yīng)用(Xiao et al.,2006;Hornby and Yu,2007;Vasconcelos and Snieder,2008).基于體波干涉成像原理,一些新的數(shù)值模擬方法也應(yīng)運(yùn)而生(van Manen et al.,2006,2007;Mehta et al.,2008;Poletto and Farina,2010).傳統(tǒng)的接收函數(shù)成像方法可以作為SI法的一個(gè)特例(Kumar and Bostock,2006;Galetti and Curtis,2012).
已有大量的結(jié)果表明噪聲地震學(xué)方法在監(jiān)測(cè)地震、火山、滑坡及其他原因的地下介質(zhì)變化過(guò)程中具有獨(dú)特的優(yōu)勢(shì)(例如Sens-Sch?nfelder and Wegler,2006;Brenguier et al.,2008a,2008b;Sens-Sch?nfelder and Larose,2008;Picozzi et al.,2008;Xu and Song,2009;Moschetti et al.,2010;劉志坤和黃金莉,2010;Renalier et al.,2010;Meier et al.,2010;Nakata and Snieder,2011;Houlié et al.,2011;Mainsant et al.,2012;Xu et al.,2013).在較小的空間尺度上,對(duì)一個(gè)月的地震背景噪聲進(jìn)行互相關(guān),不僅提取到R面波,而且還通過(guò)時(shí)頻分析發(fā)現(xiàn)了P波成分(Roux et al.,2005b).Draganov等(2007,2009)先后從不同場(chǎng)地的地震背景噪聲中提取到來(lái)自淺層(~1 km)的P波反射信息并用于偏移成像.利用高頻背景噪聲測(cè)量可以估計(jì)場(chǎng)地的阻尼(Albarello and Baliva,2009).運(yùn)用互相干方法可從交通環(huán)境噪聲中提取到反射S波信號(hào)(Nakata et al.,2011; Nakata and Snieder,2012),經(jīng)與主動(dòng)源反射地震記錄對(duì)比驗(yàn)證了地下反射體的可靠性(Nakata et al.,2011).Ruigrok等(2012b)從埃及沉積盆地40 h的地震背景噪聲中成功得到來(lái)自地下約5 km深度的P和S波一次反射及其多次波.用類(lèi)似的方法在德國(guó)Ketzin地區(qū)用25 h的地震背景噪聲數(shù)據(jù)得到了反射剖面和共深度點(diǎn)剖面,并指出早于虛擬的反射波到達(dá)的信號(hào)為假信號(hào),由體波噪聲源實(shí)際空間分布與理論假設(shè)不符造成(Xu et al.,2012b).Tonegawa等(2013)運(yùn)用自相關(guān)法從日本海溝長(zhǎng)時(shí)間背景噪聲(2~5 Hz)中提取到淺層(~350 m)反射S波信號(hào),并用于分析地震引起的地下速度結(jié)構(gòu)各向異性.Xu等(2013)在用于監(jiān)測(cè)三峽黃土坡大型滑坡體的隧道內(nèi),利用48個(gè)臺(tái)站28小時(shí)的連續(xù)噪聲記錄獲得了3~30 Hz的虛源地震剖面,然后利用MASW(Xia et al.,1999)的處理和反演方法獲得了S波速度結(jié)構(gòu),揭示滑坡體下存在至少2個(gè)潛在的滑動(dòng)面.最近,一個(gè)有意思的應(yīng)用是利用SI法將主動(dòng)源反射地震剖面上出現(xiàn)的虛反射(ghost)探測(cè)淺地表的散射體(Harmankaya et al.,2013).
Sens-Sch?nfelder和Larose(2008)將EGF恢復(fù)方法應(yīng)用在Apollo 17計(jì)劃中布設(shè)的四個(gè)地震臺(tái)站(圖9a)采集的數(shù)據(jù),提取出面波EGF(圖9b),并據(jù)此確定了月球表面淺部10 m深的剪切波速度剖面(圖9c).月壤速度極低是由于其松散且極端干燥所致,由圖9b還可以發(fā)現(xiàn)EGF中的因果(正向時(shí)間)部分振幅強(qiáng)于非因果(負(fù)向時(shí)間)部分,說(shuō)明月球上的噪聲源也并不均勻(Larose et al.,2005).在月球上的成功應(yīng)用啟示我們,在未來(lái)的行星地球物理研究計(jì)劃中,雖然其他星球(如火星)可能缺少足夠的天然地震信號(hào),但利用噪聲地震學(xué)方法一樣可以獲取它們的內(nèi)部結(jié)構(gòu)信息.
從噪聲地震學(xué)發(fā)展的軌跡可以看出,方法的進(jìn)步首先應(yīng)歸功于理論上的發(fā)展,而理論上的發(fā)展可能發(fā)端于不同的學(xué)科領(lǐng)域,因此預(yù)期噪聲地震學(xué)理論上的新突破是困難的.即使如此,筆者還是期望于非線(xiàn)性干涉理論的發(fā)展,因?yàn)槲覀兿M酶唠A模式面波和多次散射體波.
物理問(wèn)題基本清晰之后,提高噪聲地震學(xué)應(yīng)用水平主要體現(xiàn)在方法和技術(shù)的進(jìn)步上.雖然早期的理論研究基于噪聲源均勻隨機(jī)分布和能量等配分的前提條件,但實(shí)際應(yīng)用早已拋開(kāi)了這些束縛,因?yàn)槲?/p>
圖9 Apollo 17計(jì)劃在月球表面布設(shè)的4個(gè)地震臺(tái)站(a); 從其中兩個(gè)臺(tái)站(G3和G4)記錄恢復(fù)的EGF(b),其中1.5 s左右為直達(dá)R面波;(c)推斷的10 m以上深度的月壤S波速度曲線(xiàn)(引自Sens-Sch?nfelder and Curtis, 2008)Fig.9 (a) Geometry of the four receivers (G1-G4) spread in a triangular array at the Apollo 17 landing site; (b) Ambient noise correlations between G3 and G4. The pulse around 1.5 s is the direct Rayleigh wave between the receivers; (c) Inverted shear-wave velocity vs. depth of the subsoil under the receivers from Rayleigh-wave dispersion (from Sens-Sch?nfelder Curtis, 2008)
們有足夠多的數(shù)據(jù)處理技術(shù).提高信噪比的精細(xì)數(shù)據(jù)處理技術(shù)是應(yīng)用地震學(xué)家的長(zhǎng)處,因此我們今后將會(huì)繼續(xù)從傳統(tǒng)的勘探地震數(shù)據(jù)處理方法及流程設(shè)計(jì)中獲益.提高經(jīng)驗(yàn)格林函數(shù)的成像效果是進(jìn)一步推廣應(yīng)用的關(guān)鍵,一方面需要研究成像的新方法,另一方面需要構(gòu)建基于經(jīng)驗(yàn)格林函數(shù)的成像條件.Marchenko成像方法在原理上可以對(duì)地下任意深度區(qū)間的速度結(jié)構(gòu)進(jìn)行成像并排除該區(qū)間外的影響(Wapenaar et al.,2014a),因此值得進(jìn)一步研究.
噪聲地震學(xué)方法可以應(yīng)用于解決大量的近地表問(wèn)題,如與地下空間有關(guān)的安全監(jiān)測(cè)、城市背景噪聲環(huán)境的監(jiān)測(cè)和噪聲源定位、地下水遷移的實(shí)時(shí)監(jiān)測(cè)、大型滑坡體與巖崩體的監(jiān)測(cè)和預(yù)警、活斷層與活火山監(jiān)測(cè)和預(yù)警、場(chǎng)地工程性質(zhì)調(diào)查、地震與超大或超高建筑物對(duì)巖土層的改造、土壤液化調(diào)查、地殼運(yùn)動(dòng)與物理風(fēng)化關(guān)系研究、凍土層和冰蓋的季節(jié)變化過(guò)程監(jiān)測(cè)等.
Aki K. 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors.Bull.Earthq.Res.Inst.Univ.,TokyoUniv., 35: 415-456.
Aki K, Chouet B. 1975. Origin of coda waves: Source, attenuation, and scattering effects.J.Geophys.Res., 80(23): 3322-3342.
Aki K, Richards P G. 1980. Quantitative Seismology. New York: W. H. Freeman.
Albarello D, Baliva F. 2009. In-situ estimates of material damping from environmental noise measurements. ∥ Mucciarelli M, Herak M, Cassidy J eds. Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data (NATO Science for Peace and Security Series C: Environmental). Netherlands: Springer.
Asten M W. 1976. The use of microseisms in geophysical exploration [Ph. D. thesis]. Australia: Macquarie University.
Asten M W. 1978. Geological control on the three-component spectra of Rayleigh-wave microseisms.Bull.Seismol.Soc.Am., 68(6): 1623-1635. Astiz L, Creager K. 1994. Geographic and seasonal variations of microseismic noise.EOS,Transactions,AGU, 75: 419.
Backus M, Burg J, Baldwin D, et al. 1964. Wide-band extraction of mantle P waves from ambient noise.Geophysics, 29(5): 672-692.
Backus M. 1966. Teleseismic signal extraction.Proc.Roy.Soc.A., 290(1442): 343-367.
Bakulin A, Calvert R. 2004. Virtual source: New method for imaging and 4D below complex overburden. ∥ 74th Annual International Meeting, SEG, Expanded Abstracts, 2477-2480.
Bakulin A, Calvert R. 2006. The virtual source method: Theory and case study.Geophysics, 71(4): SI139-SI150.
Barstow N, Sutton G H, Carter J A. 1989. Particle motion and pressure relationships of ocean bottom noise: 3900 m depth; 0.003 to 0.05 Hz.Geophys.Res.Lett., 16(10): 1185-1188.
Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements.Geophys.J.Int., 169(3): 1239-1260.
Bensen G D, Ritzwoller M H, Yang Y J. 2009. A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise.Geophys.J.Int., 177(3): 1177-1196.
Bleistein N. 1984. Mathematical Methods for Wave Phenomena. Orlando, FL: Academic Press.
Bonnefoy-Claudet S, Cotton F, Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review.Earth-Sci.Rev., 79(3-4): 205-227.
Bostock M G, Kennett B L N. 1992. Multiple scattering of surface waves from discrete obstacles.Geophys.J.Int., 108(1): 52-70.
Brenguier F, Campillo M, Hadziioannou C, et al. 2008a. Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations.Science, 321(5895): 1478-1481.Brenguier F, Shapiro N M, Campillo M, et al. 2008b. Towards forecasting volcanic eruptions using seismic noise.Nat.Geosci., 1(2): 126-30.Broggini F, Snieder R. 2012. Connection of scattering principles: A visual and mathematical tour.Europ.J.Phys., 33(3): 593-613.
Broggini F, Snieder R, Wapenaar K. 2014. Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples.Geophysics, 79(3): WA107-WA115.
Bromirski P D, Flick R E, Graham N. 1999. Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific.J.Geophys.Res., 104(C9): 20753-20766. Bromirski P D. 2001. Vibrations from the "Perfect Storm".Geochem.Geophys.Geosyst., 2(7), doi: 10.1029/2000GC000119.Bromirski P D, Duennebier F K. 2002. The near-coastal microseism spectrum: spatial and temporal wave climate relationships.J.Geophys.Res., 107(B8): 2166.
Bromirski P D, Gerstoft P. 2009. Dominant source regions of the Earth′s ‘hum’ are coastal.Geophys.Res.Lett., 36: L13303.
Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda.Science, 299(5606): 547-549.
Campillo M. 2006. Phase and correlation in ‘Random’ seismic fields and the reconstruction of the Green function.PureAppl.Geophys., 163(2-3): 475-502.
Cessaro R K. 1994. Sources of primary and secondary microseisms.Bull.Seismol.Soc.Am., 84(1): 142-148. Chávez-García F J, Rodríguez M. 2007. The correlation of microtremors: empirical limits and relations between results in frequency and time domains.Geophys.J.Int., 171(2): 657-664.
Chen W. 2010. Study of surface-wave dispersion analysis based on ambient noise [Master′s thesis] (in Chinese). Wuhan: China University of Geosciences (Wuhan).
Chevrot S, Sylvander M, Benahmed S, et al. 2007. Source locations of secondary microseisms in western Europe: Evidence for both coastal and pelagic sources.J.Geophys.Res., 112: B11301.
Claerbout J. 1968. Synthesis of a layered medium from its acoustic transmission response.Geophysics, 33(2): 264-269.
Cole S. 1995. Passive seismic and drill-bit experiments using 2-D arrays [Ph. D. thesis]. Stanford: Stanford University.
Cox H. 1973. Spatial correlation in arbitrary noise fields with application to ambient sea noise.J.Acoust.Soc.Am., 54(5): 1289-1301. Curtis A, Nicolson H, Halliday D, et al. 2009. Virtual seismometers in the subsurface of the Earth from seismic interferometry.Nat.Geosci., 2(10): 700-704.
de Ridder S, Dellinger J. 2011. Ambient seismic noise eikonal tomography for near-surface imaging at Valhall.TheLeadingEdge, 30(5): 506-512.
Ditmar P G, Yanovskaya T B. 1987. Generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity.Izv.Phys.SolidEarth, 23(6): 470-477. Draganov D, Wapenaar K, Thorbecke J. 2006. Seismic interferometry: reconstructing the Earth′s reflection response.Geophysics, 71(4): SI61-SI70.
Draganov D, Wapenaar K, Mulder W, et al. 2007. Retrieval of reflections from seismic background-noise measurements.Geophys.Res.Lett., 34(4): L04305.
Draganov D, Campman X, Thorbecke J, et al. 2009. Reflection images from ambient seismic noise.Geophysics, 74(5): A63-A67.
Duvall T L Jr, Jefferies S M, Harvey J W, et al. 1993. Time-distance helioseismology.Nature, 362(6419): 430-432.
Fang L H, Wu J P, Ding Z F, et al. 2010. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise.Geophys.J.Int., 181(2): 1171-1182. Fink M, Prada C, Wu F, et al. 1989. Self focusing in inhomogeneous media with time reversal acoustic mirrors. ∥ IEEE Ultrasonics Symposium. Montreal, Que.: IEEE, 681-686.
Forbriger T. 2003. Inversion of shallow-seismic wavefields: I. Wavefield transformation.Geophys.J.Int., 153(3): 719-734.
Forsyth D W, Li A B. 2005. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. ∥ Seismic Earth: Array Analysis of Broadband Seismograms, Geophysical Monograph Series 157. AGU, 81-97.
Friederich W, Wielandt E, Stange S. 1993. Multiple forward scattering of surface waves: comparison with an exact solution and Born single-scattering methods.Geophys.J.Int., 112(2): 264-275.
Friederich W, Hunzinger S, Wielandt E. 2000. A note on the interpretation of seismic surface waves over three-dimensional structures.Geophys.J.Int., 143(2): 335-339.
Galetti E, Curtis A. 2012. Generalised receiver functions and seismic interferometry.Tectonophysics, 532-535: 1-26.
Gerstoft P, Fehler M C, Sabra K G. 2006. When Katrina hit California.Geophys.Res.Lett., 33(17): L17308.
Gerstoft P, Tanimoto T. 2007. A year of microseisms in southern California.Geophys.Res.Lett., 34(20): L20304.
Gerstoft P, Shearer P M, Harmon N, et al. 2008. Global P, PP, and PKP wave microseisms observed from distant storms.Geophys.Res.Lett., 35(23): L23306.
Grevemeyer I, Herber R, Essen H H. 2000. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean.Nature, 408(6810): 349-352.
Gutenberg B. 1947. Microseisms and weather forecasting.J.Meteor., 4(1): 21-28.
Halliday D, Curtis A. 2008. Seismic interferometry, surface waves and source distribution.Geophys.J.Int., 175(3): 1067-1087.
Harmankaya U, Kaslilar A, Thorbecke J, et al. 2013. Locating near-surface scatterers using non-physical scattered waves resulting from seismic interferometry.J.Appl.Geophys., 91: 66-81.
Harmon N, Rychert C, Gerstoft P. 2010. Distribution of noise sources for seismic interferometry.Geophys.J.Int., 183(3): 1470-1484.
Hasselmann K. 1963. A statistical analysis of the generation of microseisms.Rev.Geophys., 1(2): 177-210.
Haubrich R A, McCamy K. 1969. Microseisms: Coastal and pelagic sources.Rev.Geophys., 7(3): 539-571.
Hillers G, Campillo M, Lin Y Y, et al. 2012. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.J.Geophys.Res., 117: B06301.
Hoerling M P, Kumar A. 2002. Atmospheric response patterns associated with tropical forcing.J.Climate, 15(16): 2184-2203.
Hornby B E, Yu J H. 2007. Interferometric imaging of a salt flank using walkaway VSP data.TheLeadingEdge, 26(6): 760-763.
Houlié N, Occhipinti G, Blanchard T, et al. 2011. New approach to detect seismic surface waves in 1Hz-sampled GPS time series.Sci.Rep., 1: 44.
Kedar S, Longuet-Higgins M, Webb F, et al. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean.Proc.R.Soc.Lond.,A, 464(2091): 777-793.
Kennett B L N. 1998. Guided waves in three-dimensional structures.Geophys.J.Int., 133(1): 159-174.
Kimman W P, Trampert J. 2010. Approximations in seismic interferometry and their effects on surface waves.Geophys.J.Int., 182(1): 461-476.
Knopoff L, Gangi A F. 1959. Seismic reciprocity.Geophysics, 24(4): 681-691.
Koper K D, de Foy B. 2008. Seasonal anisotropy in short-period seismic noise recorded in South Asia.Bull.Seismol.Soc.Am., 98(6): 3033-3045.
Koper K D, de Foy B, Benz H. 2009. Composition and variation of noise recorded at the Yellowknife seismic array, 1991-2007.J.Geophys.Res., 114: B10310. Koper K D, Seats K, Benz H. 2010. On the composition of Earth′s short-period seismic noise field.Bull.Seismol.Soc.Am., 100(2): 606-617.
Kumar M R, Bostock M G. 2006. Transmission to reflection transformation of teleseismic wavefields.J.Geophys.Res., 111: B08306.
Larose E, Khan A, Nakamura Y, et al. 2005. Lunar subsurface investigated from correlation of seismic noise.Geophys.Res.Lett., 32: L16201.
Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet.EarthPlanet.Sci.Lett., 282(1-4): 201-211.
Liang C T, Langston C A. 2008. Ambient seismic noise tomography and structure of eastern North America.J.Geophys.Res., 113: B03309.
Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array.Geophys.J.Int., 177(3): 1091-1110.
Lin F C, Tsai V C, Schmandt B, et al. 2013. Extracting seismic core phases with array interferometry.Geophys.Res.Lett., 40(6): 1049-1053.
Liu Z K, Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation.ChineseJ.Geophys. (in Chinese), 53(4): 853-863, doi: 10.3969/j.issn.0001-5733.2010.04.010.
Lobkis O I, Weaver R L. 2001. On the emergence of the Green′s function in the correlations of a diffuse field.J.Acoust.Soc.Am., 110(6): 3011-3017.
Lu L Y, He Z Q, Ding Z F, et al. 2009. Investigation of ambient noise source in North China array.ChineseJ.Geophys. (in Chinese), 52(10): 2566-2572, doi: 10.3969/j.issn.0001-5733.2009.10.015.
Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography.EarthPlanet.Sci.Lett., 313-314: 12-22.
Luo Y H, Xu Y X, Yang Y J. 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography.Geophys.J.Int., 195(2): 1149-1164. Luo Y H, Yang Y J, Xu Y X, et al. 2015. On the limitations of interstation distances in ambient noise tomography.Geophys.J.Int., 201(2): 652-661.
Mainsant G, Larose E, Br?nnimann C, et al. 2012. Ambient seismic noise monitoring of a clay landslide: toward failure prediction.J.Geophys.Res., 117: F01030.
Maupin V. 2001. A multiple-scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures.Geophys.J.Int., 146(2): 332-348.
Mehta K, Snieder R, Calvert R, et al. 2008. Acquisition geometry requirements for generating virtual-source data.TheLeadingEdge, 27(5): 620-629.
Meier U, Shapiro N M, Brenguier F. 2010. Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise.Geophys.J.Int., 181(2): 985-996.
Miyazawa M, Snieder R, Venkataraman A. 2008. Application of seismic interferometry to extract P- and S-wave propagation and observation of shear wave splitting from noise data at Cold Lake, Alberta, Canada.Geophysics, 73(4): D35-D40.
Moschetti M P, Ritzwoller M H, Lin F C, et al. 2010. Seismic evidence for widespread western-US deep-crustal deformation caused by extension.Nature, 464(7290): 885-889.
Nakata N, Snieder R, Tsuji T, et al. 2011. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence.Geophysics, 76(6): SA97-SA106.
Nakata N, Snieder R. 2011. Near-surface weakening in Japan after the 2011 Tohoku-Oki earthquake.Geophys.Res.Lett., 38: L17302.
Nakata N, Snieder R. 2012. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data.J.Geophys.Res., 117: B01308.
Nishida K, Kawakatsu H, Obara K. 2008. Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters.J.Geophys.Res., 113: B10302.
O′Connell D R H. 2007. Concrete dams as seismic imaging sources.Geophys.Res.Lett., 34(20): doi: 10.1029/2007GL031219.
Okada H. 2003. The Microtremor Survey Method. Translated by Suto K. Soc. of Expl. Geophys. of Japan, Geophys. Mon. Ser. No. 12, Soc. of Expl. Geophys., Tulsa.
Park C B, Miller R D, Xia J H. 1999. Multimodal analysis of high frequency surface waves. ∥Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental. 99: 115-121. Picozzi M, Parolai S, Bindi D, et al. 2008. Characterization of shallow geology by high-frequency seismic noise tomography.Geophys.J.Int., 176(1): 164-174.
Poletto F, Farina B. 2010. Synthesis of a seismic virtual reflector.Geophys.Prosp., 58(3): 375-387.
Poli P, Pedersen H A, Campillo M. 2012. Emergence of body waves from cross-correlation of short period seismic noise.Geophys.J.Int., 188(2): 549-558.
Qi C, Chen Q F, Chen Y. 2007. A new method for seismic imaging from ambient seismic noise.ProgressinGeophysics(in Chinese), 22(3): 771-777.
Renalier F, Jongmans D, Campillo M, et al. 2010. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation.J.Geophys.Res., 115: F03032. Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring.TheLeadingEdge, 18(8): 957-960.
Rose J H. 2002. Time reversal, focusing and exact inverse scattering.∥ Imaging of Complex Media with Acoustic and Seismic Waves. Berlin Heidelberg: Springer, 97-106. Rost S, Thomas C. 2002. Array seismology: methods and applications.Rev.Geophys., 40(3): 1008. Rost S, Thomas C. 2009. Improving seismic resolution through array processing techniques.SurveysinGeophys., 30(4-5): 271-299.
Roux P, Sabra K G, Kuperman W A, et al. 2005a. Ambient noise cross correlation in free space: Theoretical approach.J.Acoust.Soc.Am., 117(1): 79-84.
Roux P, Sabra K G, Gerstoft P, et al. 2005b. P-waves from cross-correlation of seismic noise.Geophys.Res.Lett., 32: L19303.
Ruigrok E, Campman X, Draganov D, et al. 2010. High-resolution lithospheric imaging with seismic interferometry.Geophys.J.Int., 183(1): 339-357.
Ruigrok E, Mikesell T D, van Wijk K. 2012a. Scanning for velocity anomalies in the crust and mantle with diffractions from the core-mantle boundary.Geophys.Res.Lett., 39: L11301.
Ruigrok E, Campman X, Draganov D, et al. 2012b. Basin delineation with a 40-hour passive seismic record.Bull.Seismol.Soc.Am., 102(5): 2165-2176.
Ryberg T. 2011. Body wave observations from cross-correlations of ambient seismic noise: A case study from the Karoo, RSA.Geophys.Res.Lett., 38: L13311.
Schuster G T, Yu J, Sheng J, et al. 2004. Interferometric/daylight seismic imaging.Geophys.J.Int., 157(2): 838-852.
Schuster G T. 2005. Fermat′s interferometric principle for target-oriented traveltime tomography.Geophysics, 70(4): U47-U50. Schuster G T. 2009. Seismic Interferometry. Cambridge: Cambridge University Press.Sens-Sch?nfelder C, Wegler U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia.Geophys.Res.Lett., 33: L21302.
Sens-Sch?nfelder C, Larose E. 2008. Temporal changes in the lunar soil from correlation of diffuse vibrations.Phys.Rev.E,78:045601.
Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise.Geophys.Res.Lett., 31(7): L07614.
Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise.Science, 307(5715): 1615-1618. Slob E, Draganov D, Wapenaar K. 2007. Interferometric electromagnetic Green′s functions representations using propagation invariants.Geophys.J.Int., 169(1): 60-80. Slob E, Snieder R, Revil A. 2010. Retrieving electric resistivity data from self-potential measurements by cross-correlation.Geophys.Res.Lett., 37(4): L04308.
Slob E, Wapenaar K, Broggini F, et al. 2014. Seismic reflector imaging using internal multiples with Marchenko-type equations.Geophysics, 79(2): S63-S76. Snieder R. 2004. Extracting the Green′s function from the correlation of coda waves: A derivation based on stationary phase.Phys.Rev.E, 69(4): 046610.
Snieder R. 2006a. Retrieving the Green′s function of the diffusion equation from the response to a random forcing.Phys.Rev.E, 74(4): 046620.
Snieder R. 2006b. The theory of coda wave interferometry.PureAppl.Geophys., 163(2-3): 455-473.
Snieder R, Sheiman J, Calvert R. 2006a. Equivalence of the virtual source method and wave-field deconvolution in seismic interferometry.Phys.Rev.E, 73(6): 066620.
Snieder R, Wapenaar K, Larner K. 2006b. Spurious multiples in seismic interferometry of primaries.Geophysics, 71(4): SI111-SI124.
Snieder R. 2007. Extracting the Green′s function of attenuating heterogeneous acoustic media from uncorrelated waves.J.Acoust.Soc.Am., 121(5): 2637-2643.
Snieder R, Miyazawa M, Slob E, et al. 2009. A comparison of strategies for seismic interferometry.Surv.Geophys., 30(4-5): 503-523.
Snieder R, Larose E. 2013. Extracting Earth′s elastic wave response from noise measurements.Annu.Rev.EarthPlanet.Sci., 41(1): 183-206.
Stehly L, Campillo M, Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties.J.Geophys.Res., 111: B10306.
Tanimoto T. 2005. The oceanic excitation hypothesis for the continuous oscillations of the Earth.Geophys.J.Int., 160(1): 276-288.
Tanimoto T, Ishimaru S, Alvizuri C. 2006. Seasonality in particle motion of microseisms.Geophys.J.Int., 166(1): 253-266.
Tanimoto T. 2007. Excitation of microseisms.Geophys.Res.Lett., 34: L05308, doi: 10.1029/2006GL029046.
Tao Y, Fu L Y, Sun W J, Sun Q X. 2010. A review of seismic interferometry.ProgressinGeophysics(in Chinese), 25(5): 1775-1784, doi: 10.3969/j.issn.1004-2903.2010.05.035.
Tonegawa T, Fukao Y, Nishida K, et al. 2013. A temporal change of shear wave anisotropy within the marine sedimentary layer associated with the 2011 Tohoku-Oki earthquake.J.Geophys.Res., 118(2): 607-615.
Tsai V C. 2009. On establishing the accuracy of noise tomography travel-time measurements in a realistic medium.Geophys.J.Int., 178(3): 1555-1564.
Tsai V C, Moschetti M P. 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results.Geophys.J.Int., 182(1): 454-460.
Van der Lee S. 1998. Observations and origin of Rayleigh-wave amplitude anomalies.Geophys.J.Int., 135(2): 691-699.
van Manen D J, Curtis A, Robertsson J O A. 2006. Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity.Geophysics, 71(4): SI41-SI60. van Manen D J, Robertsson J O A, Curtis A. 2007. Exact wave field simulation for finite-volume scattering problems.J.Acoustic.Soc.Am., 122(4): EL115-EL121.
Vasconcelos I, Snieder R. 2008. Interferometry by deconvolution: Part 2—theory for elastic waves and application to drill-bit seismic imaging.Geophysics, 73(3): S129-S141.
Wang L M, Luo Y H, Xu Y X. 2012. Numerical investigation of Rayleigh-wave propagation on topography surface.J.Appl.Geophys., 86: 88-97.
Wapenaar K. 2004. Retrieving the elastodynamic Green′s function of an arbitrary inhomogeneous medium by cross correlation.Phys.Rev.Lett., 93(25): 254301.
Wapenaar K, Fokkema J. 2006. Green′s function representations for seismic interferometry.Geophysics, 71(4): SI33-SI46.
Wapenaar K, Slob E, Snieder R. 2006. Unified Green′s function retrieval by cross-correlation.Phys.Rev.Lett., 97(23): 234301.Wapenaar K, Slob E, Snieder R. 2008. Seismic and electromagnetic controlled-source interferometry in dissipative media.Geophys.Prosp., 56(3): 419-434.
Wapenaar K, Draganov D, Snieder R, et al. 2010a. Tutorial on seismic interferometry: Part 1—Basic principles and applications.Geophysics, 75(5): 75A195-75A209.Wapenaar K, Slob E, Snieder R, et al. 2010b. Tutorial on seismic interferometry: Part 2—Underlying theory and new advances.Geophysics, 75(5): 75A211-75A227.
Wapenaar K, van der Neut J. 2010c. A representation for Green′s function retrieval by multidimensional deconvolution.J.Acoust.Soc.Am., 128(6): EL366-EL371. Wapenaar K, van der Neut J, Ruigrok E, et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison.Geophys.J.Int., 185(3): 1335-1364.Wapenaar K, Broggini F, Snieder R. 2012. Creating a virtual source inside a medium from reflection data: Heuristic derivation and stationary phase analysis.Geophys.J.Int., 190(2): 1020-1024. Wapenaar K, Broggini F, Slob E, et al. 2013. Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green′s function retrieval, and their mutual relations.Phys.Rev.Lett., 110(8): 084301.
Wapenaar K, Thorbecke J, van der Neut J, et al. 2014a. Marchenko imaging.Geophysics, 79(3): WA39-WA57.
Wapenaar K, Thorbecke J, van der Neut J, et al. 2014b. Green′s function retrieval from reflection data, in absence of a receiver at the virtual source position.J.Acoust.Soc.Am., 135(5): 2847-2861.Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies.Phys.Rev.Lett., 87(13): 134301.
Weaver R L, Lobkis O I. 2002. On the emergence of the Green′s function in the correlations of a diffuse field: pulse-echo using thermal phonons.Ultrasonics, 40(1-8): 435-439.
Weaver R L, Lobkis O I. 2003. Elastic wave thermal fluctuations: Ultrasonic waveforms by correlation of thermal phonons.J.Acoust.Soc.Am., 113(5): 2611-2621.
Weaver R L, Lobkis O I. 2005. Fluctuations in diffuse field-field correlations and the emergence of the Green′s function in open systems.J.Acoust.Soc.Am., 117(6): 3432-3439.
Webb S C, Zhang X, Crawford W. 1991. Infragravity waves in the deep ocean.J.Geophys.Res., 96(C2): 2723-2736.
Webb S C. 1998. Broadband seismology and noise under the ocean.Rev.Geophys., 36(1): 105-142.
Webb S C. 2007. The Earth′s ‘hum’ is driven by ocean waves over the continental shelves.Nature, 445(7129): 754-756.
Webb S C. 2008. The Earth′s hum: The excitation of Earth normal modes by ocean waves.Geophys.J.Int., 174(2): 542-566.
Wielandt E. 1993. Propagation and structural interpretation of non-plane waves.Geophys.J.Int., 113(1): 45-53.
Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves.Geophysics, 64(3): 691-700.Xia J H, Xu Y X, Chen C, et al. 2006. Simple equations guide high-frequency surface-wave investigation techniques.SoilDyn.Earthq.Engine., 26(5): 395-403.
Xiao X, Zhou M, Schuster G T. 2006. Salt-flank delineation by interferometric imaging of transmitted P- to S-waves.Geophysics, 71(4): SI197-SI207.Xu P F, Ling S Q, Li C J, et al. 2012a. Mapping deeply-buried geothermal faults using microtremor array analysis.Geophys.J.Int., 188(1): 115-122.
Xu Y X, Luo Y H, Liang Q, et al. 2010. Chapter 3: Investigation and use of surface-wave characteristics for near-surface applications. ∥ Miller R D, Bradford J H, Holliger K eds. Geophysical Developments Series; no. 15: Advances in Near-Surface Seismology and Ground-Penetrating Radar. SEG, AGU, and EEGS.
Xu Y X, Zhang B L, Luo Y H, et al. 2013. Surface-wave observations after integrating active and passive source data.TheLeadingEdge, 32(6): 634-637.
Xu Z, Juhlin C, Gudmunsson O, et al. 2012b. Reconstruction of subsurface structure from ambient seismic noise: An example from Ketzin, Germany.Geophys.J.Int., 189(2): 1085-1102.Xu Z J, Song X D. 2009. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation.Proc.Natl.Acad.Sci.USA, 106(34): 14207-14212. Xue Y W, Dong S Q, Schuster G T. 2009. Interferometric prediction and subtraction of surface waves with a nonlinear local filter.Geophysics, 74(1): SI1-SI8.
Yang Y J, Forsyth D W. 2006. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels.Geophys.J.Int., 166(3): 1148-1160.
Yang Y J, Ritzwoller M H, Lin F C, et al. 2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography.J.Geophys.Res., 113: B12310.
Yang Y J. 2014. Application of teleseismic long-period surface waves from ambient noise in regional surface wave tomography: a case study in western USA.Geophys.J.Int., 198(3): 1644-1652.
Yanovskaya T B, Ditmar P G. 1990. Smoothness criteria in surface wave tomography.Geophys.J.Int., 102(1): 63-72.
Yao H J, Beghein C, van der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: II. Crustal and upper-mantle structure.Geophys.J.Int., 173(1): 205-219.
Yao H J, van der Hilst R D. 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet.Geophys.J.Int., 179(2): 1113-1132.Zhan Z W, Ni S D, Helmberger D V, et al. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise.Geophys.J.Int., 182(1): 408-420.
Zhang B L. 2013. Study of surface-wave exploration method base on ambient noise: Application example in Badong Huangtuling Landslide [Master′s thesis] (in Chinese). Wuhan: China University of Geosciences (Wuhan).Zheng S H, Sun X L, Song X D, et al. 2008. Surface wave tomography of China from ambient seismic noise correlation.Geochem.Geophys.Geosys., 9: Q05020.
Zheng Y, Shen W S, Zhou L Q, et al. 2011. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography.J.Geophys.Res., 116: B12312.
附中文參考文獻(xiàn)
陳偉. 2010. 基于背景噪聲的面波頻散分析方法研究[碩士論文]. 武漢: 中國(guó)地質(zhì)大學(xué)(武漢).
劉志坤, 黃金莉. 2010. 利用背景噪聲互相關(guān)研究汶川地震震源區(qū)地震波速度變化. 地球物理學(xué)報(bào), 53(4): 853-863, doi: 10.3969/j.issn.0001-5733.2010.04.010.
魯來(lái)玉, 何正勤, 丁志峰等. 2009. 華北科學(xué)探測(cè)臺(tái)陣背景噪聲特征分析. 地球物理學(xué)報(bào), 52(10): 2566-2572, doi: 10.3969/j.issn.0001-5733.2009.10.015.
齊誠(chéng), 陳棋福, 陳颙. 2007. 利用背景噪聲進(jìn)行地震成像的新方法. 地球物理學(xué)進(jìn)展, 22(3): 771-777.
陶毅, 符力耘, 孫偉家等. 2010. 地震波干涉法研究進(jìn)展綜述. 地球物理學(xué)進(jìn)展, 25(5): 1775-1784, doi: 10.3969/j.issn.1004-2903.2010.05.035.
張寶龍. 2013. 基于背景噪聲的面波勘探方法研究——以巴東黃土坡滑坡為例[碩士論文]. 武漢: 中國(guó)地質(zhì)大學(xué)(武漢).
(本文編輯 何燕)
Methods of ambient noise-based seismology and their applications
XU Yi-Xian1,2,LUO Yin-He1,2
1SubsurfaceMulti-scaleImagingLaboratoryofHubeiProvince(SMIL),ChinaUniversityofGeosciences,Wuhan430074,China2StateKeyLaboratoryofGeologicalProcessesandMineralResources(GPMR),ChinaUniversityofGeosciences,Wuhan430074,China
Ambient noise-based seismology is fast expanding and has been widely applied to global and regional Earth′s interior imaging, near-surface investigation, and oil and gas exploration and production. The review article briefly introduced the origins of ambient noises and traced the root and development history of ambient noise-based seismology. Based on numerous work of modeling and observation, we reviewed the effects of source distribution and station separation on Green′s function retrieved for full fields and single mode surface-wave. The theoretical connection and difference between two-station correlation and spatial auto-correlation are also discussed. We then described the methods of ambient noise-based imaging, including ambient noise-based tomography, ambient noise-based eikonal tomography, and seismic interferometry or virtual source method. Finally we summarized its various but emphasizing on near-surface applications and gave an outlook for its future development.
Ambient noise; Green′s function retrieving; Ambient noise-based tomography (ANT); Virtual Source Method (VSM); Spatial auto-correlation (SPAC); Near-surface
國(guó)家自然科學(xué)基金項(xiàng)目(41374079,41374059)和地震行業(yè)科研專(zhuān)項(xiàng)經(jīng)費(fèi)項(xiàng)目(2014419013)資助.
徐義賢,男,教授,博士生導(dǎo)師,主要從事面波傳播特性和大地電磁測(cè)深研究.E-mail:xyxian@cug.edu.cn
10.6038/cjg20150803.
10.6038/cjg20150803
P631
2014-12-14,2015-04-20收修定稿
徐義賢, 羅銀河.2015.噪聲地震學(xué)方法及其應(yīng)用.地球物理學(xué)報(bào),58(8):2618-2636,
Xu Y X, Luo Y H. 2015. Methods of ambient noise-based seismology and their applications.ChineseJ.Geophys. (in Chinese),58(8):2618-2636,doi:10.6038/cjg20150803.