• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of mechanical and damping properties of Mg-0.6Zr alloy by different extrusion processing

    2015-02-16 00:55:54*
    Journal of Magnesium and Alloys 2015年1期

    *

    aCollege of Materials Science and Engineering,Chongqing University,Chongqing 400044,PR China

    bNational Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,PR China

    cThe State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400044,PR China

    Optimization of mechanical and damping properties of Mg-0.6Zr alloy by different extrusion processing

    Jingfeng Wanga,b,c,*,Zhongshan Wua,b,Shan Gaoa,b,Ruopeng Lua,b,Dezhao Qina,b, Wenxiang Yanga,b,Fusheng Pana,b

    aCollege of Materials Science and Engineering,Chongqing University,Chongqing 400044,PR China

    bNational Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,PR China

    cThe State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400044,PR China

    In this study,the optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized(DRXed) grain size under varying extrusion processing parameters including extrusion temperature T and strain rate˙ε was investigated.The relationship between the DRXed grain size and damping properties of the studied alloy was also discussed.The DRXed grain size of the as-extruded Mg-Zr alloys decreased as the extrusion temperature T decreased and the strain rate˙ε increased.As the DRXed grain size decreased,the strength and elongation of the as-extruded alloys exhibited improved performance through the grain refnement mechanism,while the damping properties deteriorated.The extrusion temperature of the Mg-Zr alloy had relatively greater effects on the mechanical and damping properties than the strain rate.The results of the present work indicate that alloys with appropriate mechanical and damping properties may be obtained from controlling the DRXed grain size by careful tailoring of the extrusion process parameters.

    Mg-Zr alloy;Mechanical properties;Damping capacities;Extrusion;Optimization

    1.Introduction

    As demands for lightweight,high strength,and high damping structural materials for the automobile,aerospace, and other industries have grown,damping magnesium(Mg) alloy has become one of an important direction in the research and development of Mg alloys[1-3].Energy dissipation of pure Mg through dislocation movements occurs primarily via an internal friction mechanism.Vibrations of the dislocation loops around their equilibrium positions in Mg alloys are responsible for damping levels of about 10 times higher than those in pure aluminum[4].With properties similar to those of traditionalhigh-damping Mg alloys,high-damping Mg-0.6 wt.%Zr alloys were successfully developed in the 1960 s [5,8].Recently,several studies on the damping capacities and mechanical properties of Mg-Zr alloys have been conducted by adding the alloying element yttrium and controlling the technology for heat processing and thermal deformation[6,7]. Addition of 0.5 wt.%Y generates an as-cast Mg-0.6 wt.%Zr alloy with excellent mechanical properties(σb=160 MPa, σ0.2=69 MPa,δ%=14.5%)and good damping capacities (loss tangent(tan φ)=0.01 at ε=3.2×10-5)or even better damping capacity at high strain amplitude(ε)[8].Combination of solution treatment at 550°C for 30 min and aging at 300°C for 16 h effectively improves the damping capacity ofMg-Zr alloys for the crucial role of twin structures in the alloy matrix[9].Dong et al.[10,11]systematically studied the microstructures and properties of Mg-Zn-Y-Zr alloys by using heat treatment,extrusion and modifcation.However, there are seldom studies to discuss the optimization of the mechanical and damping properties of Mg-Zr alloys by using different extrusion parameters.Moreover,although alloy strengthening,heattreatmentstrengthening,deformation strengthening,composite strengthening and other enhancement methods have been applied to improve the alloy performance,these procedures are unable satisfy the increasing rigorous demands of rapidly advancing modern industries.

    Because of the relationship between mechanical properties and damping capacities is contradictory,the comprehensive properties of an alloy are diffcult to control[12].The effects of microstructures on the alloy properties have been experimentally investigated,but theoretical relations to the appropriate references have not been described.To predict results as accurately as possible,directionally designing technological processing parameters is important.Here,investigations of the relationships among macro-process parameters,microstructures,and alloy properties are of theoretical and practical signifcance.

    In the present work,the optimization of the microstructures,mechanical and damping capacities of Mg-0.6 wt.%Zr alloy was investigated by discussing the relationships among extrusion parameters,the average recrystallized grain size and properties.It is hoped that knowledge of the relationships among the macro-process parameters,micro-structure,and capacities will provide theoretical information relevant to the hot extrusion processing of high damping lightweight Mg-Zr alloys.

    2.Experimental procedures

    Mg-0.6 wt.%Zr alloy ingots with a diameter of 252 mm were prepared from commercial pure Mg(99.99 wt.%)and Mg-30%Zr master alloy through semi-continuous casting and protected by 0.2%SF6+99.8%CO2mixed gas.First,the ingots were homogenized at 350°C for 3 h and then extruded in a 2,500 t of YA32-315 four-column versatile hydraulic press. Extrusion was conducted by varying two kind of different extrusion parameters,namely,extrusion temperature and extrusion speed,which were 330°C,9.6 mm/s,330°C, 5.3 mm/s and 400°C,5.3 mm/s for alloy I,alloy II and alloy III,respectively.The equivalent strain rate during extrusion was estimated according to[13]:

    where V is the ram speed,D0is the container diameter,Deis the extrusion die diameter,Re is the extrusion ratio(Re=,and φ is the semi-angle of the conical die.The extrusion speed can be converted into strain rate ?,which is one of the Zener-Hollomon parameters.The values of extrusion temperature T and strain rate ? are shown in Table 1.

    Table 1The extrusion temperature T and strain rate˙ε of Mg-Zr alloys.

    The microstructures and phase constitutions of the specimens were examined by Olympus optical microscope and X-ray diffraction(XRD).Tensile testing at ambient temperature was performed using a Shimadzu CMT-5105 material testing machinewith a stretching rate of 3 mm/min.The dampingsamples were machined to dimensions of 45 mm×5 mm×1 mm parallel to the extrusion direction using an electric spark cutter. The damping capacity was determined through dynamic mechanical analysis(TA-DMA Q800)in single cantilever vibration mode with a measurement frequency of 1 Hz and various strain amplitudesεrangingfrom6×10-5to6×10-3andthelosstangent (tan φ).Given that tan φ is equivalent to the inverse quality factor(Q-1)when the internal friction is very low,the damping capacities of the alloys were evaluatedusing Q-1as a substitute for tan φ.

    3.Results and discussion

    3.1.Microstructures of the Mg-Zr alloys

    The transverse sectional microstructures of the alloys I,II, III are shown in Fig.1(a)-(c).Usually,the extrusion process rarely changes the phase composition of the alloy,so only alloy III was selected to do the X-ray diffraction experiment, which is shown in Fig.1d.From the XRD pattern,the main phases of as-extrusion Mg-Zr alloy are α-Mg solid solution and α-Zr phase.There is no formation of alloy phase due to the small solid solubility of Zr element in Mg matrix.Hence, the phase constitution has little impact on the properties of the Mg-Zr alloy.From the metallographical of the three alloys,it can be seen that after extrusion,the original grains of the Mg-Zr alloy are seriously crushed,due to the effects of extrusion stress,and meanwhile,a large number of dynamic recrystallized(DRXed)grains appear and mix with the seriously deformed grains.On the one hand,the recrystallized grain sizes is different because of their different extrusion parameters,namely,extrusion temperature and strain rate. Alloys I and II were extruded at 330°C,alloy III was extruded at 400°C.As is well known that,the higher extrusion temperature is,the more easily recrystallization will occur,and grains tend to grow up,so the grain size of alloy III is larger than that of alloys I and II.On the other hand,under lower extrusion temperature of 330°C,alloy I has a higher extrusion rate of 9.6 mm/s than alloy II.The lower extrusion rate is,the more work will be done by the extrusion stress.Therefore,the recrystallized grains of alloy II under lower extrusion rate have more energy and are able to grow larger.Consequently,the grain size of the alloy I was smaller than those of alloys II and III.Based on the metallographs shown in Fig.1,the calculated average grain sizes of alloy I,alloy II and alloy III were approximately 21,30,and 70 μm,respectively.

    Fig.1.The microstructures of Mg-Zr alloys:(a)Alloy I,(b)alloy II,(c)alloy III and(d)XRD pattern of the alloy III.

    3.2.Properties of the Mg-Zr alloys

    Fig.2.Mechanical properties of as-extruded Mg-Zr alloys under different extrusion parameters.

    Fig.2 and Table 2 show the tensile strength σb,yield strength σ0.2and elongation δ of the as-extruded Mg-Zr alloys(alloys I-III).It can be found that alloy I with the smallest grains had the highest yield strength.By contrast,alloy III with the largest grains had the lowest yield strength.For alloy II,its presented moderate grain sizes and yield strength.And the ultimate strengths of the alloys coincided with their yield strength.According to grain refnement strengthening theory, grain size directly affects on the mechanical properties of an alloy.Under applied stress,plastic deformation could be easily transmitted to adjacent grains and alloys with fner grains would exhibit higher yield strength because of lower local stress concentration in the smaller grains.In terms of the Hall-Petch equation:σ=σ0+kd-1/2,the yield strength is inversely proportional to the square root of the grain size[14]. In addition,with the decrease of grain size,the plasticity of materials is also signifcantly improved,which is well consistent with the strength variation of the alloys shown in Fig.2.Under the same external stress,a smaller strain difference between the grain boundary and intra-grain in fner grain alloys reduces the possibility of crack initiation and extension resulting from local stress concentration.Thus,alloy I,which has the smallest average grain size among the studied alloys,exhibited the highest elongation.In a word,grain sizes consistently decreased whereas strengthsand plasticity generally increased from alloy III,alloy II to alloy I.

    The damping capacities of Mg-Zr alloys obtained under different extrusion parameters at room temperature as a function of varying strain amplitudes from 5× 10-4to 3×10-3is shown in Fig.3.The x-and y-axes correspond to the strain amplitude(ε)and loss tangent(tan φ=Q-1), respectively.The curves observed may be divided into two regions by critical strain amplitude(εcr)of 2.0×10-4.In the frst region,in which strain amplitude is below the critical value,the Q-1values of all alloys at low strain amplitude are small and hardly distinct with varying the strain amplitude. Nonetheless,the damping value of alloy III achieves a high damping standard(Q-1>0.01).However,above the critical strain amplitude εcrof each curve,the damping values of thethree alloys remarkably increased with increasing the strain amplitude.

    Table 2Extrusion parameters,tensile properties,and damping capacities of the extruded alloys.

    For Mg alloys,energy dissipation by dislocation movements is the major internal friction mechanism.According to the G-L dislocation pinning model[15],at low temperatures, damping of Mg alloys at ambient temperature is produced by moving dislocations and point defects.With a slight excess of alternating stress,mobile dislocations are pinned by weak pinning points and the bow between neighboring points with short distances,thereby generating low internal friction in the alloys;this stage is called strain-independent damping.However,once the strain amplitude exceeds a critical value,mobile dislocations break away from weak pinning points,inducing the“avalanche form”phenomenon and rapidly increasing the internal friction.When the stress is unloaded,the dislocation loops elastically shrink and are fnally pinned by point defects. During the unpinning process and rebounding of dislocation loops,static hysteresis internal friction is generated;this stage is referred to as strain-dependent damping.Therefore,the damping capacity of alloys can be divided into two parts:the frst includes strain-independent damping represented by Q0-1and the second includes strain-dependent damping expressed as Qh-1(ε)[15]:

    Fig.3.Damping capacities of as-extruded Mg-Zr alloys.

    In Fig.3,there is scarcely obvious distinction for the Q0-1values of the alloys obtained under different extrusion parameters in the low strain amplitude region.However,once the strain amplitude surpasses the critical value,the Qh-1values of all of the alloys begin to accelerate with the increase of strain amplitude.In the low strain amplitude region,the damping capacity of alloy III is the most remarkable among the three alloys.The damping value of alloy II is slightly higher than that of alloy I.It can be found that the performances of the three alloys are in agreement with the general fnding that damping capacities and mechanical properties are contradictory[12].

    3.3.Optimization of mechanical and damping properties of the Mg-Zr alloys

    During Mg alloy processing,changes in mechanical properties mainly depend on the variations in grain size,namely, the grain refnement strengthening.However,fne grains could lead to large areas of grain boundaries,and oscillation of dislocations is strongly hindered.Furthermore,the grain boundary sliding of fne grains would become more diffcult. Then,all of these considerations have signifcant effects on the damping capacities of the alloys.Therefore,the present study focused on controlling the grain size and optimizing the mechanical properties and damping capacities of the alloys by manipulating the extrusion parameters.

    During extrusion,variations in the extrusion parameters directly infuenced the grain size of the alloys.From the analyses described above,recrystallized grain sizes considerably affect the mechanical properties of the resultant alloys.To investigate the relationship between microstructures and mechanical properties of the alloys,there have been many studies on the relationships between the recrystallized grain size and the extrusion parameters of temperature and strain rate [17,18].It is well known that the Zener-Hollomon parameter (Z parameter)is a useful variable for explaining this relationship[19],which consists of a combined function of temperature and strain rate,this parameter can be expressed as

    wheredis the average DRXed grain size,m is the grain size exponent,Ais a constant,? is the strain rate,Q is the lattice diffusion activation energy of Mg(135 kJ/mol),R is the universal gas constant(8.31 J/(mol K)),and T is the extrusion temperature.The equation shows that both the increase of strain rate and the decrease of deformation temperature could refne the grain size.In the present study,the deformation temperature of alloy I was lowest and its strain rate wasfastest,so its grain size was smallest among the alloys studied. The properties of the two other alloys are also consistent with this rule.The Z parameter and the strain rate under the extrusion conditions employed in this study were obtained from Eqs.(1)and(4),respectively,and the tensile properties and damping capacities of the extruded alloys are listed in Table 2.

    Similar to the previous study[20],the DRXed grain size(d) could be expressed as a function of the Z parameter through the relation lnd=B-mlnZwith B and m values of 11.97 and 0.34,respectively,for the Mg-Zr alloys according to Eq. (3)and as shown in Fig.4.In order to discuss the infuence of extrusion parameters on the DRXed grain size,the relationship between the DRXed grain size and Zener-Hollomon parameter is shown in Fig.4.According to Eq.(4)and Fig.4,the increase of the strain rate results in a decrease in the size of the DRXed grains,while an increase of the extrusion temperature leads to an increase in the DRXed grain size.It is commonly known that the DRXed grain size increases as the temperature increases and the strain rate decreases.Moreover,it is amazing to note that the extrusion temperature has great effect on the DRXed grain size while the strain rate has a relatively small effect according to Table 2.This phenomenon has also been observed in the ZK60 alloys[19].

    In addition,the relationship between the DRXed grain size and tensile properties is presented in Fig.5a.A linear proportional relationship in which an increase in the DRXed grain size causes poorer mechanical capacities may be observed. The grain refnement mechanism is usually attributed to this phenomenon[20].And the smaller extrusion temperature exhibits excellent mechanical properties under the same extrusion conditions combine with Table 2 and Fig.5a,and coincides with the previous discussion.Fig.5b shows the relationship between the yield strength and the average DRXed grain size of the as-extruded Mg-Zr alloys.The relationship observed corresponded well with the Hall-Petch relation and may be expressed as follows

    Fig.4.Relationship between DRXed grain sizes and the Zener-Hollomon parameter.

    where σ is the yield strength anddis the DRXed grain size. Interestingly,the extrusion parameters directly and signifcantly infuenced the DRXed grain size,and the DRXed grain size considerably affected the mechanical properties.Therefore,the mechanical properties of the studied alloys may be controlled by adjusting the macro-extrusion parameters(T and˙ε)before processing.

    Fig.6 shows the G-L plots(i.e.,lnvs.1/ε)of the as-extruded Mg-Zr alloys generated from the experimental data.It can be found that the slopes of the three alloys are observed to be mainly consistent.Based on the G-L dislocation pinning model,at the high strain amplitude region,the static hysteresis internal friction,namely,strain-dependent damping,is generated from the unpinning process and rebounding of dislocation loops,which could be expressed as Eq.(6)[16]:

    In this equation,C1=ΩΛL3NKηα/π2L2C,C2=Kηα/LC,ε is the amplitude of strain,Ω is the orientation factor,K is a factor related to the anisotropy of the elasticity coeffcient and sample orientation,η is the mismatch coeffcient of the solute and solvent atoms,α is the lattice constant,LNis the length between the strong pinning points in a dislocation,and LCis the length between the weak pinning points in a dislocation. This equation also could be rewritten as:

    Fig.5.(a)Relationship between recrystallized grain size and tensile properties and(b)the variation of tensile yield strength with the recrystallized grain size (i.e.,Hall-Petch relation).

    Combined with the previous discussion,the higher extrusion temperature of the Mg-Zr alloy exhibits the excellent damping capacity while the strain rate has not obvious effected on the damping property under the same extrusion conditions from Fig.3.This may be mainly due to the higher extrusion temperature of the Mg-Zr alloy has larger DRXed grain size. Consequently,the extrusion temperature of the Mg-Zr alloy has relatively greater effects on the mechanical and damping properties than the strain rate from all above.Fig.7 shows ftting curves of the relationship between the damping property Q-1and average DRXed grain sizedat different strain amplitude.It suggests that the linear proportional relation between them.And it is amazing to note that the damping values at all strain amplitude increased slowly as the average DRXed grain size increased.This effect is attributable to the LNvalues,which mainly depend on the average distance of grain boundaries,namely,the average grain sized.Considering that the average DRXed grain size is directly affected by the extrusion process,control of the damping properties of alloys is possible by tailoring the extrusion parameters Tand ? before extrusion.

    Fig.6.G-L plots of the Mg-Zr alloys.

    The relationship between the DRXed grain size and properties of Mg-Zr alloys is presented in Fig.8.The contradictory relationship between the damping capacity and strength of the Mg-Zr alloys may be clearly observed.It also suggests that the strength of the studied alloys signifcantly decreased as the DRXed grain size increased,while the damping capacity relative slightly increased as the DRXed grain size increased.It is necessary to control the fner grain by adjusting the lower extrusion temperature and higher strain rate in need of higher strength and lower damping capacity,and vice versa. Then,the excellent moderate capacities of the Mg-Zr alloys may be obtained when the DRXed grain size of the Mg-Zr alloy nearby a value according to the ftting curves.Thus,it is requirement to control the DRXed grain size by setting the extrusion parameters in order to obtain the balance optimization of mechanical and damping capacities of the Mg-Zr alloys.Therefore,tailoring of the extrusion parameters may be an important approach for adjusting the mechanical and damping performances of Mg-Zr alloys.It is potentially hoped that the results will contribute to the preparation of high strength and high damping structural materials designs of magnesium alloy foranti-vibration and noise-reduction applications.

    Fig.7.Relationship between DRXed grain size and damping properties of the Mg-Zr alloys.

    Fig.8.Relationship between DRXed grain size and properties of the Mg-Zr alloys.

    4.Conclusions

    In summary,optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized (DRXed) grain size under varying extrusion processing parameters including extrusion temperature T and strain rate˙ε were researched synthetically.Three main conclusions can be drawn as follows:

    1)The Mg-Zr alloy extruded at a temperature of 330°C and the strain rate of 0.45/s exhibited a DRXed homogenous microstructure.The DRXed grain size of the as-extruded Mg-Zr alloys decreased as the temperature decreased and the strain rate increased.

    2)With the decrease of the DRXed grain size,the strength and elongation of the as-extruded alloys increased,while the damping capacity relative slightly decreased.The extrusion temperature of the Mg-Zr alloy had relatively greater effects on the mechanical and damping properties than the extrusion strain rate.

    3)The DRXed grain size was directly infuenced by the extrusion parameters,and it signifcant affected the mechanical and damping properties of the Mg-Zr alloy. Thus,it is requirement to control the DRXed grain size by setting the extrusion parameters in order to obtain the appropriate capacities of the Mg-Zr alloys.

    Acknowledgments

    The authors are grateful for the fnancial support from the foundation support of the Key Laboratory of Science and Technology on High Energy Laser,CAEP,the National Natural Science Foundation Commission of China(Grant No. 51271206),the National Basic Research Program of China (Grant No.2013CB632201),and the Program for New Century Excellent Talents in University(Grant No.NCET-11-0554).

    [1]L.H.Wen,Z.S.Ji,M.L.Hu,H.Y.Ning,J.Magnesium Alloys 2(2014) 85-91.

    [2]J.H.Jun,J.Alloys Compd.610(2014)169-172.

    [3]Tao Li,Yong He,Hailong Zhang,Xitao Wang,J.Magnesium Alloys 2 (2014)181-189.

    [4]A.S.M.F.Chowdhury,D.Mari,R.Schaller,Acta Mater.58(2010) 2555-2563.

    [5]Z.L.Liu,X.Q.Liu,P.Shen,X.R.Zhu,L.Meng,Trans.Nonferrous Met. Soc.China 20(2010)2092-2095.

    [6]J.F.Wang,P.F.Song,S.Gao,X.F.Huang,Z.Z.Shi,F.S.Pan,Mater.Sci. Eng.A 528(2011)5914-5920.

    [7]D.Wu,Y.Q.Ma,R.S.Chen,W.Ke,J.Magnesium Alloys 2(2014) 20-26.

    [8]D.Q.Wan,J.C.Wang,G.C.Yang,Mater.Sci.Eng.A 517(2009) 114-117.

    [9]M.H.Tsai,M.S.Chen,L.H.Lin,M.H.Lin,C.Z.Wu,K.L.Ou,C.H.Yu, J.Alloys Compd.509(2011)813-819.

    [10]B.S.Yan,X.P.Dong,R.Ma,S.Q.Chen,Z.Pan,H.J.Ling,Mater.Sci. Eng.A 594(2014)168-177.

    [11]R.Ma,X.P.Dong,B.S.Yan,S.Q.Chen,Z.B.Li,Z.Pan,H.J.Ling, Z.T.Fan,Mater.Sci.Eng.A 602(2014)11-18.

    [12]J.F.Wang,R.P.Lu,W.W.Wei,X.F.Huang,F.S.Pan,J.Alloys Compd. 537(2012)1-5.

    [13]L.B.Tong,M.Y.Zheng,L.R.Cheng,S.Kamado,H.J.Zhang,Mater.Sci. Eng.A 569(2013)48-53.

    [14]Vladimir Bata,Elena V.Pereloma,Acta Mater.52(2004)657-665.

    [15]G.Y.Lin,Z.F.Zhang,H.Zhang,D.S.Peng,J.Zhou,Acta Metall.Sin.21 (2008)109-115.

    [16]S.W.Xu,S.Kamado,N.Matsumoto,T.Honma,Y.Kojima,Mater.Sci. Eng.A 527(2009)52-60.

    [17]H.Yu,S.H.Park,B.S.You,Y.M.Kim,H.S.Yu,S.S.Park,Mater.Sci. Eng.A 583(2013)25-35.

    [18]S.S.Park,B.S.You,D.J.Yoon,J.Mater.Pro.Technol.209(2009) 5940-5943.

    [19]A.Granato,K.Lucke,J.Appl.Phys.27(1956)583-593.

    [20]A.Granato,K.Lucke,J.Appl.Phys.27(1956)789-809.

    [21]H.Zhou,J.F.Wang,F.S.Pan,D.D.Xu,A.T.Tang,H.Liang,Trans. Nonferrous Met.Soc.China 23(2013)1610-1616.

    Received 9 December 2014;revised 21 January 2015;accepted 2 February 2015 Available online 5 March 2015

    *Corresponding author.National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,PR China.Tel.:+86 23 65112153.

    E-mail address:jfwang@cqu.edu.cn(J.Wang).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.02.001.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    一区二区三区激情视频| 亚洲精品国产一区二区精华液| 波多野结衣一区麻豆| 五月开心婷婷网| 午夜激情av网站| 久久99热这里只频精品6学生| 成年女人毛片免费观看观看9 | 久久人妻福利社区极品人妻图片| 十八禁高潮呻吟视频| 啦啦啦视频在线资源免费观看| e午夜精品久久久久久久| 男女边摸边吃奶| 极品教师在线免费播放| 日韩精品免费视频一区二区三区| 免费在线观看影片大全网站| 国产精品电影一区二区三区 | 欧美日韩黄片免| 亚洲精品av麻豆狂野| 一级片'在线观看视频| 美女主播在线视频| 久久亚洲真实| 久久国产精品大桥未久av| 日本欧美视频一区| 亚洲精品中文字幕在线视频| 国产亚洲精品一区二区www | 欧美黑人精品巨大| 午夜福利视频在线观看免费| 另类精品久久| 精品少妇内射三级| 精品欧美一区二区三区在线| 亚洲精品中文字幕一二三四区 | 国产国语露脸激情在线看| 黄色片一级片一级黄色片| 国产欧美日韩综合在线一区二区| 最黄视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性xxxx| 大片电影免费在线观看免费| 午夜久久久在线观看| √禁漫天堂资源中文www| 国产精品亚洲av一区麻豆| 色综合欧美亚洲国产小说| 精品熟女少妇八av免费久了| 男人操女人黄网站| 精品熟女少妇八av免费久了| 免费在线观看黄色视频的| 亚洲一卡2卡3卡4卡5卡精品中文| 国产欧美日韩一区二区精品| 精品熟女少妇八av免费久了| 亚洲国产av影院在线观看| 操美女的视频在线观看| 国产成人啪精品午夜网站| av一本久久久久| 一区二区三区国产精品乱码| 国产日韩一区二区三区精品不卡| 91大片在线观看| 窝窝影院91人妻| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡| 日本黄色视频三级网站网址 | 精品亚洲成a人片在线观看| 亚洲第一av免费看| 成年动漫av网址| 国产91精品成人一区二区三区 | 成人精品一区二区免费| 成人永久免费在线观看视频 | 99riav亚洲国产免费| 国产欧美日韩一区二区精品| 久久久久久亚洲精品国产蜜桃av| 国产成人啪精品午夜网站| 国产成人免费无遮挡视频| 亚洲午夜精品一区,二区,三区| 国产亚洲一区二区精品| 男人舔女人的私密视频| 国产真人三级小视频在线观看| 亚洲视频免费观看视频| 亚洲成av片中文字幕在线观看| 久久国产精品大桥未久av| 交换朋友夫妻互换小说| 亚洲熟女精品中文字幕| 可以免费在线观看a视频的电影网站| 桃花免费在线播放| 久久午夜综合久久蜜桃| 色综合婷婷激情| 一级黄色大片毛片| 国产深夜福利视频在线观看| 亚洲视频免费观看视频| 99国产综合亚洲精品| 最近最新免费中文字幕在线| 99久久国产精品久久久| 欧美另类亚洲清纯唯美| 丁香六月欧美| 国产日韩欧美视频二区| 精品第一国产精品| 黄色毛片三级朝国网站| 九色亚洲精品在线播放| 乱人伦中国视频| 在线观看免费视频网站a站| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| 久久九九热精品免费| 99久久精品国产亚洲精品| 欧美大码av| 亚洲国产欧美网| 精品国产超薄肉色丝袜足j| 人人妻,人人澡人人爽秒播| 黄片小视频在线播放| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久久久久大奶| 99热国产这里只有精品6| 欧美黄色淫秽网站| 人人澡人人妻人| 九色亚洲精品在线播放| 又紧又爽又黄一区二区| 国产精品98久久久久久宅男小说| 老熟妇仑乱视频hdxx| 精品国产一区二区三区四区第35| 日韩三级视频一区二区三区| 久久99一区二区三区| 精品国产乱码久久久久久小说| 婷婷丁香在线五月| 看免费av毛片| 国产精品久久久久成人av| 欧美亚洲日本最大视频资源| 啦啦啦免费观看视频1| 99国产精品免费福利视频| 欧美激情高清一区二区三区| 女人久久www免费人成看片| 久久99一区二区三区| 美女主播在线视频| 人妻久久中文字幕网| 免费一级毛片在线播放高清视频 | 少妇 在线观看| 人人妻,人人澡人人爽秒播| 两个人免费观看高清视频| 99国产综合亚洲精品| 一边摸一边抽搐一进一小说 | 日本vs欧美在线观看视频| 国产成人欧美在线观看 | 精品久久蜜臀av无| 亚洲avbb在线观看| 黄色怎么调成土黄色| 免费在线观看日本一区| av不卡在线播放| 在线亚洲精品国产二区图片欧美| 国产精品香港三级国产av潘金莲| 国产午夜精品久久久久久| av超薄肉色丝袜交足视频| 一区二区av电影网| 男女高潮啪啪啪动态图| 美国免费a级毛片| 日韩中文字幕欧美一区二区| av天堂在线播放| 十八禁网站免费在线| 亚洲av日韩在线播放| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 色综合婷婷激情| 亚洲成人免费电影在线观看| 人人妻,人人澡人人爽秒播| 日韩欧美一区视频在线观看| 日韩熟女老妇一区二区性免费视频| 最新的欧美精品一区二区| 精品欧美一区二区三区在线| 真人做人爱边吃奶动态| 一区二区三区激情视频| 久久狼人影院| 黄色视频,在线免费观看| 中文欧美无线码| 午夜激情久久久久久久| 真人做人爱边吃奶动态| 欧美日韩黄片免| 宅男免费午夜| 男女之事视频高清在线观看| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看 | 欧美日韩黄片免| 日韩欧美一区视频在线观看| 国产成人精品在线电影| a在线观看视频网站| 91麻豆av在线| av电影中文网址| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区四区第35| 精品人妻熟女毛片av久久网站| 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 久久人妻av系列| 欧美 亚洲 国产 日韩一| 中文亚洲av片在线观看爽 | 亚洲av成人不卡在线观看播放网| 1024香蕉在线观看| 高清黄色对白视频在线免费看| 最黄视频免费看| 国产亚洲欧美精品永久| 亚洲av片天天在线观看| 在线观看www视频免费| 极品少妇高潮喷水抽搐| 人人妻人人爽人人添夜夜欢视频| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 在线观看www视频免费| av在线播放免费不卡| 99精国产麻豆久久婷婷| 波多野结衣一区麻豆| 午夜久久久在线观看| netflix在线观看网站| 在线观看www视频免费| 丝袜喷水一区| 日本黄色日本黄色录像| 欧美在线一区亚洲| 亚洲免费av在线视频| 国产av国产精品国产| 欧美 亚洲 国产 日韩一| 老司机靠b影院| 午夜免费成人在线视频| 亚洲第一青青草原| 国产成人精品无人区| 免费不卡黄色视频| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| av在线播放免费不卡| 国产有黄有色有爽视频| 一进一出抽搐动态| av天堂久久9| 水蜜桃什么品种好| 亚洲美女黄片视频| 美女高潮到喷水免费观看| 国产色视频综合| 777米奇影视久久| 午夜91福利影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲,欧美精品.| 欧美精品人与动牲交sv欧美| 亚洲国产欧美在线一区| 亚洲午夜理论影院| 久久久久久人人人人人| 亚洲第一青青草原| a在线观看视频网站| 免费久久久久久久精品成人欧美视频| a级毛片黄视频| 亚洲欧美色中文字幕在线| 51午夜福利影视在线观看| 两人在一起打扑克的视频| 91精品国产国语对白视频| 日韩免费av在线播放| 精品人妻熟女毛片av久久网站| 国产精品偷伦视频观看了| 夫妻午夜视频| 国产精品98久久久久久宅男小说| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| 在线av久久热| 又黄又粗又硬又大视频| 免费看a级黄色片| 五月开心婷婷网| 国产极品粉嫩免费观看在线| 高潮久久久久久久久久久不卡| 亚洲三区欧美一区| 宅男免费午夜| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 麻豆成人av在线观看| www.999成人在线观看| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 丝袜在线中文字幕| 国产一区二区激情短视频| 国产成人一区二区三区免费视频网站| 午夜福利视频精品| www.自偷自拍.com| 午夜福利免费观看在线| 久久性视频一级片| 亚洲欧洲日产国产| 水蜜桃什么品种好| av视频免费观看在线观看| 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 一边摸一边抽搐一进一出视频| av在线播放免费不卡| 中文字幕人妻丝袜制服| 最新在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 纯流量卡能插随身wifi吗| 精品乱码久久久久久99久播| 久久性视频一级片| 一级毛片女人18水好多| 18禁观看日本| 黄色视频,在线免费观看| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 高清视频免费观看一区二区| 色94色欧美一区二区| 99香蕉大伊视频| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 国产男靠女视频免费网站| kizo精华| 国产伦理片在线播放av一区| 9191精品国产免费久久| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 少妇粗大呻吟视频| 性高湖久久久久久久久免费观看| 视频区图区小说| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 淫妇啪啪啪对白视频| 国产成人欧美| 国产精品自产拍在线观看55亚洲 | 中文字幕色久视频| 国产精品国产高清国产av | 国产一区二区三区综合在线观看| av福利片在线| 久久影院123| 蜜桃国产av成人99| 性高湖久久久久久久久免费观看| 亚洲国产av新网站| 欧美 亚洲 国产 日韩一| 久热这里只有精品99| 91麻豆精品激情在线观看国产 | 人人妻,人人澡人人爽秒播| 一夜夜www| 黑人猛操日本美女一级片| 在线观看www视频免费| 国产三级黄色录像| 一区二区av电影网| 99国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| videos熟女内射| 久久亚洲真实| 91大片在线观看| 大型黄色视频在线免费观看| 久久中文字幕一级| 色综合欧美亚洲国产小说| 日本黄色视频三级网站网址 | 久久狼人影院| 久久精品亚洲av国产电影网| 久久人人爽av亚洲精品天堂| 91九色精品人成在线观看| 午夜91福利影院| av有码第一页| 亚洲国产欧美一区二区综合| 一区二区三区精品91| 99在线人妻在线中文字幕 | 热99久久久久精品小说推荐| 人成视频在线观看免费观看| 国产麻豆69| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 五月开心婷婷网| av网站在线播放免费| 50天的宝宝边吃奶边哭怎么回事| 老熟妇乱子伦视频在线观看| 午夜福利,免费看| 日韩大码丰满熟妇| 国产在线精品亚洲第一网站| 久久婷婷成人综合色麻豆| 国产在线免费精品| 亚洲国产av影院在线观看| 午夜福利影视在线免费观看| 免费少妇av软件| 一级片免费观看大全| 最新美女视频免费是黄的| 激情视频va一区二区三区| 岛国毛片在线播放| 亚洲伊人久久精品综合| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 美女扒开内裤让男人捅视频| 在线观看www视频免费| 国产免费现黄频在线看| 久久久久视频综合| 国产在视频线精品| 亚洲美女黄片视频| 夜夜爽天天搞| av一本久久久久| 少妇 在线观看| 两个人免费观看高清视频| 高清毛片免费观看视频网站 | 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲 | 亚洲熟妇熟女久久| 久久精品亚洲av国产电影网| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| www.自偷自拍.com| 99精国产麻豆久久婷婷| 中文字幕色久视频| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| 午夜91福利影院| 日韩精品免费视频一区二区三区| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 少妇精品久久久久久久| 亚洲av国产av综合av卡| 色视频在线一区二区三区| 日本五十路高清| av超薄肉色丝袜交足视频| xxxhd国产人妻xxx| 日韩成人在线观看一区二区三区| 交换朋友夫妻互换小说| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 性色av乱码一区二区三区2| 久久久精品94久久精品| 午夜免费成人在线视频| 亚洲九九香蕉| www.熟女人妻精品国产| 久久精品国产a三级三级三级| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 午夜免费成人在线视频| 男女免费视频国产| 搡老乐熟女国产| 日韩欧美国产一区二区入口| 中文字幕人妻丝袜制服| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 日韩人妻精品一区2区三区| 欧美精品av麻豆av| 丝瓜视频免费看黄片| 高清黄色对白视频在线免费看| 正在播放国产对白刺激| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜一区二区| 国产国语露脸激情在线看| 国产精品国产高清国产av | 日韩视频在线欧美| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 中文字幕高清在线视频| 在线观看人妻少妇| 俄罗斯特黄特色一大片| 波多野结衣一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久电影中文字幕 | 99九九在线精品视频| 国产欧美日韩一区二区三| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 久久人妻熟女aⅴ| 99精品在免费线老司机午夜| 免费少妇av软件| 国产精品成人在线| 午夜福利免费观看在线| 人人妻人人澡人人爽人人夜夜| 欧美日韩亚洲国产一区二区在线观看 | 国产在线视频一区二区| 多毛熟女@视频| 日韩制服丝袜自拍偷拍| 国产色视频综合| 久久精品亚洲熟妇少妇任你| 亚洲av美国av| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 国产亚洲精品久久久久5区| 黄色怎么调成土黄色| 国产欧美日韩一区二区三| 国产一区二区在线观看av| 国产日韩欧美视频二区| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 免费少妇av软件| 两性夫妻黄色片| 欧美精品亚洲一区二区| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 亚洲精品成人av观看孕妇| 免费观看人在逋| 亚洲国产欧美网| 亚洲第一青青草原| 午夜成年电影在线免费观看| 亚洲成人免费av在线播放| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| 免费观看人在逋| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 午夜老司机福利片| 麻豆成人av在线观看| 99精国产麻豆久久婷婷| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| aaaaa片日本免费| 老汉色∧v一级毛片| 久久中文字幕一级| 脱女人内裤的视频| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 韩国精品一区二区三区| 桃红色精品国产亚洲av| 欧美日韩av久久| 亚洲中文av在线| 国产成人av激情在线播放| 久久精品国产亚洲av香蕉五月 | 亚洲 欧美一区二区三区| 国产免费av片在线观看野外av| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 丁香六月欧美| 99在线人妻在线中文字幕 | 久久久精品94久久精品| 国产男靠女视频免费网站| 麻豆国产av国片精品| 精品国产亚洲在线| 午夜福利在线免费观看网站| 精品第一国产精品| 亚洲国产看品久久| 可以免费在线观看a视频的电影网站| 韩国精品一区二区三区| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 免费高清在线观看日韩| 一级毛片精品| 国产欧美亚洲国产| 两个人看的免费小视频| 久热这里只有精品99| 精品午夜福利视频在线观看一区 | 黄色视频,在线免费观看| 亚洲精品av麻豆狂野| 99re6热这里在线精品视频| 一级毛片电影观看| av在线播放免费不卡| av又黄又爽大尺度在线免费看| tube8黄色片| aaaaa片日本免费| 日韩免费av在线播放| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站 | 亚洲精品一二三| 亚洲免费av在线视频| 丝袜喷水一区| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 国产亚洲一区二区精品| 国产成人影院久久av| 在线观看66精品国产| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 亚洲色图av天堂| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美软件| 男女免费视频国产| 久久精品亚洲精品国产色婷小说| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 视频区欧美日本亚洲| 日日夜夜操网爽| 十八禁网站网址无遮挡| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 国产一卡二卡三卡精品| 精品第一国产精品| 免费在线观看完整版高清| 正在播放国产对白刺激| 久久久欧美国产精品| 一级毛片电影观看| 亚洲av美国av| 久久青草综合色| 岛国毛片在线播放| 一区二区三区国产精品乱码| 国产精品一区二区在线观看99| 99九九在线精品视频| 51午夜福利影视在线观看| www日本在线高清视频| cao死你这个sao货| 97人妻天天添夜夜摸| 1024视频免费在线观看| 妹子高潮喷水视频| 日韩有码中文字幕| 乱人伦中国视频| 日本vs欧美在线观看视频| 亚洲美女黄片视频| 777米奇影视久久| 考比视频在线观看| www.熟女人妻精品国产| 亚洲,欧美精品.| 精品国产乱子伦一区二区三区| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 国内毛片毛片毛片毛片毛片| av电影中文网址| 一级片免费观看大全| 国产视频一区二区在线看| 成人手机av| 国产高清视频在线播放一区| 亚洲一卡2卡3卡4卡5卡精品中文| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 久久狼人影院| 欧美大码av|