• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The inception cavitating flows over an axisymmetric body with a blunt headform*

    2015-02-16 06:50:34HUChangli胡常莉WANGGuoyu王國玉HUANGBiao黃彪ZHAOYu趙宇
    關(guān)鍵詞:趙宇王國

    HU Chang-li (胡常莉), WANG Guo-yu (王國玉), HUANG Biao (黃彪), ZHAO Yu (趙宇)

    School of Mechanics and Vehicles, Beijing Institute of Technology, Beijing 100081, China,

    E-mail: qhclq@163.com

    The inception cavitating flows over an axisymmetric body with a blunt headform*

    HU Chang-li (胡常莉), WANG Guo-yu (王國玉), HUANG Biao (黃彪), ZHAO Yu (趙宇)

    School of Mechanics and Vehicles, Beijing Institute of Technology, Beijing 100081, China,

    E-mail: qhclq@163.com

    (Received December 29, 2013, Revised July 30, 2014)

    The inception cavitating flows around a blunt body are studied based on flow visualizations and velocity field measurements. The main purpose of the present work is to study the incipient cavity evolution and the interplay between the inception cavitation and the local turbulent flows. A high-speed video camera is used to visualize the cavitating flow structures, and the particle image velocimetry (PIV) technique is used to measure the velocity field, the vorticity, and the Reynolds stresses under non-cavitating and inception cavitating flow conditions. It is found that the appearance of visible cavities is preceded by the formation of a cluster of micro-bubbles not attached to the body surface and in a hairpin-shaped vortex structure. During its evolution, the cavity moves downstream with a lower speed. The effect of the incipient cavity is significant on the local vortical structures but slight on the timeaveraged velocity distribution. The mean Reynolds stress distributions in the turbulent shear flow can be substantially altered by the incipient cavities. The presence of the incipient cavities can lead to the production of turbulent fluctuations.

    inception cavitation, PIV, turbulent fluctuations, vortex, axisymmetric body

    Introduction

    Cavitation is the formation of vapor or gas filled cavities in a liquid by the explosive growth of small bubbles or nuclei due to instability caused by a low instantaneous local pressure[1]. From the engineering viewpoint, cavitation is undesirable in general as it can bring about associated problems of noise and vibration as well as material damages through the cavitation erosion. For example, cavitation can reduce the efficiency of pumps and ship propellers, and affect the hydrodynamics and the manipulation of naval underwater bodies. Thus, cavitation is a vital topic of the fluid machinery and in the naval hydrodynamics fields.

    Since the late 19th century, the cavitation inception has attracted considerable research interest. Chau et al.[2]studied the viscous effects in the inception cavitating flow. Wienken et al.[3]conducted a computational study of inception cavitating flows past a square cylinder, and evaluated the LES method. O’Hern[1]made an investigation of the cavitation inception in the turbulent shear flow and the relation between the Reynolds number scales and the inception indices. Ling et al.[4]conducted a systematic investigation of the formation of microscale vortex cavitations on a blunt axisymmetric headform and found that the initial inception was in the form of a thin cavity line like hairs. Wang et al.[5]studied the inception cavitation on the hydrofoil by an experimental method and obtained time-evolutions of incept travelling bubbles. As the turbulence has a significant effect on cavitating fows, many studies focused on the complex relations between the cavitation and the vortex structures[6-9]. Chang et al.[10]studied the counter-rotating vortex interaction in the flow to reveal the form of the vortex cavitation inception and its bubble dynamics. The influence of cavitation on the turbulent flow structure is also an interesting topics. The collapse of cavitation bubbles leads to the production of turbulence within the flow[11]. Singhal et al. used a probability density function (PDF) approach for accounting the effects ofturbulent pressure fluctuations on cavitation, and proposed that the phase-change threshold pressure value should be raised[12]. Iyer and Ceccio[13]used the PIV technology to measure the velocity field and Reynolds stresses of the flow and analyzed the influence of cavitation on the flow of a turbulent shear layer.

    In view of above studies, the present paper studies the inception cavitating flows over a cylinder with blunt headform using a high-speed video camera together with a PIV system. The purpose is to provide further insight into the characteristics of the inception cavitating flow and the interplay between the turbulence fluctuations and the inception cavitation.

    Fig.1 Layout of high-speed video camera system

    Fig.2 Arrangement of the PIV system

    1. Experiment approach and setup

    The experiments are carried out in a closed-loop cavitation tunnel, and its schematic description is given in Ref.[14]. Figure 1 shows the layout of the visualization system. A high-speed video camera(HG-LE, by Redlake) system, with a rate of up to 105frames per second (fps), is used to take pictures of the inception cavitating flows, with a frequency of 5 000 fps with various qualities of images and other requirements. During the experiment, three high-energy lamps are applied to scan the flow field, and the highspeed video camera takes pictures from the side of the test window. Figure 2 shows the PIV system, which is used to measure the velocity fields of both non-cavitating and inception cavitating flows. During the PIV experiment, a double-pulsed light sheet of about 0.001 m thick created by Nd: YAG lasers scans the test section parallel to the main flow. The lasers emit light pulses with a duration of 10ns, a wavelength of 532 nm, and an energy of 50 mJ/pulse at a repetition rate of 30 Hz. The CCD camera is used to acquire images with a resolution of 1 024×1 024 pixels. The double-pulsed images are processed using the commercial post-processing software. Here, the interrogation region of 32×32 pixels is used typically with an overlap of 50%. The hollow glass beads with the density of 1.03×103kg/m3are chosen as tracer particles.

    The data acquisition and analysis procedures of the PIV technology were developed in our laboratory[14,15]. With numerous vapor bubbles in the cavitating flows, the velocity inside the cavity can be determined by using the vapor bubbles as “tracer particles”[14,16,17]. In the non-cavitating regions, the tracer particles are used to measure the local velocity. The strong reflection and refraction of the light sheet by the vapor-liquid interface is an issue not yet resolved[18]. Here, in order to reduce the effect of the reflection on the PIV measurement, firstly the energy per pulse of the lasers is lowered, giving a modest light budget. Moreover, the axisymmetric body is painted black and the images are pre-processed by subtracting the mean image, reducing the reflection of the wall surface and the cavity interface. Then, during the postprocessing, multiple filters are employed to remove the erroneous vectors by specifying the relative tolerance.

    Fig.3 Sketch of the axisymmetric body position in the test section

    Figure 3 shows the sketch of the experimental model location in the test section. The axisymmetric body is6D in length, located at the middle of the test section. Here,D is the diameter of the axisymmetric body. During testing, the free-stream velocity is U0= 8.8 m/s, giving a Reynolds number of Re=1.76× 105based on D=0.02 m, and the environmental temperature is 20oC. In this study, the inception cavitation number is 1.2 based on the upstream pressure as well as the free-stream velocity. Li et al.[14]and Huang et al.[17]reported that the experimental conditions are maintained to within 1% uncertainty on the angle of incidence and 2% uncertainty on both the fow velocity and the upstream pressure. In general, the cavitation number can be controlled to within 5% uncertainty. The turbulent intensity is less than 2%, further details can be found in the Refs.[14] and [17].

    Fig.4 Time evolutions of inception cavity

    2. Results and discussions

    2.1 Incipient cavity structures

    In our experiment, all images are taken from the side view of the test window. It is found that all groups of the incipient cavities around the axisymmetric body are located unsymmetrically in the flows, which shows a three-dimensional nature. Figure 4 shows a typical development process of the incipient cavity in the form of both the colorful original visualizations recorded by a high speed camera and the corresponding monochrome pictures generated by an in-house postprocessing software package[19]. As is shown, the sequence starts with the form of a pair of clustered micro-sized bubbles in a hairpin-shaped structure with fluid between the two legs, travelling downstream and not attached to the wall surface. The location and the shape of this cavitation should be related to the mixing-layer eddy structure. Subsequently, at t0+0.4ms the two legs of the hairpin-shaped structure begin to merge together. At t0+0.8msthe integrated cavity is in the form of long, thin streamwise cavities oriented at about 45oto the mean fow direction, as is in agreement with the observations of Iyer and Ceccio[13]and Ling et al.[4]. Then the long thin cavity collapses gradually and nearly disappears at t0+2.4ms. This suggests that the incipient cavity evolution is related to the vortex structures in the shear flow. From then on, the thin cavity line collapses gradually until its eventual disappearance.

    Table1 The axial positions and moving speeds of visual incept cavities

    Several incipient cavitation events are summarized in Table 1, and the event No. 3 corresponds to Fig.4. Here, in Fig.4 we define frame 1(t0+0.2ms)as the point of onset for forming the incipient cavity,the last frame (t0+2.4ms)as the point of cavity collapse. From the first column of Table 1, it shows that the incipient cavity is located downstream from the head of the cylinder about0.3D-0.625Daway, and the average distance is about0.454D. The data in the second column indicates that the cavity travels downstream in a repetitive onset-collapse process, and the averaged position of the cavity collapse is almost 0.7Daway from the head. Furthermore, the speed of cavity moving downstream is estimated, as shown in the last column. The data demonstrates that the cavity moving speed is substantially smaller than that of the main flow.

    Fig.5 Time-averaged u-velocity distribution for non-cavitating flows over the blunt body

    Figure 5 shows the normalized time-averaged u-velocity distribution along the body obtained by the PIV technology. During the experiment, the condition of the non-cavitating flow keeps the same as that of the incept cavitating flow except for the cavitation index. The reattachment point location decides the size of the recirculation zone. From Fig.5(a), it is observed that the reattachment point is slightly upstream of the1.4Dpoint on the x -axis, and an area of about 1.4Din length along the blunt body is spanned by the separation region. Combined with the data of positions in Table 1, it indicates that the inception cavitation occurs within the turbulent shear layer upstream of the reattachment region of the body. Also, the cavity collapsing positions are still located in the large separation region. That is to say, the repetitive onset-merging-collapse process in the inception cavitation stage always occurs in the large separated vortex around the blunt body. Thus, the shape and the motion of the incipient cavity should be affected significantly by the local vortex stretching. This can explain why the evolution process of the incipient cavity has some vortical characteristics as illustrated in Fig.4. Besides, Fig.5(b)shows that the value ofu/ U0is smaller in the separated vortex than in other regions. The speed of the cavity moving downstream should be influenced substantially by the local velocity and takes a small value as shown in Table 1. Hence, as might be expected, one should focus on the interaction between the inception cavitation and the turbulence vortices field.

    Figure 6 contains a series of snapshots of the cavitation shape and the corresponding vortex structure distributions. It should be noted that the white, irregular matters are incipient cavity bubbles in the upper image, and the bottom one illustratesQ factor contour.Q is defined as[20],, which has a direct physical interpretation. WhenQ>0the rotation is dominant and the region determines a vortex tube. WhenQ<0, it indicates that the vector field is dominated by the strain, making this criterion valuable in the vector fields with distinct areas of strong vortical motions and areas of high strain. This criterion is one of the most simplest ways in the definition and the implementation for the vortex in the turbulent flow field among other Galilean invariant methods. Clearly, the cavity shape images show that the clustered bubbles are indeed detached from the body surface and travelling downstream. Also, within the separated vortex, the structure is transient and affected significantly by incipient cavity bubbles. The bulk of regions with positive values ofQis occupied by the incipient cavities, which vary in shapes and locations. Other piffling zones are induced by the local small vortex structures. In these figures, theQ factor has different distributions due to the incipient cavitation, which are absolutely unsteady. This indicates that the cavitation can modify the vortical fow locally. Regarding this point, Belahadji et al.[21]suggested that the cavitation in the cores of vortices might affect the process of vortex stretching by the decoupling of the vortex strain and the rotation rate.

    Fig.6 Instantaneous incept cavitation shapes and Q factor distributions

    Fig.7 Time-averaged velocity vectors under different conditions

    2.2 Comparisons of non-cavitating and inception cavitating flow fields

    Figures 7(a) and 7(b) show the time-averaged u-velocity vector distributions around a blunt body for non-cavitating and inception cavitating flows. As is expected, for the non-cavitating flow, there is a large scale vortex located downstream of the blunt head due to the flow separation, which is similar to the inception cavitating flow. From their velocity contours,the similar distributions are shown as the negativeuvelocity increasing to approach the main velocity with larger gradients.

    Fig.8 Mean Reynolds stress contours for non-cavitation (left) and inception cavitation(right)

    To further study the effect of the inception cavitation on the turbulent fluctuations, Figs.8(a), 8(b) and 8(c) show the contours of the mean Reynolds stresses u′ u′,v′ v′andu′ v′for non-cavitating and inception cavitating flows, respectively. With ensemble averaging of the measured instantaneous velocity vector,and the PIV post-processing technique, the mathematical statistic method is used to compute the average Reynolds stresses. Firstly the average velocity at each vector location is computed, then the local average velocity is subtracted from each vector to determine the fluctuation velocity componentsu′andv′for each im age. Finall y this da ta is used to com pute the av erageReynoldsstresses,andthesimilarprocedurewas also applied in Ref.[13]. In order to better reveal the inception cavitation active region, three typical positions are highlighted separately in each figure. As shown in Fig.8(a), the locations of larger fluctuations are mainly in the center of the separation vortex for the non-cavitating flow, while abundant streamwise turbulence fluctuations are found just in the inception cavitating region, between x=0.5D and x=1.0D. Similar trends are found in the measurements ofv′ v′in Fig.8(b), where the presence of cavitation enhances the local cross-stream fluctuations. For the measurements of u′ v′in Fig.8(c), the largest differences of turbulent fluctuations between the non-cavitating and inception cavitating flows can be seen clearly. It is found that the incipient cavitation can make the local u′ v′values negative but in higher levels in absolute values. These results suggest that the presence of cavitation significantly affects the correlation between the streamwise and cross-stream velocities in the turbulence field.

    To quantitatively study the effect upon the turbulence flows, Figure 9 shows several profiles of the turbulent intensity (u′/ U)at different cross-stream sections. The data point along they -axis starts with the first grid nearest the blunt body surface. At each section, the gradient of the turbulent intensity is reduced with the increase of the distance from the body surface irrespective of whether cavitation occurs or not. Moreover, the influence of the inception cavitation decreases with the increase of the distance downstream fromthe blunt head. As shown in Fig.9(f), the two curves tend to be similar at x/ D =1.0. However, in the cavitating region, the presence of cavitation induces a substantial increase of turbulence fluctuations, especially in the area between x/ D =0.3and x/ D =0.7. The collapse of cavitation bubbles might be responsible for this increase of turbulence fluctuations[22].

    Fig.9 The comparisons of turbulent intensity profiles at different cross-stream sections

    3. Summary and conclusions

    Visual observations of the inception cavitating flows over a blunt body are made by a high-speed video camera, and the PIV technology is used to resolve the flows. Based on the results, the following conclusions can be drawn:

    (1) The appearance of cavities is preceded by the formation of a cluster of micro-bubbles in a hairpinshaped vortex structure, travelling downstream and not attached to the body surface. The repetitive onsetmerging-collapse process in the inception cavitation stage occurs within the separated region around the blunt head.

    (2) The interplay between the incipient cavity and the flow structure is obvious. On one hand, during its evolution process, the incipient cavity has some vortical characteristics and moves downstream with a lower speed because of the local vortex structures and velocity distributions. On the other hand, the incipient cavity has substantial effect on the local flow field and makes the vortex structures unsteady.

    (3) The effect of incipient cavities in the turbulent shear flow is significant on the mean Reynolds stress distributions but slight on the time-averaged velocity distribution. The turbulent fluctuations with higher levels are always found in the inception cavitating region, and the cavitation with phase-change and momentum exchange may lead to the production of turbulence within the local flow.

    [1] O’HERN T. J. Cavitation inception scale effects[D]. Doctoral Thesis, Pasadena, USA: California Institute of Technology, 1987.

    [2] CHAU S.W., HSU K. L. and KOUH J. S. et al. Investigation of cavitation inception characteristics of hydrofoil sections via a viscous approach[J]. Journal of Marine Science and Technology, 2004, 8(4): 147-158.

    [3] WIENKEN W., STILLER J. and KELLER A. A method to predict cavitation inception using large-eddy simulation and its application to the flow past a square cylinder[J]. Journal of Fluids Engineering, 2006,128(2): 316-325.

    [4] LING S. C., GOWING S. and SHEN Y. T. The role of microbubbles on cavitation inception on head forms[C]. Fourteenth Symposium on Naval Hydrodynamics. Ann Arbor, MI, USA, 1982.

    [5] WANG G., SENOCAK I. and SHYY W. Dynamics of attached turbulent cavitating flows[J]. Progress in Aerospace Sciences, 2001, 37(6): 551-581.

    [6] CHESNAKAS C., JESSUP S. Tip vortex induced cavitation on a ducted propulsor[C]. Proceedings of the 4th ASME-JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA, 2003.

    [7] OWEIS G. F., FRY D. and CHESNAKAS C. J. et al. Development of a tip-leakage fow-Part 1. Thefow over a range of Reynolds numbers[J]. Journal of Fluids Engineering, 2006, 128(4): 751-764.

    [8] OWEIS G. F., FRY D. and CHESNAKAS C. J. et al. Development of a tip-leakage fow. Part 2. Comparison between the ducted and un-ducted rotor[J]. Journal of Fluids Engineering, 2006, 128(4): 765-773.

    [9] CHOI J. Dynamics and noise emission of vortex cavitation bubbles[D]. Doctoral Thesis, Ann Arbor, MI, USA: University of Michigan, 2006.

    [10] CHANG N. A., CHOI J. and YAKUSHIJI R. et al. Cavitation inception during the interaction of a pair of counter-rotating vortices[J]. Physics of Fluids, 2012, 24(1): 014107.

    [11] LABERTEAUX K. R., CECCIO S. L. Partial cavity fows: Part 2-Cavities forming on test objects with spanwise variation[J]. Journal of Fluid Mechanics,2000, 431: 43-63.

    [12] SINGHAL A. K., ATHAVALE M. M. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.

    [13] IYER C. O., CECCIO S. L. The infuence of developed cavitation on the fow of a turbulent shear layer[J]. Physics of fluids, 2002, 14(10): 3414-3431.

    [14] LI X., WANG G. and ZHANG M. et al. Structures of supercavitating multiphase fows[J]. International Journal of Thermal Sciences, 2008, 47(10): 1263-1275.

    [15] HUANG Biao, WANG Guo-yu. Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil[J]. Science China Technological Sciences, 2011, 54(7): 1802-1812.

    [16] WOSNIK M., LUCAS G. and ARNDT R. E. A. Measurements in high void fraction turbulent bubbly wakes created by axisymmetric ventilated supercavitation[C]. Proceedings of ASME Fluids Engineering Division Summer Conference, 2005 Forums, FEDSM2005. Houston, Texas, USA, 2005, 531-538.

    [17] HUANG B., YOUNG Y. L. and WANG G. et al. Combined experimental and computational investigation of unsteady structure of sheet/ cloud cavitation[J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    [18] FOETH E. J. The structure of three-dimensional sheet cavitation[D]. Doctoral Thesis, Delft, The Netherlands: Technical University of Delft, 2008.

    [19] ZHANG M., WANG G. and LI X. Design and application of cavitation flow image program[C]. International Symposium on Photoelectronic Detection and Imaging 2007. Beijing, China, 2007.

    [20] SAHNER J., WEINKAUF T. and HEGE H.-C. Galilean invariant extraction and iconic representation of vortex core lines[C]. Eurographics / IEEE VGTC Symposium on Visualization. Leeds, UK, 2005.

    [21] BELAHADJI B., FRANC J. P. and MICHEL J. M. Cavitation in the rotational structures of a turbulent wake[J]. Journal of Fluid Mechanics,1995, 287: 383-403.

    [22] LABERTEAUX K. R., CECCIO S. L. Partial cavity fows: Part 1-Cavities forming on models without spanwise variation[J]. Journal of Fluid Mechanics, 2001,431: 1-41.

    * Project supported by the National Natural Science Foundation of China (Grant Nos.11172040, 51239005).

    Biography: HU Chang-li (1986-), Female, Ph. D., Lecturer

    WANG Guo-yu,

    E-mail: wangguoyu@bit.edu.cn

    猜你喜歡
    趙宇王國
    一滴水中的王國
    趣味(語文)(2020年5期)2020-11-16 01:34:54
    地下王國
    她的2000億打工王國
    逃離鼠王國
    伴你闖蕩是愛,放你獨處也是愛
    37°女人(2019年12期)2019-12-19 06:09:11
    伴你闖蕩是愛,放你獨處也是愛
    分憂(2019年10期)2019-09-20 03:00:06
    伴你闖蕩是愛,放你獨處也是愛
    建立新王國
    NBA特刊(2018年21期)2018-11-24 02:47:48
    你了解大氣壓嗎
    動 靜(短篇小說)
    我要看日韩黄色一级片| 99re6热这里在线精品视频| 日本黄色日本黄色录像| 男女边摸边吃奶| 国产成人91sexporn| 成人漫画全彩无遮挡| a 毛片基地| 亚洲av在线观看美女高潮| 亚洲国产精品999| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 色视频www国产| 美女中出高潮动态图| 美女脱内裤让男人舔精品视频| 欧美日韩在线观看h| 丰满乱子伦码专区| 51国产日韩欧美| 夜夜爽夜夜爽视频| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 国产精品久久久久久精品电影小说 | 免费在线观看成人毛片| 中文字幕久久专区| 寂寞人妻少妇视频99o| 亚洲综合色惰| 午夜福利影视在线免费观看| 尤物成人国产欧美一区二区三区| av福利片在线观看| www.色视频.com| av在线播放精品| 日韩一区二区三区影片| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 搡老乐熟女国产| 精品一区二区三区视频在线| 精品一品国产午夜福利视频| 全区人妻精品视频| 国产精品一及| 高清欧美精品videossex| 中文字幕制服av| 91狼人影院| 男的添女的下面高潮视频| 亚洲精品乱久久久久久| 亚洲综合精品二区| 亚洲国产精品国产精品| 精品国产一区二区三区久久久樱花 | 亚洲av男天堂| 美女xxoo啪啪120秒动态图| 国产美女午夜福利| 尾随美女入室| 最黄视频免费看| 观看美女的网站| 一级黄片播放器| 成人一区二区视频在线观看| 亚洲av中文av极速乱| 精品久久久久久久久av| 99热6这里只有精品| 日韩电影二区| 亚洲精品视频女| 一级a做视频免费观看| 大香蕉97超碰在线| 日韩一区二区视频免费看| 你懂的网址亚洲精品在线观看| 国内揄拍国产精品人妻在线| 亚洲成人手机| 少妇精品久久久久久久| 人妻夜夜爽99麻豆av| 亚洲av男天堂| 一本一本综合久久| 久久精品熟女亚洲av麻豆精品| 人体艺术视频欧美日本| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 久热这里只有精品99| 永久免费av网站大全| 高清日韩中文字幕在线| 久久久色成人| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 免费大片18禁| 中文字幕制服av| 黄色一级大片看看| 少妇丰满av| 国产精品欧美亚洲77777| 色视频在线一区二区三区| 老司机影院成人| 三级国产精品片| 精品一品国产午夜福利视频| 男人舔奶头视频| 爱豆传媒免费全集在线观看| av女优亚洲男人天堂| 欧美97在线视频| 亚洲电影在线观看av| 亚洲怡红院男人天堂| 高清不卡的av网站| 极品少妇高潮喷水抽搐| 日本-黄色视频高清免费观看| 亚洲一级一片aⅴ在线观看| 一本久久精品| 最近最新中文字幕大全电影3| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 亚洲四区av| 亚洲国产毛片av蜜桃av| 久久精品人妻少妇| 99九九线精品视频在线观看视频| 一级av片app| 久久久久久久久久成人| 黄片无遮挡物在线观看| 卡戴珊不雅视频在线播放| 国产爽快片一区二区三区| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| av黄色大香蕉| 亚洲国产高清在线一区二区三| 十分钟在线观看高清视频www | 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 91aial.com中文字幕在线观看| 一级毛片久久久久久久久女| 日本黄色片子视频| 国产黄片美女视频| 亚洲自偷自拍三级| 青春草国产在线视频| 高清视频免费观看一区二区| 精品久久久久久久久亚洲| 91久久精品国产一区二区成人| 婷婷色av中文字幕| .国产精品久久| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 午夜激情久久久久久久| 久久久久国产精品人妻一区二区| 内射极品少妇av片p| 日韩伦理黄色片| 天天躁日日操中文字幕| 青春草视频在线免费观看| 身体一侧抽搐| 欧美国产精品一级二级三级 | 国产淫语在线视频| 久久国产乱子免费精品| 我要看黄色一级片免费的| 成人美女网站在线观看视频| 日本与韩国留学比较| 在线观看国产h片| 久久久久网色| 91在线精品国自产拍蜜月| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 天天躁日日操中文字幕| av在线老鸭窝| 国产精品国产三级专区第一集| 深爱激情五月婷婷| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 日韩强制内射视频| 欧美极品一区二区三区四区| 欧美xxⅹ黑人| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 国产精品av视频在线免费观看| 插阴视频在线观看视频| 久久毛片免费看一区二区三区| 欧美精品一区二区免费开放| 亚洲综合精品二区| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 精品国产露脸久久av麻豆| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| www.色视频.com| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 99久久人妻综合| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 好男人视频免费观看在线| 成人美女网站在线观看视频| 五月伊人婷婷丁香| 国产 精品1| 国产成人一区二区在线| 99热网站在线观看| 国产69精品久久久久777片| 波野结衣二区三区在线| 久久影院123| 狠狠精品人妻久久久久久综合| 久久人妻熟女aⅴ| 在线观看国产h片| 午夜精品国产一区二区电影| 男人舔奶头视频| 91精品伊人久久大香线蕉| 一个人免费看片子| av国产免费在线观看| 精品久久久精品久久久| 91狼人影院| 国产伦精品一区二区三区视频9| 婷婷色综合www| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 搡女人真爽免费视频火全软件| 欧美成人a在线观看| 精品久久久噜噜| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 中文字幕精品免费在线观看视频 | 亚洲精品色激情综合| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 18禁在线播放成人免费| h视频一区二区三区| 99热国产这里只有精品6| 丝袜脚勾引网站| 十八禁网站网址无遮挡 | 日韩亚洲欧美综合| 网址你懂的国产日韩在线| 一级片'在线观看视频| 妹子高潮喷水视频| 交换朋友夫妻互换小说| 国产免费一区二区三区四区乱码| 尾随美女入室| 99久久中文字幕三级久久日本| 国产视频内射| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 蜜桃在线观看..| 少妇人妻久久综合中文| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 日韩强制内射视频| 亚洲av成人精品一区久久| 亚洲欧美精品专区久久| 简卡轻食公司| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看 | 91精品国产国语对白视频| 亚洲av中文字字幕乱码综合| 中国三级夫妇交换| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 亚洲精品国产av成人精品| 国产精品99久久久久久久久| 有码 亚洲区| 高清毛片免费看| 一区二区三区精品91| 2021少妇久久久久久久久久久| 看免费成人av毛片| 亚洲精品国产成人久久av| 极品少妇高潮喷水抽搐| 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 高清在线视频一区二区三区| 国产精品成人在线| 免费黄色在线免费观看| 亚洲国产高清在线一区二区三| av在线播放精品| 久久毛片免费看一区二区三区| 中国三级夫妇交换| 国产乱人偷精品视频| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 高清黄色对白视频在线免费看 | 欧美成人午夜免费资源| 日本色播在线视频| 妹子高潮喷水视频| 只有这里有精品99| 久久人人爽人人片av| 免费观看在线日韩| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 国产精品国产av在线观看| 亚洲精品色激情综合| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 少妇 在线观看| 制服丝袜香蕉在线| 日本一二三区视频观看| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| 亚洲精品成人av观看孕妇| 看免费成人av毛片| 高清不卡的av网站| 看免费成人av毛片| 久久青草综合色| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 久热久热在线精品观看| 国产精品成人在线| 久久精品国产亚洲网站| av网站免费在线观看视频| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 国产精品免费大片| 丝袜喷水一区| 七月丁香在线播放| 国产爽快片一区二区三区| 中文欧美无线码| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 成年人午夜在线观看视频| 全区人妻精品视频| 热99国产精品久久久久久7| 久久久久久久久久人人人人人人| 一级毛片我不卡| 看十八女毛片水多多多| 一区二区三区四区激情视频| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 国产毛片在线视频| 日本爱情动作片www.在线观看| 亚洲国产精品999| 久久久久人妻精品一区果冻| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 亚洲欧美日韩东京热| 亚洲精品久久午夜乱码| 黄色一级大片看看| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 在现免费观看毛片| 成人毛片60女人毛片免费| 老司机影院成人| 身体一侧抽搐| 国产黄色视频一区二区在线观看| 这个男人来自地球电影免费观看 | 亚洲国产色片| 天天躁夜夜躁狠狠久久av| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说| 水蜜桃什么品种好| 国产亚洲5aaaaa淫片| 久久99热6这里只有精品| 国产黄色免费在线视频| 国产视频内射| 欧美日韩精品成人综合77777| 久久久久久久久大av| 卡戴珊不雅视频在线播放| 中文在线观看免费www的网站| 日本与韩国留学比较| 国内精品宾馆在线| 1000部很黄的大片| 王馨瑶露胸无遮挡在线观看| 看十八女毛片水多多多| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 国产黄色免费在线视频| 2021少妇久久久久久久久久久| 老师上课跳d突然被开到最大视频| 最新中文字幕久久久久| 亚洲人与动物交配视频| 精品熟女少妇av免费看| 日本一二三区视频观看| 亚洲最大成人中文| 毛片一级片免费看久久久久| 久久av网站| 色视频在线一区二区三区| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 国产久久久一区二区三区| 午夜日本视频在线| 深爱激情五月婷婷| 国产视频内射| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 在线免费十八禁| 国产精品.久久久| 美女福利国产在线 | 亚洲欧美精品专区久久| 国产精品蜜桃在线观看| www.色视频.com| 又黄又爽又刺激的免费视频.| xxx大片免费视频| 午夜免费观看性视频| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 涩涩av久久男人的天堂| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕| 午夜老司机福利剧场| 日本免费在线观看一区| 亚洲,一卡二卡三卡| 老熟女久久久| 国产精品国产三级国产av玫瑰| 欧美3d第一页| 精品人妻偷拍中文字幕| 国产精品伦人一区二区| av网站免费在线观看视频| 韩国av在线不卡| 精品熟女少妇av免费看| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 亚洲激情五月婷婷啪啪| 2021少妇久久久久久久久久久| 久久久久久九九精品二区国产| 免费黄色在线免费观看| 亚洲激情五月婷婷啪啪| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 国产精品国产三级国产专区5o| 国产午夜精品久久久久久一区二区三区| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 在现免费观看毛片| av在线观看视频网站免费| 国产精品熟女久久久久浪| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 老司机影院成人| 亚洲第一区二区三区不卡| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 午夜激情福利司机影院| 高清午夜精品一区二区三区| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 春色校园在线视频观看| 成人免费观看视频高清| 成年人午夜在线观看视频| 在线天堂最新版资源| 国产成人aa在线观看| 免费观看在线日韩| 国产中年淑女户外野战色| 在线看a的网站| 建设人人有责人人尽责人人享有的 | 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 性色av一级| 男女啪啪激烈高潮av片| 欧美成人精品欧美一级黄| 午夜福利在线在线| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 国内揄拍国产精品人妻在线| 青春草视频在线免费观看| 日韩中文字幕视频在线看片 | 精品人妻偷拍中文字幕| 丝袜脚勾引网站| 精品人妻视频免费看| 毛片一级片免费看久久久久| 少妇人妻久久综合中文| 久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 日韩人妻高清精品专区| av国产久精品久网站免费入址| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 亚洲欧美精品专区久久| 免费看日本二区| 99热网站在线观看| videos熟女内射| 多毛熟女@视频| 秋霞伦理黄片| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看 | 91精品国产九色| 国产伦精品一区二区三区视频9| 亚洲人成网站在线播| 精品酒店卫生间| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| 男女啪啪激烈高潮av片| 亚洲精品第二区| 欧美区成人在线视频| av在线播放精品| 99国产精品免费福利视频| 亚洲国产最新在线播放| 久久国产精品大桥未久av | 美女高潮的动态| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说 | 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 99久国产av精品国产电影| 国产精品.久久久| 久久97久久精品| 你懂的网址亚洲精品在线观看| videossex国产| 亚洲av欧美aⅴ国产| 久久久色成人| av免费观看日本| 国产69精品久久久久777片| 丰满人妻一区二区三区视频av| 精品亚洲成a人片在线观看 | 久久国产精品男人的天堂亚洲 | 搡老乐熟女国产| 黄色日韩在线| 一二三四中文在线观看免费高清| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久| 肉色欧美久久久久久久蜜桃| 春色校园在线视频观看| 国产 一区精品| 精品一区二区三卡| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 国产精品熟女久久久久浪| 久久精品人妻少妇| 日日啪夜夜爽| 各种免费的搞黄视频| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 波野结衣二区三区在线| 免费av中文字幕在线| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 欧美亚洲 丝袜 人妻 在线| 免费在线观看成人毛片| 亚洲精品乱久久久久久| 伊人久久精品亚洲午夜| 91久久精品国产一区二区成人| 久久久亚洲精品成人影院| 内地一区二区视频在线| 国产午夜精品一二区理论片| 搡老乐熟女国产| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 1000部很黄的大片| 99热6这里只有精品| 日韩大片免费观看网站| 免费黄频网站在线观看国产| 欧美日韩视频高清一区二区三区二| 精品熟女少妇av免费看| 国产精品一区www在线观看| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 91久久精品国产一区二区三区| 久久国产精品大桥未久av | 欧美一区二区亚洲| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 99久久精品一区二区三区| 一级片'在线观看视频| 亚洲精品一二三| 最近手机中文字幕大全| 欧美精品一区二区大全| 尤物成人国产欧美一区二区三区| 观看美女的网站| 三级经典国产精品| 色视频www国产| 街头女战士在线观看网站| 成人美女网站在线观看视频| 久久韩国三级中文字幕| 欧美区成人在线视频| 久热久热在线精品观看| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 欧美一区二区亚洲| h视频一区二区三区| 午夜老司机福利剧场| 免费观看a级毛片全部| 直男gayav资源| 欧美性感艳星| av在线蜜桃| 国产乱来视频区| 又粗又硬又长又爽又黄的视频| 精品久久久噜噜| 18禁在线无遮挡免费观看视频| 中文欧美无线码| 国产久久久一区二区三区| 天堂8中文在线网| 身体一侧抽搐| 久久精品国产亚洲网站| 大片电影免费在线观看免费| 精品久久久噜噜| 一区二区三区免费毛片| 日本午夜av视频| 中文在线观看免费www的网站|