• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dry sliding wear behavior of an extruded Mg-Dy-Zn alloy with long period stacking ordered phase

    2015-02-16 00:55:51*
    Journal of Magnesium and Alloys 2015年1期

    *

    State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China

    Dry sliding wear behavior of an extruded Mg-Dy-Zn alloy with long period stacking ordered phase

    Guangli Bi*,Yuandong Li,Xiaofeng Huang,Tijun Chen,Ying Ma,Yuan Hao

    State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China

    The dry sliding wear behavior of extruded Mg-2Dy-0.5Zn alloy(at.%)was investigated using a pin-on-disk confguration.The friction coeffcient and wear rate were measured within a load range 20-760 N at a sliding velocity of 0.785 m/s.Microstructure and wear surface of alloy were examined using scanning electron microscopy.The mechanical properties of alloy were tested at room and elevated temperatures. Five wear mechanisms,namely abrasion,oxidation,delamination,thermal softening and melting dominated the whole wear behavior with increasing applied load.The extruded Mg-2Dy-0.5Zn alloy exhibited the better wear resistance as compared with as-cast Mg97Zn1Y2alloy under the given conditions through contact surface temperature analysis.The improved wear resistance was mainly related to fne grain size,good thermal stability of long period stacking order(LPSO)phase and excellent higher-temperature mechanical properties.

    Mg-Dy-Zn alloy;Coeffcient of friction;Wear rate;Wear mechanism

    1.Introduction

    Magnesium alloys have become promising materials as structural components in the aerospace and automobile industries because of their low density,high specifc strength and damping capacity.However,Mg alloys usually exhibit poor wear resistance,which strongly limits their further applications at some extent.Thus,it is necessary to develop friction and wear properties of Mg alloys for the applications of many other parts such as the components around the engine parts[1].

    The friction and wear properties of Mg alloys are mainly affected by the surface microstructure of Mg alloys.The previous investigations have demonstrated that micro alloying [2],cryogenic treatment[3,4],hotworking [5,6]and introduction of some dispersoids[7]could effectively improve the surface microstructure to enhance friction and wear properties of Mg alloys.For example,some dispersoids,such as fne ceramics and oxide particles,are usually introduced into microstructures intentionally to induce grain refnement and restrict grain growth.Recently,Somekawa et al.[1] investigated the friction and wear properties of Mg-Zn-Y alloy with dispersion of quasi-crystalline phase.The corresponding experimental results indicated that the homogenous dispersive distribution of the quasi-crystalline phase in the coarse-grained matrix signifcantly enhances wear properties of the alloy.Similar to quasi-crystalline phase,the long period stacking order(LPSO)structure is an ideal strengthening phase for Mg alloys,whose unit cell contains different closedpacked planes.Various types of LPSO structures,including 6H,10H,14H,18R and 24R types,have been observed in ascast and heat-treated Mg-RE-Zn alloys(where RE represents Y,Gd,Er and Dy)[8-17].Among them,18R and 14H types are commonly observed and the 18R type could transform into14H type during heat treatment.The LPSO phase has good thermal stability,high hardness value and a coherent interface with Mg matrix.The extruded Mg-RE-Zn alloys containing a large volume fraction of LPSO phases have been confrmed to show superior tensile strengths and available ductility at both room and elevated temperatures[11,17,18].However,the investigation on friction and wear properties of these alloys was seldom reported.Up to now,An et al.[19]have investigated dry sliding wear behavior of as-cast Mg97Zn1Y2alloy. They pointed out that the alloy exhibits better wear resistance than AZ91 alloy due to the superior thermal stability of Mg12Y1Zn1phase with LPSO structure.Hu et al.[20]also studied dry sliding behavior of cast Mg-11Y-5Gd-2Zn magnesium alloy.They confrmed that the wear resistance of ascast+T6 heat-treated alloy is higher than that of as-cast one originating from the precipitation of a large amount of Mg12Y1Zn1phases.In our published work,the microstructure, mechanical and corrosion properties of as-cast,extruded and aging heat-treated Mg-2Dy-0.5Zn(at.%)alloy have been investigated,respectively[21].The extruded Mg-2Dy-0.5Zn alloy exhibits excellent mechanical properties,especially at 300°C.However,the friction and wear behavior of the alloy has not been investigated until now.

    In the present paper,to further understand wear behavior of the alloy,the dry sliding wear and friction properties of extruded Mg-2Dy-0.5Zn alloy were investigated using a pinon-disc confguration.The as-cast Mg97Zn1Y2alloy reported by An et al.[19]was selected as the contrast one.The effect of applied load and contact temperatures on the wear mechanism was also discussed.

    2.Experimental procedures

    The experimental Mg-2Dy-0.5Zn(at.%)alloy was prepared from pure Mg,pure Zn and Mg-(20wt.%)Dy master alloy in a graphite crucible under an anti-oxidizing fux.The melts were homogenized at 750°C for 0.5 h and then were poured into a water-cooling mould of a diameter of 85 mm and a length of 350 mm at 720°C.The ingots were homogenized at 525°C for 10 h and were machined into the round bars with a diameter of 80 mm.The bars were extruded by an extrusion ratio of 17 at 360°C and then were aged at 180°C for 99 h.

    The calorimetric response of the alloy was measured using differential scanning calorimetry(DSC)(STA449C).A heating rate of 6°C/min was employed under argon purge at 35 ml/min.Microstructure,phase structure and composition of alloy were characterized by optical microscope(OM) (Olym-pusGX71),scanning electron microscope(SEM) (JSM-6700F)with energy dispersive X-ray spectroscopy (EDS)(INCA from Oxford).Samples for optical and scanning electron microscope observations were polished and then etched in a solution of 4 ml nitric and 96 ml ethanol.Tensile tests were carried out in an Instron-type tensile testing machine(Instron 1211)at room temperature(RT),100,200 and 300°C,respectively,with a strain rate of 1×10-3s-1for all the specimens tested.The tensile specimens with a gauge dimension of 40 mm×5 mm×1.8 mm were cut from the heat-treated bars with their length direction parallel to the extrusion direction.

    Dry sliding friction and wear tests were carried out with a pin-on-disc type machine at a room temperature of 25°C.The disc of 70 mm diameter was made of high carbon chromium steel.The bearing surface of the disc was ground to a constant surface roughness.The disc rotation speed was kept at 78.5×10-2ms-1.Specimens of 6 mm diameter×12 mm length were machined from the heat-treated bars.Specimen surfaces were polished and thoroughly degreased by acetone. Specimens were weighted on an electronic balance with a precision of 0.1 mg before and after wear test.The worn surface of the wear pins was examined with a JSM-6700F scanning electron microscope.

    3.Results and discussion

    3.1.Microstructure and mechanical properties

    Fig.1 shows the DSC curve of extruded Mg-2Dy-0.5Zn alloy.During continuous heating two endothermic peaks are observed at 539.5°C and 626.6°C,respectively.According to the Mg-Dy binary phase diagram[22],the frst endothermic peak(539.5°C)corresponds to dissolution of the eutectic phase and the second one(626.6°C)corresponds to melting of the matrix,this result is also reported by Peng et al.[23]. Microstructure of alloy is mainly composed of α-Mg matrix, (Mg,Zn)xDy particle and a large number of 14H-type LPSO phases.It can be seen from Fig.2(a)and(b)that the morphology of LPSO phase can be classifed as two kinds:one is the block-shape,which mainly distributes along the extrusion direction and the other is the fne lamellar-shape in the grain interior as shown in Fig.2(c).The average grain size of alloy is about 3 μm.Fig.3 shows the tensile properties of extruded Mg-2Dy-0.5Zn alloy and as-cast Mg97Zn1Y2alloy at room and elevated temperatures.With increasing testing temperature,yield strength(σ0.2),ultimate tensile strength (σb)of two alloys signifcantly decrease,but the elongation to failure(ε)gradually increases.In addition,σ0.2,σband ε of extruded Mg-2Dy-0.5Zn alloy are higher than that of as-cast Mg97Zn1Y2alloy,especially at elevated temperatures[18].σ0.2,σband ε of Mg-2Dy-0.5Zn alloy are 245 MPa,260 MPa and 36%at 300°C,respectively,which are much higher than those of the as-cast Mg97Zn1Y2alloy(92 MPa,135 MPa and 10%at 250°C)[19].The excellent tensile properties of extruded alloy are mainly ascribed to the grain refnement and precipitation strengthening of LPSO phase with high thermal stability.On the contrast,the large grain size and the coarse Mg12Zn1Y2phases with LPSO structure result in the lower tensile properties of as-cast Mg97Zn1Y2alloy,despite the alloy contains a great number of these phases.The large difference in mechanical properties of two alloys also affects the friction and wear properties.

    Fig.1.DSC curve of extruded Mg-2Dy-0.5Zn alloy aged at 180°C for 99 h.

    Fig.2.Optical microstructures of extruded Mg-2Dy-0.5Zn alloy parallel to the extruded direction(a)and vertical to the extrusion direction(b),(c)is a highmagnifcation SEM image of white frame in image(b).

    Fig.3.Tensile properties of extruded Mg-2Dy-0.5Zn and as-cast Mg97Zn1Y2alloys at different temperatures.

    3.2.Wear behavior

    Fig.4.Coeffcients of friction of extrudedMg-2Dy-Zn and as-cast Mg97Zn1Y2 alloys at different applied loads.

    Fig.5.Wear rates of extruded Mg-2Dy-Zn and as-cast Mg97Zn1Y2alloys at different applied loads.

    Fig.4 displays the variation in coeffcient of friction with load for extruded Mg-2Dy-0.5Zn alloy and as-cast Mg97Zn1Y2alloy.The coeffcient of friction of two alloys sharply decreases at low load(0-100 N)and then gradually decreases at medium load(100-380 N)and fnally reaches the lowest value at 380 N and 760 N for as-cast Mg97Zn1Y2alloy and extruded Mg-2Dy-0.5Zn alloy,respectively.It is noted that two alloys exhibit a similar trend in the coeffcient of friction with increasing load,despite extruded Mg-2Dy-0.5Zn alloy displays a lower coeffcient of friction as compared with ascast Mg97Zn1Y2alloy at lower load(0-380 N).Fig.5 shows the variation in wear rate with load for extruded Mg-2Dy-0.5Zn alloy and as-cast Mg97Zn1Y2alloy.The wear rate of as-cast Mg97Zn1Y2alloy gently increases until 280 N and then rapidly increases with increasing load,while that of extruded Mg-2Dy-0.5Zn alloy successively increases before 380 N and suddenly decreases at 450 N and then increases rapidly.It can be seen from Fig.5 that there exists a large difference in variation region of wear rate with applied load for two alloys. This suggests that two alloys exhibit different wear mechanism at different load region.SEM images of the worn surface of extruded Mg-2Dy-0.5Zn alloy at different load are shown in Fig.6.A great number of grooves with plastic deformation and cracks appear on the worn surface at lower load (20-200 N).The grooves mainly distribute along the sliding direction and the cracks form around the plastic deformation region.These are typical features of abrasion and delamination wear mechanisms,in which hard particles in between contracting surfaces,plough or cut into the pin,causing wear by removal of small fragments[24,25].At a load of 380 N,some fne abrasive joints appear on the worn surface(Fig.6(c)).This is a typical feature of adhesion.With increasing load,the grooves generally become wide and shallow as shown in Fig.6.Simultaneously,as the load increases,the rise of surface temperature caused by frictional heating leads to thedecrease of yield strength and the increase of ductility(see Fig.3).The material is easy to generate plastic deformation and they spread out of the contact surface as well as by moving side away.The similar fnding of material extrusion was reported in other Mg alloys and their composites[26-28]. At high loads of 520 N and 760 N,severe plastic deformation and plastic yielding occur on the worn surface(see Fig.6(e) and(f)).This morphology is associated with thermal softening and melting of alloy caused by frictional heating at the sliding interface[29].Nevertheless,it is worth noting that magnesium is easy to be oxidized to magnesium oxide during friction between pin and counter steel disc.Also,the EDS results in Table 1 indicate that the amount of atomic oxygen at the worn surface of alloy frstly increases and then decreases with increasing load.The similar results were reported in other magnesium alloys[30].The amount of atomic oxygen reaches a highest value of 36.1%at 440 N and the others are Dy,Mg and Zn elements,respectively.At this moment,the thick oxide layer contained Dy and Zn element formed at the worn surface and could effectively protect the sliding surface and further increase friction coeffcient and decrease wear rate[19].As a result,the lower worn rate at 380-440 N in Fig.5 indicates the oxide wear mainly dominates the wear behavior.Therefore,it can be seen that the formation of oxide layer is helpful to improving the wear resistant properties of alloy.

    Fig.6.SEM micrographs of worn surface of alloy at different applied loads:(a)20 N,(b)200 N,(c)380 N,(d)440 N,(e)520 N and(f)760 N.

    Table 1EDS analysis of worn surface for the alloy in Fig.6.

    Fig.7.SEM micrographs of worn surface of alloy around the periphery at different applied loads:(a)20 N,(b)200 N,(c)380 N,(d)440 N,(e)520 N and(f) 760 N.

    To clearly understand the wear mechanism of extruded Mg-2Dy-0.5Zn alloy,the morphologies of worn surface around the periphery at different load are shown in Fig.7.In addition to the obvious abrasive and adhere wear marks,there is not exist extruded layer at the worn surface around the periphery asshown in Fig.7(a)and(b).With an increase of the load up to 380 and 440 N,the squamiform-shape edges of extruded layer and continuous oxide layer form,respectively,as shown in Fig.7(c)and(d).When the load increases from 440 to 520 N, the oxide layer is delaminated at the worn surface,resulting higher wear rate(see Fig.5).As the load is over 520 N,a combination of smooth surface and extruded layers at the worn surface as shown in Fig.7(e)and(f),indicating surface melting is the main wear mechanism.However,for as-cast Mg97Zn1Y2alloy,the abrasion and delamination wear mechanisms occur at a load rang of 20-200 N,the thermal softening does at 240-280 N,and the surface melting become the dominate wear mechanism as load is over 280 N.So,it can be seen that extruded Mg-2Dy-0.5Zn alloy exhibit better wear resistance than as-castMg97Zn1Y2alloy under given conditions.

    3.3.Contact surface temperature and its effect on wear behavior

    Fig.8.The variation in surface temperature with applied load.

    When two contacting solids occur to slide,the heat appears at the surface of two solids resulted from the work is done against friction.As a result,the surface temperature increases with the proceeding of friction.The average surface temperatureTb(bulk temperature)can be measured by the expression[31]:whereT0is the temperature of the heat sink where the heat fows,α is the fraction of the heat diffusion into the pin,μ is the coeffcient,Fis the normal force on the pin,ν is the sliding velocity,lbis the mean diffusion distance,Anis the normal contact area andKmis the thermal conductivity.The variation in surface temperature with load for both extruded Mg-2Dy-0.5Zn alloy and as-cast Mg97Zn1Y2alloy is shown in Fig.8.The thermal conductivity is 64 J/ms K for as-cast Mg97Zn1Y2alloy and 45 J/ms K for extruded Mg-2Dy-0.5Zn alloy.The surface temperature of two alloys increases with increasing load.It is noted that three temperature ranges appear in the curve,i.e.,from room temperature to eutectic temperature,from eutectic temperature to liquidus temperature,above the liquidus temperature. This temperature range corresponds to 20-240 N for as-cast Mg97Zn1Y2alloy and 20-600 N for extruded Mg-2Dy-0.5Zn alloy,respectively.The thermal strength of the alloy plays an important role in wear properties in the range of room temperature and eutectic temperature.For as-cast Mg97Zn1Y2alloy,although the main strengthening Mg12ZnY phase distributed along the grain boundary could provide a good thermal stability below the eutectic temperature,the coarse grain size(30 μm)decreases the elevated temperature strengths.In contrast,for extruded Mg-2Dy-0.5Zn alloy,the dispersive distribution of LPSO phase in α-Mg grains and fne grain size(3 μm)signifcantly improve the tensile properties both at room and elevated temperature.The higher yield tensile strength and ultimate tensile strength of extruded Mg-2Dy-0.5Zn alloy than as-cast Mg97Zn1Y2alloy have been demonstrated in Fig.3.According to the previous investigations[6,32],the fne grain size and good hightemperature properties could result in higher wear resistance properties.In addition,the ductility of extruded Mg-2Dy-0.5Zn alloy is obvious higherthan thatofas-cast Mg97Zn1Y2alloy both at room and elevated temperatures (see Fig.3).Higher ductility could limit crack propagation and the delamination in the stress concentration sites and decrease wear rate of alloy[33].Therefore,the extruded Mg-2Dy-0.5Zn alloy exhibits the better wear resistance than ascast Mg97Zn1Y2alloy.

    4.Conclusions

    Pin-on-disk dry sliding tests of extruded Mg-2Dy-0.5Zn alloy(at.%)and as-cast Mg97Zn1Y2alloy against a steel conterface were carried out in load ranges of 20-760 N and 20-380 N,respectively.The wear rate and surface temperature of alloy increased with increase in applied load.The wear behavior of extruded Mg-2Dy-0.5Zn alloy can be classifed into the mild region at 20-480 N and the severe region at 540-760 N.In mild region,abrasion,oxidation and delamination are main wear mechanisms.In contrast,in severe region thermal softening and melting were found to operate the wear behavior due to melting of LPSO phase and α-Mg matrix caused by higher surface temperature.The extruded Mg-2Dy-0.5Zn alloy exhibited the lower coeffcient of friction and wear rate compared with as-cast Mg97Zn1Y2alloy.The improved wear resistance was mainly related to fne grain size,good thermal stability of LPSO phase and excellent highertemperature mechanical properties.

    Acknowledgments

    This work was fnancially supported by the National Nature Science Foundations of China(No.51301082,No.51464031 and No.51464032).

    [1]H.Somekawa,A.Shimoda,T.Hirayama,T.Matsuoka,T.Mukai,Mater. Trans.55(2014)216-219.

    [2]A.Zafari,H.Ghasemi,R.Mahmudi,Wear 303(2013)98-108.

    [3]Y.Liu,B.Jin,S.Shao,D.Li,X.Zeng,C.Xu,Tribol.Trans.57(2014) 275-282.

    [4]Y.Liu,S.Shao,C.Xu,X.Yang,D.Lu,Mater.Lett.76(2012)201-204.

    [5]J.Xu,X.Wang,X.Zhu,M.Shirooyeh,J.Wongsa-Ngam,D.Shan, B.Guo,T.G.Langdon,J.Mater.Sci.48(2013)4117-4127.

    [6]S.Ramanathan,J.Alloys Compd.502(2010)495-502.

    [7]L.Falcon-Franco,E.Bedolla-Becerril,J.Lemus-Ruiz,J.Gonzalez-Rodríguez,R.Guardian,I.Rosales,Compos.Part B-Eng.42(2011) 275-279.

    [8]E.Abe,Y.Kawamura,K.Hayashi,A.Inoue,Acta Mater.50(2002) 3845-3857.

    [9]Y.Chino,M.Mabuchi,S.Hagiwara,H.Iwasaki,A.Yamamoto, H.Tsubakino,Scr.Mater.51(2004)711-714.

    [10]T.Itoi,T.Seimiya,Y.Kawamura,M.Hirohashi,Scr.Mater.51(2004) 107-111.

    [11]Y.Kawamura,M.Yamasaki,Mater.Trans.48(2007)2986-2992.

    [12]Y.Zhu,A.Morton,J.Nie,Acta Mater.58(2010)2936-2947.

    [13]X.Shao,Z.Yang,X.Ma,Acta Mater.58(2010)4760-4771.

    [14]M.Yamasaki,T.Anan,S.Yoshimoto,Y.Kawamura,Scr.Mater.53 (2005)799-803.

    [15]J.Wang,P.Song,S.Gao,X.Huang,Z.Shi,F.Pan,Mater.Sci.Eng.A 528(2011)5914-5920.

    [16]G.Bi,D.Fang,L.Zhao,Q.Zhang,J.Lian,Q.Jiang,Z.Jiang,J.Alloys Compd.509(2011)8268-8275.

    [17]L.Zhang,J.Zhang,Z.Leng,S.Liu,Q.Yang,R.Wu,M.Zhang,Mater. Des.54(2014)256-263.

    [18]G.Bi,D.Fang,L.Zhao,J.Lian,Q.Jiang,Z.Jiang,Mater.Sci.Eng.A 528(2011)3609-3614.

    [19]J.An,R.Li,Y.Lu,C.Chen,Y.Xu,X.Chen,L.Wang,Wear 265(2008) 97-104.

    [20]M.Hu,Q.Wang,C.Li,W.Ding,Trans.Nonferrous Met.Soc.China 22 (2012)1918-1923.

    [21]G.Bi,Y.Li,S.Zang,J.Zhang,Y.Ma,Y.Hao,J.Magn.Alloys 2(2014) 64-71.

    [22]M.M.B.Avedesian,H.Baker,ASM Specialty Handbook:Magnesium and Magnesium Alloys,ASM International,Materials Park,OH,1999.

    [23]Q.Peng,J.Guo,H.Fu,X.Cai,Y.Wang,B.Liu,Z.Xu,Sci.Rep.4 (2014)1-5.

    [24]A.K.Mondal,S.Kumar,Wear 267(2009)458-466.

    [25]M.Hu,Q.Wang,C.Chen,D.Yin,W.Ding,Z.Ji,Mater.Des.42(2012) 223-229.

    [26]A.-W.El-Morsy,Mater.Sci.Eng.A 473(2008)330-335.

    [27]H.Chen,A.Alpas,Wear 246(2000)106-116.

    [28]S.Ramanathan,Mater.Des.31(2010)1930-1936.

    [29]A.Zafari,H.M.Ghasemi,R.Mahmudi,Wear 292-293(2012)33-40.

    [30]C.Taltavull,B.Torres,A.J.L′opez,J.Rams,Wear 301(2013)615-625.

    [31]S.Lim,M.Ashby,J.Brunton,Acta Metall.35(1987)1343-1348.

    [32]M.Habibnejad-Korayem,R.Mahmudi,H.M.Ghasemi,W.J.Poole,Wear 268(2010)405-412.

    [33]G.E.Dieter,Mechanical Metallurgy(SI Metric Edition),third ed., McGraw-Hill,London,1986.

    Received 27 October 2014;revised 11 December 2014;accepted 18 December 2014 Available online 31 January 2015

    *Corresponding author.Tel./fax:+86 931 2973564.

    E-mail address:glbi@163.com(G.Bi).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.12.006.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲成人av在线免费| 婷婷色综合www| 亚洲最大成人av| 国产 亚洲一区二区三区 | 免费观看精品视频网站| 欧美3d第一页| 69人妻影院| 国产高清国产精品国产三级 | 五月玫瑰六月丁香| 亚洲欧美中文字幕日韩二区| 久久久久久久久大av| 永久免费av网站大全| 欧美日韩综合久久久久久| 麻豆成人av视频| 免费黄频网站在线观看国产| 国产精品蜜桃在线观看| 成年人午夜在线观看视频 | 久久午夜福利片| 日韩成人av中文字幕在线观看| 最近最新中文字幕免费大全7| 久久久午夜欧美精品| 国内少妇人妻偷人精品xxx网站| 久久久欧美国产精品| 可以在线观看毛片的网站| 亚洲欧美一区二区三区国产| 国产黄色小视频在线观看| 最近视频中文字幕2019在线8| 国产黄片美女视频| 久久精品国产鲁丝片午夜精品| 久久久久精品性色| 国语对白做爰xxxⅹ性视频网站| 搡老乐熟女国产| 久久久国产一区二区| 亚州av有码| 久久精品久久久久久噜噜老黄| 中文天堂在线官网| 亚洲第一区二区三区不卡| 美女脱内裤让男人舔精品视频| 亚洲欧美成人精品一区二区| 久久久久免费精品人妻一区二区| 精品亚洲乱码少妇综合久久| 亚洲人成网站在线播| 干丝袜人妻中文字幕| 三级国产精品片| 三级毛片av免费| 五月天丁香电影| 老司机影院成人| 男人爽女人下面视频在线观看| 欧美激情在线99| 嫩草影院新地址| 美女xxoo啪啪120秒动态图| 一边亲一边摸免费视频| 街头女战士在线观看网站| 久久久亚洲精品成人影院| 日韩欧美 国产精品| 国产有黄有色有爽视频| 在线a可以看的网站| 亚洲av二区三区四区| 十八禁网站网址无遮挡 | 乱系列少妇在线播放| 中文乱码字字幕精品一区二区三区 | 蜜臀久久99精品久久宅男| 久久久久久九九精品二区国产| 欧美日韩一区二区视频在线观看视频在线 | 日韩制服骚丝袜av| 婷婷六月久久综合丁香| 国产一区二区在线观看日韩| 日韩精品有码人妻一区| 久久精品夜夜夜夜夜久久蜜豆| 久久99蜜桃精品久久| 蜜臀久久99精品久久宅男| 亚洲乱码一区二区免费版| 91午夜精品亚洲一区二区三区| 欧美三级亚洲精品| 日本免费在线观看一区| 国产午夜福利久久久久久| 肉色欧美久久久久久久蜜桃 | 欧美一级a爱片免费观看看| 亚洲在线观看片| 中文字幕久久专区| 极品少妇高潮喷水抽搐| 日韩欧美国产在线观看| 免费黄频网站在线观看国产| 欧美一级a爱片免费观看看| 免费人成在线观看视频色| 可以在线观看毛片的网站| a级一级毛片免费在线观看| 日韩电影二区| 天堂av国产一区二区熟女人妻| 免费少妇av软件| 夜夜爽夜夜爽视频| 国产探花在线观看一区二区| 99热这里只有是精品50| 夜夜爽夜夜爽视频| av专区在线播放| 午夜免费观看性视频| 午夜免费男女啪啪视频观看| 亚洲性久久影院| 亚洲在久久综合| 免费看光身美女| 久久鲁丝午夜福利片| 国产亚洲精品av在线| 波多野结衣巨乳人妻| av在线亚洲专区| 国产成人freesex在线| 女人久久www免费人成看片| 99视频精品全部免费 在线| 国产精品一区二区在线观看99 | 十八禁网站网址无遮挡 | 国产成人a区在线观看| 欧美97在线视频| 成人午夜精彩视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产日韩欧美在线精品| 亚洲美女搞黄在线观看| 精品99又大又爽又粗少妇毛片| 晚上一个人看的免费电影| 国产精品久久久久久久久免| 九九爱精品视频在线观看| 国产91av在线免费观看| 亚洲av电影不卡..在线观看| 亚洲精品国产av蜜桃| 乱码一卡2卡4卡精品| 亚洲在线观看片| 精品久久久噜噜| 亚洲av中文字字幕乱码综合| 国产成人午夜福利电影在线观看| 久久人人爽人人片av| 国产一级毛片在线| 伊人久久国产一区二区| 男女那种视频在线观看| 成年女人在线观看亚洲视频 | 婷婷色av中文字幕| 国产一级毛片在线| 亚洲国产精品国产精品| 少妇的逼水好多| av在线亚洲专区| 免费av不卡在线播放| 永久网站在线| 亚洲精品乱码久久久久久按摩| 亚洲精品aⅴ在线观看| 国产极品天堂在线| 免费播放大片免费观看视频在线观看| 麻豆久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 汤姆久久久久久久影院中文字幕 | 亚洲av福利一区| 国产高清国产精品国产三级 | 日韩电影二区| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 岛国毛片在线播放| 国产精品一区二区性色av| freevideosex欧美| eeuss影院久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清毛片免费看| 男女那种视频在线观看| 国产精品不卡视频一区二区| 国产精品1区2区在线观看.| 麻豆久久精品国产亚洲av| 亚洲精品,欧美精品| 99久久精品热视频| 中文精品一卡2卡3卡4更新| 听说在线观看完整版免费高清| 日韩成人av中文字幕在线观看| 欧美成人a在线观看| 久久久色成人| 99久国产av精品| 亚洲天堂国产精品一区在线| 亚洲人成网站高清观看| 欧美人与善性xxx| 全区人妻精品视频| 男人舔奶头视频| 国产精品久久久久久精品电影| 免费大片18禁| 美女cb高潮喷水在线观看| 青春草国产在线视频| 久久精品国产亚洲av天美| 日韩视频在线欧美| 搞女人的毛片| 人妻夜夜爽99麻豆av| 少妇人妻一区二区三区视频| 亚洲精品乱久久久久久| 综合色av麻豆| 一个人观看的视频www高清免费观看| 国产精品久久视频播放| 亚洲欧美一区二区三区国产| 午夜福利成人在线免费观看| av在线老鸭窝| 十八禁网站网址无遮挡 | 欧美高清成人免费视频www| 大陆偷拍与自拍| 2021天堂中文幕一二区在线观| 国产伦精品一区二区三区视频9| 亚洲一级一片aⅴ在线观看| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 国产中年淑女户外野战色| 亚洲av在线观看美女高潮| 91精品一卡2卡3卡4卡| 熟女电影av网| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 日本猛色少妇xxxxx猛交久久| 乱人视频在线观看| 2021少妇久久久久久久久久久| 一级黄片播放器| 国产在视频线在精品| 人妻一区二区av| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 国产v大片淫在线免费观看| 在线观看人妻少妇| 天天一区二区日本电影三级| 一区二区三区高清视频在线| 美女国产视频在线观看| 久久久精品欧美日韩精品| 婷婷色综合www| 亚洲精品456在线播放app| 欧美97在线视频| 欧美激情久久久久久爽电影| 亚洲激情五月婷婷啪啪| 色吧在线观看| 一夜夜www| 秋霞在线观看毛片| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 三级男女做爰猛烈吃奶摸视频| 国产免费一级a男人的天堂| 美女主播在线视频| 激情五月婷婷亚洲| 久久久色成人| 亚洲不卡免费看| 久久久久免费精品人妻一区二区| 成人亚洲欧美一区二区av| 午夜福利在线在线| 最近最新中文字幕免费大全7| 国产精品精品国产色婷婷| videossex国产| 国产精品蜜桃在线观看| 看黄色毛片网站| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 国产高清国产精品国产三级 | 日本熟妇午夜| 精品人妻偷拍中文字幕| 美女国产视频在线观看| 少妇裸体淫交视频免费看高清| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 波多野结衣巨乳人妻| 我的老师免费观看完整版| 99久久精品热视频| 亚洲aⅴ乱码一区二区在线播放| 国内精品宾馆在线| 天堂影院成人在线观看| 亚洲无线观看免费| 午夜日本视频在线| 婷婷六月久久综合丁香| 一个人免费在线观看电影| 成年人午夜在线观看视频 | 18+在线观看网站| 三级国产精品欧美在线观看| 久久这里只有精品中国| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 99久久人妻综合| 伊人久久精品亚洲午夜| 国产 一区精品| 国产精品精品国产色婷婷| 少妇人妻精品综合一区二区| 免费少妇av软件| 免费观看在线日韩| 久久99热这里只有精品18| 天美传媒精品一区二区| 国产视频内射| 精品国内亚洲2022精品成人| 美女脱内裤让男人舔精品视频| 97人妻精品一区二区三区麻豆| 美女黄网站色视频| 国产精品久久久久久av不卡| 国产单亲对白刺激| 国产精品不卡视频一区二区| 日产精品乱码卡一卡2卡三| 亚洲精品国产成人久久av| 在线免费十八禁| 老女人水多毛片| 大香蕉久久网| 亚洲成人中文字幕在线播放| 色综合站精品国产| 日韩亚洲欧美综合| 一级爰片在线观看| 亚洲成人av在线免费| 日韩伦理黄色片| 日日摸夜夜添夜夜爱| 嘟嘟电影网在线观看| 高清视频免费观看一区二区 | 午夜老司机福利剧场| 亚洲不卡免费看| h日本视频在线播放| 欧美日韩在线观看h| 中国国产av一级| 男人爽女人下面视频在线观看| 99久国产av精品国产电影| 老女人水多毛片| 日本免费在线观看一区| 97超视频在线观看视频| 一级毛片我不卡| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区免费观看| 久久综合国产亚洲精品| a级毛色黄片| 中文资源天堂在线| 国产三级在线视频| 免费大片18禁| 欧美丝袜亚洲另类| 80岁老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 尤物成人国产欧美一区二区三区| 天天一区二区日本电影三级| 国产精品福利在线免费观看| 亚洲av一区综合| 男人狂女人下面高潮的视频| 国产精品99久久久久久久久| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频 | 中文乱码字字幕精品一区二区三区 | 老女人水多毛片| 高清午夜精品一区二区三区| 高清日韩中文字幕在线| av卡一久久| 直男gayav资源| 国产av码专区亚洲av| 亚洲自偷自拍三级| 在线免费十八禁| 少妇的逼水好多| 只有这里有精品99| 日本av手机在线免费观看| 成人二区视频| 国产精品一区二区三区四区免费观看| 国产亚洲5aaaaa淫片| 少妇裸体淫交视频免费看高清| a级毛色黄片| 亚洲最大成人中文| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 中文字幕制服av| 波野结衣二区三区在线| 国产 亚洲一区二区三区 | 啦啦啦中文免费视频观看日本| a级毛色黄片| 黄色一级大片看看| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 日韩电影二区| 午夜福利在线在线| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 色综合色国产| 亚洲av男天堂| 国产精品熟女久久久久浪| 成年女人在线观看亚洲视频 | 亚洲经典国产精华液单| 美女国产视频在线观看| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 日韩一本色道免费dvd| 深爱激情五月婷婷| 久热久热在线精品观看| 三级经典国产精品| 国产精品一区二区三区四区久久| 99久久精品国产国产毛片| av专区在线播放| av在线观看视频网站免费| 一个人观看的视频www高清免费观看| 久久久久久久大尺度免费视频| 亚洲最大成人中文| 免费av毛片视频| 麻豆成人午夜福利视频| av在线亚洲专区| 成人国产麻豆网| 99久久精品国产国产毛片| av专区在线播放| 国产黄频视频在线观看| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 久久6这里有精品| 伊人久久国产一区二区| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 干丝袜人妻中文字幕| av福利片在线观看| 777米奇影视久久| 免费看av在线观看网站| 在线a可以看的网站| 精品久久国产蜜桃| 国产单亲对白刺激| 你懂的网址亚洲精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av成人精品| av专区在线播放| 国产一区二区在线观看日韩| 日韩欧美精品免费久久| 美女被艹到高潮喷水动态| 国产午夜精品久久久久久一区二区三区| 偷拍熟女少妇极品色| 别揉我奶头 嗯啊视频| 永久免费av网站大全| 欧美日韩视频高清一区二区三区二| 99久国产av精品| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 国产91av在线免费观看| 国产爱豆传媒在线观看| 两个人视频免费观看高清| 十八禁国产超污无遮挡网站| 久久99蜜桃精品久久| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 色吧在线观看| 亚洲一区高清亚洲精品| 国产av码专区亚洲av| 淫秽高清视频在线观看| 精品人妻一区二区三区麻豆| 久久热精品热| 91精品伊人久久大香线蕉| 免费观看精品视频网站| 亚洲熟女精品中文字幕| 久久国内精品自在自线图片| kizo精华| 日本wwww免费看| 国产精品一二三区在线看| .国产精品久久| 色综合站精品国产| 国产在线一区二区三区精| 国内精品美女久久久久久| 国产高清国产精品国产三级 | 精品人妻视频免费看| 午夜福利视频1000在线观看| 91狼人影院| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 综合色av麻豆| 又爽又黄a免费视频| 亚洲精品,欧美精品| 欧美成人一区二区免费高清观看| 国产免费又黄又爽又色| 美女主播在线视频| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| 综合色av麻豆| 尤物成人国产欧美一区二区三区| 22中文网久久字幕| 欧美激情在线99| 午夜视频国产福利| 亚洲av男天堂| 女人被狂操c到高潮| 日本-黄色视频高清免费观看| 国产精品三级大全| 一级毛片aaaaaa免费看小| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 直男gayav资源| 亚洲精品视频女| 大香蕉97超碰在线| www.av在线官网国产| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 久久久色成人| .国产精品久久| 久久综合国产亚洲精品| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 男人和女人高潮做爰伦理| 少妇熟女aⅴ在线视频| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 午夜日本视频在线| 春色校园在线视频观看| 内射极品少妇av片p| 2018国产大陆天天弄谢| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 欧美成人一区二区免费高清观看| 午夜免费男女啪啪视频观看| www.色视频.com| 晚上一个人看的免费电影| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品| 看免费成人av毛片| 国产高清国产精品国产三级 | 国内揄拍国产精品人妻在线| 天堂俺去俺来也www色官网 | 国产一区二区三区av在线| 久久久色成人| 人体艺术视频欧美日本| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 国产 亚洲一区二区三区 | 水蜜桃什么品种好| 在线a可以看的网站| 综合色丁香网| 亚洲人成网站在线观看播放| 日日撸夜夜添| 高清毛片免费看| 亚洲国产精品sss在线观看| 成人av在线播放网站| av天堂中文字幕网| 欧美成人a在线观看| 亚洲在久久综合| or卡值多少钱| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄| 99热6这里只有精品| 国产免费一级a男人的天堂| or卡值多少钱| 亚洲图色成人| 亚洲成人精品中文字幕电影| 亚洲人与动物交配视频| 国产免费福利视频在线观看| 97热精品久久久久久| 国产精品一区二区三区四区免费观看| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| 国产精品久久久久久精品电影| 欧美3d第一页| 男人舔奶头视频| 亚洲国产色片| 国产成人精品久久久久久| 一区二区三区乱码不卡18| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片| 国产亚洲最大av| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 老女人水多毛片| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 97人妻精品一区二区三区麻豆| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 国产淫语在线视频| 国产精品一区二区三区四区久久| 欧美高清性xxxxhd video| 美女主播在线视频| 超碰97精品在线观看| av在线观看视频网站免费| 免费在线观看成人毛片| 国产乱人视频| 国产精品一区www在线观看| 国内精品美女久久久久久| 大香蕉97超碰在线| 欧美xxⅹ黑人| 在现免费观看毛片| 天堂中文最新版在线下载 | 亚洲成人中文字幕在线播放| 建设人人有责人人尽责人人享有的 | 少妇高潮的动态图| 日本爱情动作片www.在线观看| 欧美高清成人免费视频www| av一本久久久久| av专区在线播放| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 激情五月婷婷亚洲| 国产午夜精品一二区理论片| 国产成人福利小说| 久久这里有精品视频免费| 国产精品日韩av在线免费观看| 成人美女网站在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av成人精品一区久久| 久久99热这里只有精品18| 伊人久久国产一区二区| 国产成人免费观看mmmm| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2018国产大陆天天弄谢| 国产探花在线观看一区二区| 亚洲av免费在线观看| 日本一本二区三区精品| 国产男人的电影天堂91| 一级毛片aaaaaa免费看小| 欧美另类一区| 久久久久免费精品人妻一区二区| 亚洲国产欧美人成| 99久久精品一区二区三区| 麻豆国产97在线/欧美| 欧美变态另类bdsm刘玥| 综合色av麻豆| 高清视频免费观看一区二区 | 免费少妇av软件| xxx大片免费视频| 成人欧美大片| 国产精品一及| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 成人鲁丝片一二三区免费| 免费观看a级毛片全部| 成年av动漫网址| 日本与韩国留学比较|