• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process

    2015-02-16 00:55:47Ponpp
    Journal of Magnesium and Alloys 2015年1期

    *K.Ponpp

    aDepartment of Mechanical Engineering,Indian Institute of Technology-Delhi,Delhi 110016,India

    bDepartment of Mechanical Engineering,Kongu Engineering College,Perundurai 638052,India

    Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process

    S.Aravindana,*,P.V.Raoa,K.Ponappab

    aDepartment of Mechanical Engineering,Indian Institute of Technology-Delhi,Delhi 110016,India

    bDepartment of Mechanical Engineering,Kongu Engineering College,Perundurai 638052,India

    Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated(T6)conditions.The experimental results were compared with the standard theoretical models.The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size.Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study. Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Magnesium alloy;Metal-matrix composites(MMCs);Mechanical properties;Casting;Fractography

    1.Introduction

    Weight reduction has always been an important objective for air,ground transportation and space vehicles.High strength steels,aluminum and polymers are already being used to reduce the weight signifcantly,but additional reduction can be achieved by utilizing low density magnesium and its alloys (2/3rd of aluminum and 1/4th that of steel)[1].The application of non metallic materials such as fber reinforced plastics is not possible in some areas,owing to limited properties like low electrical conductivity,under low and elevated temperatures,low impact characteristics and damage tolerance.Fiber reinforced plastics are rather costly materials to be applied in primary structural applications.

    Pure magnesium is rarely used in structural applications due to its poor mechanical properties[2].Addition of aluminum and zinc in magnesium increases the strength and castability.Manganese has been introduced to increase the ductility.These alloys exhibit low &high temperature strength,low stiffness and relatively poor corrosion resistance[3].Magnesium alloy composites overcome the demerits of monolithic magnesium and magnesium alloys[4]. The addition of reinforcement particle to the magnesium alloys can signifcantly improve the stiffness and strength at room and elevated temperatures[5-7].Reinforcement should be stronger and stiffer than the matrix,so as to produce expected strengthening effect.The addition of SiCp to magnesium alloy(AZ91D)matrix is to increase the stiffness, specifc strength,dimensional stability,damping capacity and creep properties at both room and elevated temperature [8].SiC has better wettability and stability in the magnesium melt[9].

    Magnesium alloy(AZ91D)matrix composites can be fabricated by different techniques such as powder metallurgy,squeeze casting,disintegrated melt deposition technique and spray deposition.Improper selection of the process/technique may lead to degradation of the properties of the composites. Magnesium alloy components are usually produced by high pressure die casting and gravity casting particularly sand and permanent mold casting.Heavy components are produced by sand casting and mostly operated at elevated temperature[10]. Compared to other manufacturing processes,stir casting is more suited because of the reduction in cost(1/3rd to 1/10th in mass production)[11].Moreover stir casting is easily adoptable and can be useful to manufacture the near net shape components by suitable foundry techniques[12].Structural defects such as porosity,particle cluster,interfacial reactions and oxide inclusions were arise in conventional casting technique.In order to overcome these type of pitfalls two step stir casting method was adopted to fabricate defect free castings [13].

    In the past two decades good amount of research efforts and development are carried out on magnesium and magnesium alloy casting.However,only a very little amount of work is available on the development and characterization of magnesium alloy based composites by the two step stir casting process.In this work,attempts were made to fabricate silicon carbide reinforced composites through a two step stir casting process.The cast composites are then subjected to heat treatment.Physical and mechanical properties were studied for the as cast and heat treated composites.

    2.Experimental procedure

    Silicon carbide particles with an average size of 32 μm and 105 μm were used as a hard ceramic reinforcement.In order to fabricate magnesium alloy composites,pure magnesium blocks(99.95%purity)along with 10%aluminium,1%zinc and 0.4%manganese were heated inside a mild steel crucible, kept in a microprocessor controlled electric resistance furnace under inert(Argon)environment.The required amount of pre heated reinforcement particles were mixed in the magnesium alloy melt to get uniformly distributed reinforced composite. Specially designed stainless steel stirrer was used to stir the magnesium alloy slurry with a constant speed of 600 rpm for 15 min at 680°C and the melt temperature was brought down to 620°C.It was then heated rapidly to 700°C and then poured into to a die steel mold to cast a block having the dimensions of 150 mm x 50 mm x 60 mm.The cast magnesium alloy composites were subjected to solution hardening and artifcial aging(T6)heat treatment as per the ASTM standard B661-06.The detailed chemical composition of magnesium alloy is presented in Table 1.Fig.1 shows the macrograph of casting setup and cast magnesium alloy composite.2.1.Porosity measurement

    The porosity of the processed composites in as cast and heat treated conditions was determined by using Archimedes principle.Theoretical density is calculated by rule of mixture. From the theoretical and actual densities,porosity of the composites can be estimated by using the formula[14].

    2.2.Characterization studies

    Microstructural characterization studies were conducted on the as cast and the heat treated composites in order to understand the distribution of hard phase reinforcement particle.The matrix/particle interface were examined using a scanning electron microscope(FEI QUANTA 3D FEG) coupled with energy dispersive spectroscopy(EDS).Fractured surfaces were also analyzed through SEM.The phase analyses were carried out by X-Ray diffraction studies.

    2.3.Mechanical properties

    Magnesium alloy composites with different size of SiC particles were evaluated in terms of their hardness and tensile properties.The effects of the addition of SiC particles and their size on the hardness of the matrix were evaluated by evaluating Vicker's micro and macro hardness testing with the indentation load of 50 gm and 2.5 kg respectively.According to ASTM E8M-03,sub size rectangular specimens were prepared and the tensile tests were carried out in INSTRON tensile testing machine at a strain rate of 1×10-4s-1.For all experiments,three replicates were carried out.Fig.2 shows the typical macrograph of tensile specimen.

    3.Results and discussion

    3.1.Micro structure

    Fig.3 Shows the FESEM micrographs of two step stir cast magnesium alloy reinforced with 32 μm size SiC particle with different volume percentage.Micrographs of Mg/SiC composites,with 105 μm SiC particle reinforcement are shown in Fig.4.TheuniformdistributionofSiCpcouldbeobservedfrom the micrographs.No slag/oxide inclusions are observed in the cast magnesium alloy composites.To improve the particle distribution in the magnesium alloy matrix second step mixing is needed(to heat the slurry to a temperature above the liquidus and then stirring).Due to high surface tension and poor wettingbetween the particles and the molten melt,the reinforcement particles were foating on the surface though they have larger specifc density than the molten alloys.When the gas layers are broken(mechanical stirring)and the particles are wet,the particles will tend to sink to the bottom.

    Table 1Chemical composition of AZ91D alloy.

    Fig.1.Typical experimental setup&cast composite specimens.

    Fig.2.Typical macrograph of tensile specimen.

    3.2.X-ray diffraction studies

    Fig.5(a-c)presents the XRD profles of pure magnesium and magnesium alloy(AZ91D)composite.The major high intensity peaks of magnesium and SiCp could be observed in magnesium alloy(AZ91D)composites.Weak peaks of Al12Mg17 and Mg2Si were also observed in magnesium alloy composite.The formation of intermetallic compounds in magnesium alloy composites can be attributed to its alloying elements and the presence of SiC particle.The involved reactions to form Mg2Si are given below.

    It is known that silicon carbide is thermodynamically stable in pure magnesium[15].Hence formation of intermetallic (Mg2Si)is attributed to aluminum in the magnesium alloy matrix.This is more pronounced in the silicon free alloy systems.Silicon carbide reacts with aluminum to form aluminum carbide and as a consequence the available silicon content in the matrix increases.This promotes the formation of intermetallic component Mg2Si.The weaker inter metallic phase(Al12Mg17)resides at the grain boundary.

    Higher temperature of magnesium alloy accelerates interfacial reactions;the degree ofinterfacial reactions can also change the microstructure of the magnesium alloy composite.To obtain composite materials with the desired microstructure,physical and mechanical properties,the interfacial reaction should be controlled through surface treatment of the reinforcement(pre heating),and proper control of casting parameters.

    Fig.3.Typical FESEM micrographs showing the distribution of SiC(32)particles with AZ91D(a)5 vol%(b)10 vol%(c)15 vol%(d)20 vol%.

    Fig.4.Typical FESEM micrographs showing the distribution of SiC(105)particles with AZ91D(a)5 vol%(b)10 vol%(c)15 vol%(d)20 vol%.

    Fig.5.(a-c)Typical XRD patterns of pure magnesium and magnesium alloy(AZ91D)composite.

    3.3.Elemental analysis

    Typical EDAX profles of AZ91D/SiCp(32 μm)and AZ91D/SiCp(105 μm)are shown in Fig.6&Fig.7 respectively.The EDS profle of point of Fig.6 reveals the magnesium alloy matrix.Clear peaks of Mg,Al,Zn and Mn of magnesium alloy matrix was observed.EDAX profle at the particle reveals carbon and silicon.The EDAX profle taken at point3,interface of particle and magnesium alloy matrix reveals the presence of magnesium carbon and silicon.Similar observation is noted in Fig.7 also.

    3.4.Porosity

    Theoretical density was calculated by the rule of mixture. Actual density of the processed composite in as cast and heat treated condition was estimated using Archimedes principle. Table 2 presents the theoretical,measured density and porosity of the as cast and T6 heat treated magnesium alloy (AZ91D)composites with two different reinforcement particle sizes.

    The porosity of the magnesium alloy composite is higher than the porosity of the cast magnesium alloy.Irrespective of the particle size,the porosity of the composite is observed to be increasing with the increase in the volume percentage of the reinforcement.Addition of silicon carbide particles in the semi solid state and proper control of stirring movement make the silicon carbide particles to disperse uniformly in the magnesium alloy melt.This leads to increase in viscosity and reduction in fuidity of the melt.The entrapment of gas bubbles leads to increased porosity with the increase in volume percentage of reinforcement[16].

    3.5.Mechanical properties

    The reduced strength and stiffness of the magnesium restricts its applications in the feld of automobile and aerospace industries.Magnesium alloy composites can surpass such pitfalls.The tensile properties,including ultimate tensile strength,yield strength,youngs modulus(stiffness)and ductility were measured prior to and after T6 heat-treated conditions.Interface between the matrix and the reinforcement phase plays a major role in determining their mechanical properties and physical properties.Wettability between the reinforcement and the matrix alloy is one of the critical factors in the casting[17].The microstructure of these materials depends on the wettability of the reinforcement by the molten matrix and the interaction of the components.

    Fig.6.Typical EDAX profles of AZ91D/SiCp(32 μm).

    Wettability can be enhanced by way of either decreasing the surface tension of the molten metal or by increasing the surface energy of the hard reinforcement particle.Compared to aluminum,molten magnesium has low surface tension (magnesium:0.599 N/m,aluminum:0.720 N/mm)[18].And hence the wettability of SiCp with magnesium alloy is better than the aluminum matrix.Surface energy of the hard reinforcement particle(SiC)can be enhanced by preheating before pouring into the molten magnesium alloy.The stirring during semi solid state helps not only to break the gas and oxide layers but also to spread the liquid metal on the surface of SiC particulates and thus good wettability is achieved in stir casting.Semi solid stirring is usually considered for increasing the apparent viscosity,which in turn inhibits the settling& foating of particulates.It also aids to separate the cluster of SiC particles.

    3.6.Hardness

    Fig.8 shows the hardness of magnesium alloy(AZ91D) composite under as cast and heat treated(T6)conditions with two different particle size.The developed magnesium alloy composites exhibited increased hardness with the increase in the volume percentage SiC reinforcement particle irrespective of the size.The observed increase in hardness of the composite is attributed to the interactive infuence of the presence of SiCp phase which restricts the localized matrix deformation during indentation and fner grain size of the composite. Reduction in hardness of the composite is observed with the increased size of the SiC particle.Compared to bigger size particle,smaller size reinforcement particle produce more dislocations in the composite.The presence of hard SiC particles not only increases the load bearing capacity but also restricts the deformation of the matrix by constraining the dislocation movement[19].

    Due to solution hardening effect,the heat treated composite exhibits higher hardness,than the as cast composites.The response to the heat treatment in terms of increase in hardness is higher for magnesium alloy(AZ91D)composites.The increased hardness in magnesium alloy composite can be attributed to intermetallic components.

    3.7.Yield strength

    Yield strength of the composites is observed to be increasing with the increase in volume percentage of SiC particle in magnesium alloy(AZ91D)composite.It is well known that strengthening effect in the composite depends upon a)Load-bearing effectsdueto thepresence of reinforcements b)Orowan strengthening c)Hall-Petch effect due to grain size refnement and the generation of geometrically necessary dislocations to accommodate thermal andelastic modulus mismatch between the matrix and reinforcements.Orowan strengthening mechanism does not play afundamentalrole in micro particle-reinforced MMC, Moreover Orowan strengthening mechanism is applicable when the grain size is less than 5 micron level.

    Fig.7.Typical EDAX profles of AZ91D/SiCp(105 μm).

    Fig.9 shows the experimentally evaluated and predicted yield strength of magnesium alloy(AZ91D)composite.While heat treatment dislocations are produced due to thermal mismatch between ceramic particles and the metallic matrix which strengthen the material[21].The strength of the composite depends upon the interfacial bond between the matrix and the reinforcement.If the bonding between the matrix and the reinforcement is good enough,then the applied stress can be transferred from the soft magnesium alloy matrix to the hard SiC particle.The higher strength of SiC particle protects the relatively soft magnesium alloy matrix.With increase in the volume percent more load can be transferred to the reinforcement which also results in higher yield strength.

    The fner grain structure in the composite could result from addition of SiCp.It is reported that the primary magnesium grain refnement results from the heterogeneous nucleation of primary magnesium phase on the surface of SiC particles and the restricted growth of magnesium crystals by SiC particles during solidifcation.Only limited amount of SiC particles can act as heterogeneous nucleation sites of primary magnesium and only these particles would be captured by growing magnesium crystals and fnally stay within the magnesium grains in the composite[14].The continuum shear log models for reinforcement with an aspect ratio,the yield strength of the magnesium alloy composite can be predicted by Ref.[20].

    where σm is the yield stress of magnesium alloy and s is aspect ratio.

    Table 2Porosity of magnesium alloy(AZ91D)composites.

    Fig.8.Hardness of magnesium alloy(AZ91D)composite.

    The strength of the solution hardening and artifcial aging T6 AZ91D/SiCp composite is better than as cast AZ91D/SiCp composite and unreinforced monolithic magnesium alloy (AZ91D).The strengthening effect of matrix(magnesium alloy)is due to dislocation and precipitation hardening.The strength of magnesium is highly sensitive to its grain size. Grain refnement due to T6 heat treatment contributes to the great strength at room temperature for magnesium alloy composite.The fne grain size in the composite results in more grain boundary area,thus the amount of material allowed to diffuse rapidly along the grain boundaries would be increasing the yield strength.

    3.8.Tensile properties

    Fig.9.Predicted and experimental yield strength of magnesium alloy composite.

    Magnesium alloy(AZ91)exhibits higher ultimate tensile strength than magnesium alloy composite.The addition of any secondary hard phase actually can reduce tensile strength.Under an external tensile load,a strong internal stress can be developed inside a material,and localized damage may occur when the local stress is beyond the strength of the material.Fig.10 shows the variation of ultimate tensile strength with different volume fraction of (AZ91D/SiCp)composite.In AZ91D/SiCp the uniform distribution of the reinforcement particle bearing the stress distribution homogeneously,this delaying the formation of localized damage.The volume percentage of the SiCp increases the stress distribution to hard phase,which in turn increases the tensile strength.If the volume percentage of reinforcement reaches certain level the reaction in magnesium alloy with SiC particle cause the formation of transition layers at the component interfaces.These layers,although enabling a bond to be obtained the SiC and magnesium alloy, they are not tough enough to carry loads and thus they often contribute to lowering the tensile properties of composites. Work hardening takes place when the composite is strained. The strain mismatch between the matrix and the reinforcement usually generated a higher density of dislocations in the matrix around the reinforcement.Work hardening rate decreases with increasing particle size.

    3.9.Youngs modulus

    Stiffness of the composite can be directly measured through modulus of elasticity.As expected,addition of SiC particles to magnesium alloy leads to the improvement of modulus.The dispersion of the fne and hard reinforcement particles(SiC)in the matrix(magnesium alloy)drastically blocks the motion of the dislocations and strengthens the magnesium alloy composite.Fig.11 shows the experimental and predicted modulus of elasticity of magnesium alloy(AZ91D/SiCp)composite.

    Fig.10.UTS of magnesium alloy(AZ91D/SiCp)composite.

    Fig.11.Variation of modulus of elasticity with volume fraction of(AZ91D/ SiCp)composite.

    Fig.12.Ductility of magnesium alloy(AZ91D/SiCp)composite.

    The dominant factors in controlling the elastic modulus are the volume fraction,distribution,shape and type of the reinforcement particle.By Halpin Tsai equation theoretical modulus of elasticity of the magnesium alloy composite is calculated.Among the dominant factors,Halpin Tsai considers only the volume fraction and aspect ratio of the reinforcement particle. The difference in theoritical and experimental values is also attributed to the uncertainty in the appropriate value for the modulus of the particle reinforcement.

    The Halpin-Tsai equation[21]

    where

    Em:elastic modulus of matrix material(AZ91:45 GPa), Ep: elastic modulus of hard reinforcement particle (SiC:400 GPa)Vp:volume fraction of reinforcement S:is the particle aspect ratio.Aspect ratio of 32 μm and 105 μm SiCp was taken as 1.4 and 1.6 respectively.

    3.10.Ductility

    Fig.12 shows the variation of ultimate tensile strength with different volume fraction of(AZ91D/SiCp)composite. The ductility of the magnesium alloy composite can be affected by reinforcement content and matrix alloy.The addition of SiCp reinforcement probably overstrained the lattice,and thus the alloys have no longer suffcient strain energy remaining to gain its ductility.The decrease in ductility can be attributed to the void nucleation in advance with increased amount of SiCp.The micro plasticity took place in the metal matrix composites due to the stress concentration of the matrix at the pores of the reinforcement and or sharp corners of the reinforcing particle.

    Fig.13.SEM micrographs of the tensile fracture surface(a)AZ91/5%SiCp(32 μm)and(b)AZ91D/5%SiCp(105 μm).

    Fig.14.SEM micrographs of the tensile fracture surface(a)AZ91/20%SiCp(32 μm)and(b)AZ91D/20%SiCp(105 μm).

    3.11.Fracture behavior

    Fig.13(a&b)presents the fractographs of magnesium alloy (AZ91/SiC)composites with lower percentage of 32 μm and 105 μm respectively.Small voids&dimples observed occasionally at the fractured surface contribute to the ductile mode of fracture.Fig.14(a&b)presents the fractographs of magnesium alloy(AZ91/SiC)composites with 32 μm and 105 μm. In the case of magnesium alloy composites,with higher percentage of SiCp,matrix cracks adjacent to the SiC particles and limited amount of material displacement are observed in the fractographs.

    4.Conclusion

    Uniform distribution of the reinforcement reveals that the AZ91D/SiCp composites were successfully fabricated by two step stir casting technique with various volume percentages with two different sizes.

    The formation of intermetallic compounds(Al12Mg17& Mg2Si)in magnesium alloy composites is mainly depends upon its alloying elements and not because of SiC particle.

    As cast and solution hardening and artifcial aging(T6) conditions,the physical and mechanical properties of the magnesium alloy reinforced with SiCp is mainly depends upon the volume percent of the hard phase particle.

    The dispersion of the hard particle in the composites drastically blocks the dislocation motions.This increases the yield strength and the modulus of elasticity and reduces the ductility. Smaller size particles had better properties than bigger one.

    AZ91D/SiCp composites,the alloy reinforced with the fner SiCp exhibits superior properties while the coarse SiCp exhibits better properties when compared with unreinforced magnesium alloy(AZ91).

    Experimental results are compared with the standard theoretical models and it is follows the similar trend.

    Acknowledgment

    This work was supported by Department of Science and Technology,Government of India,under Grant No:RP02197.

    [1]D.Eliezer,E.Aghion,F.Froes,Adv.Perform.Mater.5(1998)201-212.

    [2]S.Jayalakshmi,S.Kailas,S.Seshan,Compos.A 33(2002)1135-1140.

    [3]X.Zhang,L.Liao,N.Ma,H.Wang,Compos A 37(2006)2011-2016.

    [4]P.K.Rohatgi,A.Daoud,B.F.Schultz,T.Puri,Compos A 40(2009) 883-896.

    [5]B.Mordike,T.Ebert,Mater.Sci.Eng.A 302(2001)37-45.

    [6]K.Ponappa,S.Aravindan,P.V.Rao,J.Compos.Mater.47(2013) 1231-1239.

    [7]K.Ponappa,S.Aravindan,P.V.Rao,J.Eng.Manuf.B 226(2012) 1675-1683.

    [8]B.V.M.Kumar,B.Basu,V.S.R.Murthy,M.Gupta,Compos A 36(2005) 13-23.

    [9]Y.Wang,H.Wang,K.Xiu,Q.Jiang,Mater.Lett.60(2006)1533-1537.

    [10]E.Aghion,B.Bronfn,D.Eliezer,J.Mater.Process.Technol.117(2001) 381-385.

    [11]M.Surappa,J.Mater.Process.Technol.63(1997)325-333.

    [12]H.Ye,X.Liu,J.Mater.Sci.39(2004)6153-6171.

    [13]W.Zhou,Z.Xu,J.Mater.Process.Technol.63(1997)358-363.

    [14]P.Poddar,V.Srivastava,P.De,K.Sahoo,Mater.Sci.Eng.A 460(2007) 357-364.

    [15]M.Gui,J.Han,P.Li,Mater.Sci.Technol.20(2004)765-771.

    [16]J.Hashim,L.Looney,M.Hashmi,J.Mater.Process.Technol.92(1999) 1-7.

    [17]K.Braszczy Ska,L.Lity Ska,A.Zyska,W.Baliga,Mater.Chem.Phy.81 (2003)326-328.

    [18]I.Ibrahim,F.Mohamed,E.Lavernia,J.Mater.Sci.26(1991) 1137-1156.

    [19]R.Schaller,J.Alloys.Compd.355(2003)131-135.

    [20]S.Seshan,M.Jayamathy,S.Kailas,T.Srivatsan,Mater.Sci.Eng.:A 363 (2003)345-351.

    [21]D.Lloyd,Int.Mater.Rev.39(1994)1-23.

    Received 8 October 2014;revised 27 December 2014;accepted 30 December 2014 Available online 22 March 2015

    *Corresponding author.

    E-mail address:aravindans@mech.iitd.ac.in(S.Aravindan).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2014.12.008.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    国产精品免费视频内射| 好男人电影高清在线观看| 成年人午夜在线观看视频| 成年人午夜在线观看视频| 十八禁高潮呻吟视频| 精品国产超薄肉色丝袜足j| videos熟女内射| 国产成人欧美| 亚洲av成人一区二区三| 欧美国产精品一级二级三级| 一区二区三区精品91| 高清视频免费观看一区二区| 国产成人欧美| 777久久人妻少妇嫩草av网站| 一级毛片女人18水好多| 免费高清在线观看视频在线观看| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 在线亚洲精品国产二区图片欧美| 欧美精品一区二区大全| 欧美黑人欧美精品刺激| 好男人电影高清在线观看| 秋霞在线观看毛片| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 91老司机精品| 如日韩欧美国产精品一区二区三区| 午夜福利免费观看在线| 91精品国产国语对白视频| 亚洲av日韩在线播放| 免费日韩欧美在线观看| 大香蕉久久网| 亚洲伊人色综图| 国产一区二区 视频在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女精品中文字幕| 老司机影院成人| 成人亚洲精品一区在线观看| 搡老乐熟女国产| 精品一区二区三卡| 久久久精品国产亚洲av高清涩受| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 久久久久久久精品精品| 久久亚洲精品不卡| 成人国产av品久久久| 人妻 亚洲 视频| 性少妇av在线| 999精品在线视频| 视频在线观看一区二区三区| 一本大道久久a久久精品| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 国产亚洲av片在线观看秒播厂| tocl精华| 精品少妇一区二区三区视频日本电影| 夜夜夜夜夜久久久久| 久久天躁狠狠躁夜夜2o2o| 国产有黄有色有爽视频| 日本av手机在线免费观看| 午夜免费观看性视频| 首页视频小说图片口味搜索| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| www日本在线高清视频| 亚洲av电影在线进入| 看免费av毛片| 黄片小视频在线播放| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲| 日韩制服骚丝袜av| 久久久久久久国产电影| 中文欧美无线码| 亚洲精品第二区| 亚洲欧美一区二区三区黑人| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 亚洲伊人色综图| 久久精品亚洲熟妇少妇任你| 精品人妻熟女毛片av久久网站| 中文字幕色久视频| 国产成人欧美| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲 | 老司机午夜福利在线观看视频 | 少妇精品久久久久久久| 69精品国产乱码久久久| 一区二区三区激情视频| av网站免费在线观看视频| 欧美乱码精品一区二区三区| 在线天堂中文资源库| 国产精品一区二区精品视频观看| 亚洲精品av麻豆狂野| 69av精品久久久久久 | 亚洲欧美成人综合另类久久久| 亚洲久久久国产精品| 亚洲国产看品久久| 久久青草综合色| 日韩视频一区二区在线观看| 在线 av 中文字幕| 日本vs欧美在线观看视频| 深夜精品福利| av免费在线观看网站| 首页视频小说图片口味搜索| 亚洲中文av在线| 天堂俺去俺来也www色官网| 91麻豆av在线| 久久久精品94久久精品| 亚洲精品久久午夜乱码| 制服人妻中文乱码| 一级片'在线观看视频| e午夜精品久久久久久久| 欧美日韩福利视频一区二区| 日韩人妻精品一区2区三区| 人妻 亚洲 视频| 97人妻天天添夜夜摸| 久久久久国产一级毛片高清牌| 午夜福利免费观看在线| 黄色 视频免费看| 两个人看的免费小视频| 日韩人妻精品一区2区三区| 久久国产精品男人的天堂亚洲| 亚洲av成人一区二区三| 亚洲人成电影免费在线| 黄片小视频在线播放| 亚洲专区国产一区二区| 午夜激情久久久久久久| 俄罗斯特黄特色一大片| 欧美+亚洲+日韩+国产| 青青草视频在线视频观看| 免费看十八禁软件| 日韩欧美一区视频在线观看| 老司机影院成人| 各种免费的搞黄视频| 国产男女超爽视频在线观看| 三上悠亚av全集在线观看| 91老司机精品| 成人手机av| 欧美日本中文国产一区发布| 黑人巨大精品欧美一区二区mp4| 美女扒开内裤让男人捅视频| 成年美女黄网站色视频大全免费| 韩国精品一区二区三区| 国产成人免费无遮挡视频| 如日韩欧美国产精品一区二区三区| 国产一卡二卡三卡精品| 九色亚洲精品在线播放| 熟女少妇亚洲综合色aaa.| 51午夜福利影视在线观看| 美女午夜性视频免费| 国产成人精品久久二区二区免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美午夜高清在线| 久久人人爽人人片av| 国产精品一区二区在线不卡| 亚洲精品自拍成人| 在线永久观看黄色视频| av免费在线观看网站| 精品一区在线观看国产| 免费看十八禁软件| 久久中文看片网| 啦啦啦啦在线视频资源| 人人澡人人妻人| 国产一区二区三区av在线| 十八禁网站免费在线| 女人被躁到高潮嗷嗷叫费观| 久久99热这里只频精品6学生| 麻豆国产av国片精品| 在线天堂中文资源库| 午夜精品国产一区二区电影| 岛国在线观看网站| 熟女少妇亚洲综合色aaa.| 老鸭窝网址在线观看| av视频免费观看在线观看| 又紧又爽又黄一区二区| 两个人看的免费小视频| 一区在线观看完整版| 捣出白浆h1v1| 韩国精品一区二区三区| 搡老熟女国产l中国老女人| 老司机午夜福利在线观看视频 | 午夜激情av网站| 丰满人妻熟妇乱又伦精品不卡| 汤姆久久久久久久影院中文字幕| 欧美激情 高清一区二区三区| 国产精品一二三区在线看| 久久99热这里只频精品6学生| 视频区图区小说| 91av网站免费观看| 日本欧美视频一区| 久久国产精品影院| 亚洲精品久久午夜乱码| 国产麻豆69| 亚洲一码二码三码区别大吗| 国产免费av片在线观看野外av| 一边摸一边做爽爽视频免费| 人人澡人人妻人| 日本wwww免费看| 一本色道久久久久久精品综合| 欧美中文综合在线视频| 国产片内射在线| 50天的宝宝边吃奶边哭怎么回事| 啦啦啦视频在线资源免费观看| 欧美乱码精品一区二区三区| 9色porny在线观看| 欧美黄色淫秽网站| 国产黄频视频在线观看| 亚洲性夜色夜夜综合| 久久亚洲精品不卡| 国产高清视频在线播放一区 | 亚洲,欧美精品.| 乱人伦中国视频| 狂野欧美激情性bbbbbb| 久久国产亚洲av麻豆专区| 欧美一级毛片孕妇| 国产97色在线日韩免费| 一区二区三区四区激情视频| 亚洲成人免费电影在线观看| 女人被躁到高潮嗷嗷叫费观| 国产亚洲精品第一综合不卡| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 精品免费久久久久久久清纯 | 国产一区二区在线观看av| 男女边摸边吃奶| 视频区欧美日本亚洲| 考比视频在线观看| 97在线人人人人妻| 99热全是精品| 人妻人人澡人人爽人人| 欧美久久黑人一区二区| √禁漫天堂资源中文www| 欧美日韩一级在线毛片| 亚洲国产精品一区二区三区在线| 亚洲国产精品999| 男女午夜视频在线观看| 国产亚洲av高清不卡| 91九色精品人成在线观看| 亚洲av电影在线观看一区二区三区| 少妇人妻久久综合中文| 又大又爽又粗| 久久人妻熟女aⅴ| www.999成人在线观看| 少妇精品久久久久久久| 超碰97精品在线观看| 国产片内射在线| 日韩大片免费观看网站| 如日韩欧美国产精品一区二区三区| 黄频高清免费视频| 亚洲精品美女久久av网站| 亚洲精品久久成人aⅴ小说| 亚洲av成人不卡在线观看播放网 | 久久久国产精品麻豆| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| 999精品在线视频| 97人妻天天添夜夜摸| 欧美日韩国产mv在线观看视频| 国产精品一区二区免费欧美 | 女人被躁到高潮嗷嗷叫费观| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区久久| 精品国产乱子伦一区二区三区 | 好男人电影高清在线观看| 99热全是精品| 久久久久网色| 一本综合久久免费| 窝窝影院91人妻| 欧美大码av| 熟女少妇亚洲综合色aaa.| 国产成人免费观看mmmm| 欧美人与性动交α欧美精品济南到| 色精品久久人妻99蜜桃| 香蕉丝袜av| 欧美激情极品国产一区二区三区| 久久久精品免费免费高清| 国产精品麻豆人妻色哟哟久久| 午夜视频精品福利| 麻豆乱淫一区二区| 九色亚洲精品在线播放| 欧美性长视频在线观看| 91九色精品人成在线观看| 黄色毛片三级朝国网站| 黄色a级毛片大全视频| 欧美国产精品一级二级三级| 日韩中文字幕视频在线看片| 日本wwww免费看| 女警被强在线播放| 免费观看a级毛片全部| 久久精品亚洲av国产电影网| 色精品久久人妻99蜜桃| 天天操日日干夜夜撸| 国产亚洲精品久久久久5区| 老司机影院毛片| 90打野战视频偷拍视频| 国产三级黄色录像| 精品少妇黑人巨大在线播放| 精品乱码久久久久久99久播| 国产av一区二区精品久久| 青春草视频在线免费观看| 国产在线观看jvid| 亚洲国产毛片av蜜桃av| 好男人电影高清在线观看| 纯流量卡能插随身wifi吗| 婷婷成人精品国产| 免费在线观看影片大全网站| 不卡一级毛片| 999久久久精品免费观看国产| 秋霞在线观看毛片| 少妇 在线观看| 麻豆乱淫一区二区| 亚洲熟女毛片儿| 精品国产超薄肉色丝袜足j| 国产亚洲一区二区精品| 天堂俺去俺来也www色官网| 建设人人有责人人尽责人人享有的| 一级a爱视频在线免费观看| 国产精品1区2区在线观看. | 人人妻人人爽人人添夜夜欢视频| 亚洲黑人精品在线| 最新在线观看一区二区三区| 91老司机精品| 久久久精品国产亚洲av高清涩受| 久久影院123| 国产av国产精品国产| 国产免费一区二区三区四区乱码| 亚洲欧美清纯卡通| 老司机在亚洲福利影院| 亚洲精品成人av观看孕妇| 亚洲三区欧美一区| 免费在线观看影片大全网站| 三上悠亚av全集在线观看| av天堂在线播放| tube8黄色片| 久久精品aⅴ一区二区三区四区| 日韩欧美一区二区三区在线观看 | 午夜福利在线观看吧| 菩萨蛮人人尽说江南好唐韦庄| 久久久久视频综合| 91九色精品人成在线观看| 18禁观看日本| 精品少妇黑人巨大在线播放| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 秋霞在线观看毛片| 18禁观看日本| 国产精品久久久av美女十八| 考比视频在线观看| 亚洲精品美女久久av网站| 黄色视频,在线免费观看| 男女下面插进去视频免费观看| 久久精品成人免费网站| 欧美日韩福利视频一区二区| av片东京热男人的天堂| 精品欧美一区二区三区在线| 一级毛片电影观看| 日日夜夜操网爽| 夜夜骑夜夜射夜夜干| 久久久久国产精品人妻一区二区| 亚洲精品国产区一区二| 国产精品影院久久| 精品视频人人做人人爽| 日本精品一区二区三区蜜桃| 国产男女超爽视频在线观看| 天天操日日干夜夜撸| 香蕉国产在线看| 两人在一起打扑克的视频| 欧美另类一区| 啦啦啦视频在线资源免费观看| 欧美 亚洲 国产 日韩一| 日韩一区二区三区影片| 纯流量卡能插随身wifi吗| 欧美精品高潮呻吟av久久| 亚洲视频免费观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲欧美精品自产自拍| 久久九九热精品免费| 久久久久久亚洲精品国产蜜桃av| svipshipincom国产片| 一级毛片女人18水好多| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| 午夜免费观看性视频| 国产三级黄色录像| 欧美精品人与动牲交sv欧美| 99精品久久久久人妻精品| 成人三级做爰电影| 亚洲 欧美一区二区三区| www日本在线高清视频| 国产一级毛片在线| 国产xxxxx性猛交| 亚洲精品美女久久久久99蜜臀| 精品免费久久久久久久清纯 | 多毛熟女@视频| 大片电影免费在线观看免费| 一级片'在线观看视频| av网站在线播放免费| 一级毛片精品| 久久久久国产精品人妻一区二区| 自线自在国产av| 热99久久久久精品小说推荐| 99国产综合亚洲精品| 国产黄频视频在线观看| 亚洲第一欧美日韩一区二区三区 | av有码第一页| 麻豆av在线久日| 色婷婷av一区二区三区视频| 国产一区二区 视频在线| 免费在线观看视频国产中文字幕亚洲 | 日韩中文字幕欧美一区二区| 国产精品麻豆人妻色哟哟久久| 久久久水蜜桃国产精品网| 永久免费av网站大全| 亚洲国产av影院在线观看| 制服人妻中文乱码| 久久精品亚洲熟妇少妇任你| 亚洲精品国产av蜜桃| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 日本wwww免费看| 国产成人av激情在线播放| 亚洲午夜精品一区,二区,三区| 韩国精品一区二区三区| 高清视频免费观看一区二区| 欧美精品一区二区大全| 两人在一起打扑克的视频| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 在线观看人妻少妇| 国产亚洲欧美在线一区二区| 黄片大片在线免费观看| www.精华液| 免费在线观看视频国产中文字幕亚洲 | 男人舔女人的私密视频| 国产一区二区 视频在线| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 精品国产一区二区三区四区第35| 天天添夜夜摸| bbb黄色大片| av国产精品久久久久影院| 国产真人三级小视频在线观看| 成人国语在线视频| 欧美日韩av久久| 久久久水蜜桃国产精品网| 国产成人欧美在线观看 | 永久免费av网站大全| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 国产欧美日韩一区二区精品| 黄片播放在线免费| 久久人人爽人人片av| 日韩欧美一区二区三区在线观看 | 最新的欧美精品一区二区| svipshipincom国产片| a 毛片基地| 久久亚洲精品不卡| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 久久精品国产亚洲av高清一级| 精品国产乱子伦一区二区三区 | 成年女人毛片免费观看观看9 | 亚洲av美国av| 十分钟在线观看高清视频www| 欧美成人午夜精品| 久久中文字幕一级| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 中文字幕另类日韩欧美亚洲嫩草| 操美女的视频在线观看| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 免费观看人在逋| 一级片'在线观看视频| 国产精品99久久99久久久不卡| 久久久精品免费免费高清| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 中文字幕人妻丝袜一区二区| 久久香蕉激情| 王馨瑶露胸无遮挡在线观看| 男女午夜视频在线观看| 性色av乱码一区二区三区2| 成人三级做爰电影| 久热爱精品视频在线9| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 91九色精品人成在线观看| 午夜影院在线不卡| 亚洲国产欧美一区二区综合| av天堂久久9| 中文字幕制服av| 国产av精品麻豆| 大片电影免费在线观看免费| 一二三四在线观看免费中文在| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 亚洲中文日韩欧美视频| 免费黄频网站在线观看国产| 99国产精品一区二区蜜桃av | 蜜桃国产av成人99| 亚洲av电影在线进入| 91麻豆av在线| 亚洲三区欧美一区| 国产三级黄色录像| 成人国产av品久久久| 菩萨蛮人人尽说江南好唐韦庄| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 欧美精品一区二区免费开放| 中文字幕高清在线视频| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 国产精品久久久久久人妻精品电影 | 欧美变态另类bdsm刘玥| 免费观看a级毛片全部| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| h视频一区二区三区| 男人操女人黄网站| 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 久久av网站| 性少妇av在线| 国产视频一区二区在线看| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 蜜桃国产av成人99| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 精品亚洲成国产av| 久久精品亚洲av国产电影网| 欧美乱码精品一区二区三区| 久久久欧美国产精品| 人人妻人人澡人人看| 午夜激情av网站| 国产免费现黄频在线看| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 国产成人精品久久二区二区91| 一级毛片女人18水好多| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 亚洲精品美女久久av网站| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 色精品久久人妻99蜜桃| 亚洲av片天天在线观看| 亚洲视频免费观看视频| e午夜精品久久久久久久| 亚洲精品在线美女| 亚洲一码二码三码区别大吗| 丁香六月欧美| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版| 中文字幕av电影在线播放| 日韩欧美一区视频在线观看| 老司机午夜十八禁免费视频| 天堂俺去俺来也www色官网| 精品免费久久久久久久清纯 | 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 欧美精品啪啪一区二区三区 | 99国产精品一区二区蜜桃av | 无遮挡黄片免费观看| 久久香蕉激情| 一边摸一边做爽爽视频免费| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 久久亚洲国产成人精品v| 少妇人妻久久综合中文| 超碰97精品在线观看| 国产精品 国内视频| 我要看黄色一级片免费的| 亚洲中文av在线| 久久国产精品人妻蜜桃| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 每晚都被弄得嗷嗷叫到高潮| 国产黄色免费在线视频| 在线 av 中文字幕| 黄色视频,在线免费观看| 亚洲精品av麻豆狂野| 亚洲av美国av| 国产片内射在线| h视频一区二区三区| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 99久久国产精品久久久| 黄色 视频免费看| 两性夫妻黄色片| 亚洲中文字幕日韩| 午夜福利在线观看吧| 国产精品久久久久久精品电影小说| 欧美日韩亚洲综合一区二区三区_| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀| 欧美精品av麻豆av|