• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tracking a maneuvering targetin clutter with out-of-sequence measurements for airborne radar

    2015-02-10 12:25:40WeihuaWuJingJiangandYangWan

    Weihua Wu,Jing Jiang,and Yang Wan

    1.Air Force Early Warning Academy,Wuhan 430019,China;

    2.Unit94627 of the PLA,Wuxi214141,China

    Tracking a maneuvering targetin clutter with out-of-sequence measurements for airborne radar

    Weihua Wu1,*,Jing Jiang1,and Yang Wan2

    1.Air Force Early Warning Academy,Wuhan 430019,China;

    2.Unit94627 of the PLA,Wuxi214141,China

    There are many proposed optimal or suboptimal algorithms to update out-of-sequence measurement(s)(OoSM(s)) for linear-Gaussian systems,but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs.In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clutter,an interacting multiple model probabilistic data association (IMMPDA)algorithm with the OoSM is developed.To be practical, the algorithm is based on the Earth-centered Earth-fixed(ECEF) coordinate system where it considers the effect of the platform’s attitude and the curvature of the Earth.The proposed method is validated through the Monte Carlo test compared with the performance ofthe standard IMMPDA algorithm ignoring the OoSM,and the conclusions show that using the OoSM can improve the tracking performance,and the shorter the lag step is,the greaterdegree the performance is improved,but when the lag step is large,the performance is not improved any more by using the OoSM,which can provide some references for engineering application.

    out-of-sequence measurement(s)(OoSM(s)),Earthcentered Earth-fixed(ECEF),interacting multiple model(IMM), probabilistic data association(PDA),attitude.

    1.Introduction

    In centralized multisensortracking systems,there often exist different times delays[1]when the data from the localsensors are transmitted to the processing center via the wireless communication network,which leads to the situations where some measurements from the same target obtained by different sensors will arrive out of sequence. Such out-of-sequence measurements(OoSMs)are a common and practicalproblemfaced in multisensorfusion systems.Recently many algorithms have been proposed to update an OoSMoptimally or suboptimally.

    A natural way among these methods for the OoSM processing problem was using the caching filters[2].After the initialwork[3]was done,the problem was brought to attention since an optimal algorithm for the one-steplag(i.e.,the time delay is less than one sampling interval)OoSM problem was proposed in[4],where the problem was first defined,and the algorithm was examined in[5].A suboptimal algorithm for the l-step-lag OoSM problem was proposed in[6],which requires l iterations to update.Another one-step approximate solution for the l-step-lag OoSM problem,avoiding l iterations,was proposed in[7]based on an equivalentmeasurementthathas the same dimension as the state vector.In[8],an alternative set of formulas withoutresorting to explicitly specify the equivalentmeasurementwas derived.The firstoptimal algorithm for the general l-step-lag problem appeared in [9]was utilizing the“fading information”approach.However,the computationalcostis high.An optimalalgorithm for the multiple-step as well as one-step update was presented in[10,11]by using fixed-pointsmoothing based on best linear unbiased estimation(BLUE)fusion.Another smoothing-based algorithm for the multiple-step OoSM was proposed in[12]by using the Rauch-Tung-Streibel (RTS)fixed-intervalsmoother.In[13],the OoSMsolution was obtained by using the so-called accumulated state densities(ASD)approach which provides a unified treatment of filtering and retrodiction by marginalizing the ASD.

    Besides the above single-OoSM problem,an optimal centralized update algorithm forthe multi-OoSMproblem was proposed in[14]by stacking the multiple OoSMs in a single measurement vector and performing the batchform update based on the assumption that these multiple OoSMs should arrive in succession.In[15],an optimalsolution called the complete in-sequence information(CISI) approach for the multi-OoSM with the arbitrary arriving order was proposed,which updates the states between the OoSMtime and the currenttime,including the states atthe OoSMtime.

    The above optimal or suboptimal solutions are solvedunder the linear dynamics and linear measurementmodels with additive Gaussian noises.However,what one faces in the realworld include the nonlinear measurements,maneuvering targets in clutter and so on.In order to process the nonlinear OoSMs,some particle filter(PF)-based algorithms were proposed[16–20].As is well known,the computationalload ofthese PF-OoSMalgorithms is heavy. To track real(maneuvering)targets,some algorithms for incorporating OoSMs into the state of the art tracker—interacting multiple model(IMM)estimator were presented[13,21–23],butthey could notdealwith uncertainties in the measurementorigin in scenarios involving clutter,while some algorithms have been proposed to exploit probabilistic data association(PDA)to address the OoSM problem in clutter[24,25],and a Gaussian-sum probability hypothesis density(GM-PHD)filter was first proposed to solve the OoSMproblem in clutter[26],butthey could nottrack a maneuvering target.In[27],an algorithm which incorporates PDA into an augmented state IMM (AS-IMM)for maneuvering targettracking in clutter with OoSM was presented.Reference[28]presented the solution to the combined problem of handling sensor biases when their measurements arrive outof sequence.Otherrelative studies include the removalofout-of-sequence measurements from tracks[29–31],and the out-of-sequence track(OoST)problem[32,33]and so on.

    In this paper,we focus on tracking a maneuvering target in clutter with the OoSM for multiple airborne radars.All the above mentioned algorithms are based on the simplified two-dimensional(2D)or 3D local coordinate system of fixed station,notto mention involving time-varying attitude of the moving airborne platform.By accounting for influence of curvature of the Earth and its realistic attitude factorofthe moving platform,unlike[27]which uses state augmentation,an IMMPDA algorithm with the nonlinear OoSM(IMMPDAwOoSM)of tracking a maneuvering targetin clutterin the Earth-centered Earth-fixed(ECEF)coordinate system is developed.

    2.Formulation of OoSMproblem

    For the airborne platform,there are severalcoordinate systems(or frames)involved[34].For ease of references,we summarize the coordinate systems adopted in our work.

    The origin of the ECEF coordinate system is located at the center of the Earth,the X axis extends from the origin to the intersection ofthe prime meridian(0°longitude) and the equator(0°latitude),and the Z axis is along the spin axis ofthe Earth,pointing to the north pole,and the Y axis is orthogonalto the X and Z axes with the usualrighthanded rule.The airborne-carried north-east-down(NED) system is associated with the flying vehicle.Its origin is atthe center of gravity of the airborne platform,the X,Y and Z axes pointtoward the geodetic north,eastand downward along the ellipsoid Earth normal,respectively.The body coordinate system is directly defined on the body of an airborne platform.Its origin is also located atthe center of gravity.The X,Y and Z axes pointtoward the forward head,right side and downward to comply with the righthanded rule,respectively,which is called the HRD system forshorthere.

    The dynamics ofa moving targetin the 3D ECEF Cartesian system are modeled as

    where Xj(k)is the state of the target at time tkfor the model Mj,i.e.,itis a vector consisting of position and velocity fora piecewise constantwhite acceleration(secondorder)model M1

    or a vector consisting of position,velocity,and acceleration for a piecewise constant Wiener process acceleration (third-order)model M2

    where the superscript T denotes the vector or matrix transpose.

    The transition matrices are given by

    where Inis an n×n identity matrix,and?denotes the Kroneckerproduct.τk=tk?tk?1is this time interval.

    The covariance of the zero-mean white Gaussian process noise sequence is given by

    The measurements collected by the sensor s on an airborne platform at time k are defined as zs(k)=where mkis the number of the measurements,and

    is a 3D vector consisting of range and azimuth and elevation angles for the 3D sensor such as radar, and the clutter y(k)is modeled as independent and uniformly distributed over the observation volume(or gated volume)V,and the distribution of the number of clutter is Poisson,i.e.,P(m)=e?λV(λV)m/m!,λis the number of false alarms per unit volume.For the target measurement,we have(omitthe time index k)

    where xH,yHand zHare the elements ofrefers to the four-quadrantinverse tangentfunction.

    The covariance of zero-mean Gaussian measurement noises ws(k)is given by

    whereδ(k,k?1)is the Kronecker delta function,and

    andσr,σa,σeare the standard deviation(std.)for the radar range,azimuth and elevation measurements noises, respectively.

    The problem of tracking a maneuvering target in clutter with the OoSM is as follows.At the time t=tk,the standard IMMPDA[35]tracker hasSubsequently,an OoSM zs(κ)at the earlier time tκarrive.The objective is updatingthe OoSM,namely,to calculateP(k|κ)=P(k|k,κ),fordetails refer to[7].

    3.IMMPDA algorithm with OoSM

    We have developed the algorithm tracking a maneuvering target with l-step-lag OoSM(about its definition refer to [7])in clutter.

    (i)Retrodicted states

    We can get the retrodicted state toκfrom k for each filter j(j=1,...,r)

    and the retrodicted state covariance

    where Fj(κ,k)=is the backward transition matrix.The covariancein(17)is given by

    The retrodicted OoSMfor the module j is

    The corresponding covariance Sj(κ)of the innovation isis the position components of Pj(κ|k);is the Jacobian matrix of target’s position in the NED frame with respect to target’sposition in the ECEF frame and the platform’s geodetic

    coordinate evaluated at target’s retrodicted value ofand platform’s measurements value of?,and submatrixis the Jacobian matrix of target’s position in the NED frame with respect to the platform’s geodetic coordinate,R?is the covariance matrix for the geodetic coordinate vector?.Similarly,

    is the Jacobian matrix of target’s position in the HRDframe with respectto platform’s attitude.

    is the Jacobian matrix of the nonlinear measurementfunction evaluated atthe target’s retrodicted position in the HRD frame,Rωis the covariance matrix for the attitude angle vectorω.

    (iii)OoSMvalidation

    A validation gate for the sensor s centered at the retrodicted measurementcan be setup,i.e.,

    where the Markov chain transition probability matrix is

    where Pr(·)denotes the probability of an event.According to the well-known property of a Markov process,if we denoteΠ(1)=Π(k,k?1),thenΠ(κ,k)=Πl(fā)(1).

    The measurements are validated as follows:

    where g is the gates threshold for setting up the validation regions, and|·|denotes the matrix determinant.

    (iv)Estimation with OoSMin each filter

    The update of the state atthe currenttime k in each module of the IMM using the validated OoSMis done as follows.

    With the OoSMs zs(κ),the state estimate is updated by

    and .In the above,m(κ)is the number of validated OoSMs.The filter gain Gj(k,κ)is obtained by

    whereΨj(κ)is the Jacobian matrix of?sevaluated at timeκgiven by

    Using the chain derivative rule of composite function according to(7)–(9),we have

    The innovation forthe measurement n is

    The covariance associated with(27)is

    The covariance associated with(26)is

    The association probabilitiesare computed according to nonparametric probabilistic data association filter(PDAF)[35]as follows:

    with PDas the probability ofdetection of the sensor s;PGis the gate? probability that the target is in the validationis the Gaussian probability

    density function with innovationmean zeros and covariance Ssj.

    The volume of the validated region is given by

    where Vnzis the volume of the unithypersphere of dimension nz,the dimension of the measurement z.For the 1D, 2D and 3D measurements,Vnzis equalto 2,πand 4π/3, respectively.

    (v)Updating modelprobabilities

    Using the above,the mode probabilities are updated as follows:

    where the likelihood function is

    and the normalization factor is

    (vi)State estimate and covariance combination

    Finally,the updated combined estimate is obtained by

    and the corresponding covariance is given by

    4.Simulation results

    Now we consider an example of tracking a highly maneuvering target in clutter.The target starts at geodetic coordinate(121.1°E,40.5°N,8 000 m),ends at (121.1°E,40.3°N,8 000 m),goes through(120.2°E, 40.3°N,8 000 m),(120.5°E,40.3°N,8 000 m),(120.6°E, 40.6°N,8 000 m),(120.9°E,40.6°N,8 000 m)in order.The airborne platform 1 starts at(119.0°E,40.6°N, 8 000 m),ends at(120.5°E,40.6°N,8 000 m);the airborne platform2 starts at(119.0°E,40.2°N,8 000 m),ends at(120.5°E,40.2°N,8 000 m).Both of their speeds are 250 m/s.Fig.1 shows their trajectories.

    Fig.1 Two platforms’trajectories,target true trajectory and its estimated trajectory with IMMPDAwOoSM-5

    Itis assumed thateach platform is equipped with a radar. The two radars(radar 1 and radar 2)are characterized by the following parameters:σr=100 m,σa=1°,σe=1°. Both radars are assumed to be track-while-scan(TWS) radar,and their sampling time areτ=2 s,and the sampling time of the radar2 is lag 1s longer than thatof radar 1 which is used as the fusion center.The l-step-lag OoSM (OoSM-l)is set in the simulation when the measurements from radar 2 are transmitted to radar 1,as is shown in Fig.2.

    Fig.2 Sampling scheme and arriving order under l-step-lag OoSM (OoSM-l)case

    The elements of the two platforms’position measurement covariance R?are specified by longitude std. 0.001°,latitude std.0.001°and altitude std.100 m.The elements of the platforms’attitude measurementcovariance Rωare assumed that yaw,pitch and rollstd.are the same as 0.1°.

    The two models from Section 2 are used in the IMMPDA tracker.M1and M2have process noise withσ1x= σ1y=σ1z=5 m/s2andσ2x=σ2y=σ2z=20 m/s2, respectively.The assumed model switching probabilities are given byΠ12(1)=0.2 andΠ21(1)=0.1.

    The clutter is assumed to be Poisson distributed with expected number ofλ=6.5×10?6/(m·mrad2)for both radars.It is assumed that the probability of detection PD=1 for both radars.The gates threshold is set g=4 leading to a gate probability PG=0.999 7.

    We compare IMMPDAwith OoSM-l to IMMPDAwithout the OoSM,the former is called IMMPDAwOoSM-l and the latteris called IMMPDAwoOoSM(which is a standard IMMPDA algorithm in fact)forshort,respectively.

    A typical tracking result of the IMMPDAwOoSM-5 is shown in Fig.1.We can visually see that the proposed method can track the maneuvering targetsuccessfully.Because the results of other methods are indistinguishable from that of the IMMPDAwOoSM-5,they are not displayed.

    The performance comparison with regard to the root mean-square(RMS)error in position and velocity through 300 Monte Carlo runs is shown in Fig.3,and average numbers of false alarms and targetoriented in the validation region are given in Table 1 which shows the proposed algorithm can work under the circumstance in presence of clutter and mis-association.Fig.3(a)gives the RMSposition errorwhile Fig.3(b)gives the corresponding RMS speed error.

    As is seen in Fig.3,the performance of the IMMPDAwOoSM-1 is the best,followed by the IMMPDAwOoSM-3,while the performance of the IMMPDAwOoSM-5 and IMMPDAwoOoSM are similar, which shows that the proposed IMMPDAwOoSM-l algorithm is validated,and using the OoSM can improve the tracking performance,and the shorter the lag step is,the greater degree the performance is improved,but when the lag step is large,the performance is notimproved any more by using the OoSM.

    Fig.3 Performance comparison of IMMPDAwoOoSM and IMMPDAwOoSM-l(l=1,3,5)

    5.Conclusions

    We propose an algorithm which is capable of tracking a highly maneuvering targetwith the nonlinear multiple-lag OoSMin clutter in the ECEF system accounting for timevarying attitude and curvature of Earth.Simulation results show thatthe algorithm is validated,and using the OoSM can improve the tracking performance,and the shorter the lag step is,the greaterdegree the performance is improved,but when the lag step is large,the performance is not improved any more by using the OoSM.Owing to accounting for many realistic problems,the algorithm is expected to be used in engineering practice.Future work will explore multiple maneuvering targets tracking in clutterwith OoSMs in the ECEF system.

    Acknowledgment

    The first author would like to extend sincere gratitude to the teacher Haiying Du for his examination of English expression of this paper.

    [1]B.Twala.Handling out-of-sequence data using model-based statisticalimputation.Electronic Letters,2010,46(4):1399–1408.

    [2]S.Chan,R.Paffenroth.Out-of-sequence measurementupdates for multi-hypothesis tracking algorithms.Proc.ofthe SPIE on Signaland Data Processing of SmallTargets,2008:1–12.

    [3]R.D.Hilton,D.A.Martin,W.D.Blair.Tracking with timedelayed data in multisensor systems.Dahlgren,VA:NavalSurface Warfare Center,1993.

    [4]Y.Bar-Shalom.Update with out-of-sequence measurements in tracking:exactsolution.IEEE Trans.on Aerospace and Electronic Systems,2002,38(3):769–778.

    [5]A.G.Jerry.Examination of a popular out-of-sequence measurement update algorithm.IEEE Trans.on Aerospace and Electronic Systems,2011,47(4):2999–3001.

    [6]M.Mallick,S.Coraluppi,C.Carthel.Advances in asynchronous and decentralized estimation.Proc.of the IEEE Aerospace Conference,2001:1873–1888.

    [7]Y.Bar-Shalom,H.Chen,M.Mallick.One-step solution for the multistep out-of-sequence-measurement problem in tracking.IEEE Trans.on Aerospace and Electronic Systems,2004, 40(1):27–37.

    [8]L.Chen,N.Moshtagh,R.K.Mehra.Comment on“one-step solution for the multistep out-of-sequence-measurement problem in tracking”.IEEE Trans.on Aerospace and Electronic Systems,2011,47(3):2285–2288.

    [9]E.W.Nettleton,H Durrant-Whyte.Delayed and asequentdata in decentralized sensing networks.Proc.of the SPIE Conference on Signal and Data Processing of Small Targets,2001: 1–9.

    [10]K.Zhang,X.R.Li,Y.Zhu.Optimal update with out-ofsequence measurements for distributed filtering.Proc.of the 5th International Conference on Information Fusion,2002: 1519–1526.

    [11]K.Zhang,X.R.Li,Y.Zhu.Optimal update with out-ofsequence measurements.IEEE Trans.on Signal Processing, 2009,53(6):1992–2004.

    [12]M.Mallick,K.S.Zhang.Optimal multiple-lag out-ofsequence measurement algorithm based on generalized smoothing framework.Proc.of the SPIE Conference on Signaland Data Processing ofSmallTargets,2005:1–13.

    [13]W.Koch,F.Govaers.On accumulated state densities with applications to out-of-sequence measurement processing.IEEE Trans.on Aerospace and Electronic Systems,2011,47(4): 2766–2778.

    [14]X.Shen,Y.Zhu,E.Song,et al.Optimal centralized update with multiple localout-of-sequence measurements.IEEE Trans.on SignalProcessing,2009,57(4):1551–1562.

    [15]S.Zhang,Y.Bar-Shalom.Optimal update with multiple outof-sequence measurements with arbitrary arriving order.IEEE Trans.on Aerospace and Electronic Systems,2012,48(4): 3116–3132.

    [16]M.Orton,A.Marrs.Particle filters for tracking with out-ofsequence measurements.IEEE Trans.on Aerospace and Electronic Systems,2005,41(2):673–702.

    [17]S.Zhang,Y.Bar-Shalom.Out-of-sequence measurement processing forparticle filter:exactbayesian solution.IEEE Trans. on Aerospace and Electronic Systems,2012,48(4):2818–2831.

    [18]B.N.Oreshkin,X.Liu,M.J.Coates.Efficient delay-tolerant particle filtering.IEEE Trans.on Signal Processing,2011,59 (7):3369–3381.

    [19]E.Besada-Portas,J.A.Lopez-Orozco,J.Besada,et al.Multisensor outof sequence data fusion for estimating the state of discrete control systems.IEEE Trans.on Automatic Control, 2009,54(7):1728–1732.

    [20]K.T.Dimitris,M.A.Niall,J.H.David.Selective fusion of out-of-sequence measurements.Information Fusion,2010, 11(2):183–191.

    [21]Y.Bar-Shalom,H.Chen.IMMestimatorwith out-of-sequence measurements.IEEE Trans.on Aerospace and Electronic System,2005,41(1):90–98.

    [22]L.Hong,S.Cong,D.Wicker.Distributed multirate interacting multiple model fusion(DMRIMMF)with application to outof-sequence GMTI data.IEEE Trans.on Automatic Control, 2004,49(1):102–107.

    [23]L.Hong,S.Cong,D.Wicker.Multirate interacting multiple model(MRIMM)filtering with out-of-sequence GMTI data.IEE Proceedings Radar Sonar Navigation,2003,150(5): 333–343.

    [24]K.Zhang,X.R.Li,H.Chen.Multi-sensor multi-targettracking with out-of-sequence measurements.Proc.ofthe 6th International Conference Information Fusion,2003:672–679.

    [25]S.Challa,R.J.Evans,X.Wang.Abayesian solution and itsapproximations to out-of-sequence measurementproblem.JournalofInformation Fusion,2003,4(3):185–199.

    [26]A.N.Bishop.Gaussian-sum-based probability hypothesis density filtering with delayed and out-of-sequence measurements.Proc.ofthe 18th Mediterranean Conference on Control &Automation,2010:1423–1428.

    [27]X.Wang,S.Challa.Augmented state IMM-PDA for OOSM solution to maneuvering targettracking in clutter.Proc.ofthe Radar International Conference,2003:479–485.

    [28]S.Zhang,Y.Bar-Shalom,G.Watson.Tracking with multisensor out-of-sequence measurements with residual biases. Proc.of the 13th International Conference Information Fusion,2010:1–8.

    [29]S.Zhang,Y.Bar-Shalom.Optimalremovalofout-of-sequence measurements from tracks.IEEE Trans.on Aerospace and Electronic Systems,2012,48(1):604–619.

    [30]S.Zhang,Y Bar-Shalom.Optimalremovalof out-of-sequence measurements from tracks using the IF-equivalent measurement.Proc.of the 49th IEEE Conference on Decision and Control,2010:1312–1317.

    [31]Y.Bar-Shalom,H.Chen.Removal of out-of-sequence measurements from tracks.IEEE Trans.on Aerospace and Electronic Systems,2009,45(2):612–619.

    [32]M.Mallick,S.Schmidt,Y.P.Lucy,et al.Out-of-sequence track filtering using the decorrelated pseudo-measurement approach.Proc.ofthe SPIE Conference on Signaland Data Processing ofSmallTargets,2004:154–166.

    [33]S.Challa,J.A.Legg,X.Wang.Track-to-track fusion of outof-sequence tracks.Proc.of the 5th International Conference Information Fusion,2002:919–926.

    [34]P.H.Zipfel.Modeling and simulation ofaerospace vehicle dynamics.Virginia:American Institute of Aeronautics and Astronautics,2007.

    [35]A.Houles,Y.Bar-shalom.Multisensor tracking of a maneuvering target in clutter.IEEE Trans.on Aerospace and Electronic Systems,1989,25(2):176–189.

    Biographies

    Weihua Wuwas born in 1987.He received his B.S.degree in electronic warfare command and engineering in 2009 and M.S.degree in signal and information processing in 2011 respectively, both from Air Force Radar Academy.Now,he is a Ph.D.candidate in the same academy.He had been engaged in the National College Mathematical Modeling and Electronic Design Contest in HubeiProvince and won the second prize.His research interests include passive location and tracking,multi-targettracking,and nonlinear filtering as wellas multi-sensor data fusion applications.

    E-mail:weihuawu1987@163.com

    Jing Jiangwas born in 1964.He received his M.S. degree in 1996 from National University of Defense Technology and Ph.D.degree in 2006 from Wuhan University,now he is a professor and doctor supervisor in Air Force Early Warning Academy.His research interests include radar data processing,modern information processing,and information fusion. E-mail:jiangj36@sina.com

    Yang Wanwas born in 1984.He received his M.S. degree in 2009 and Ph.D.degree in 2013 respectively from Air Force Early Warning Academy,now he is an engineer in Unit 94627 of the PLA.His research interests include radar information processing,tracking before detect.

    E-mail:wanyang19850122@163.com

    10.1109/JSEE.2015.00083

    Manuscript received May 28,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61102168).

    777久久人妻少妇嫩草av网站| 天天操日日干夜夜撸| 亚洲色图 男人天堂 中文字幕| 精品午夜福利在线看| 在线观看免费高清a一片| 麻豆乱淫一区二区| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 又大又黄又爽视频免费| 91精品国产国语对白视频| 亚洲精品国产区一区二| 久久鲁丝午夜福利片| 只有这里有精品99| 国产成人啪精品午夜网站| 久久人人爽av亚洲精品天堂| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 97精品久久久久久久久久精品| 不卡av一区二区三区| 老司机影院成人| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 国产一区有黄有色的免费视频| 亚洲,欧美,日韩| 人体艺术视频欧美日本| 99国产综合亚洲精品| 亚洲欧美色中文字幕在线| 成年人午夜在线观看视频| √禁漫天堂资源中文www| 黑人猛操日本美女一级片| 久久99热这里只频精品6学生| 亚洲国产欧美网| 曰老女人黄片| 悠悠久久av| 国产一区有黄有色的免费视频| 熟女av电影| 夫妻性生交免费视频一级片| 久久久亚洲精品成人影院| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 精品福利永久在线观看| 搡老乐熟女国产| 欧美日韩精品网址| 久久天堂一区二区三区四区| 黄片无遮挡物在线观看| 久久 成人 亚洲| 在线亚洲精品国产二区图片欧美| 亚洲成色77777| 视频区图区小说| 国产av国产精品国产| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密 | 国产高清不卡午夜福利| 自拍欧美九色日韩亚洲蝌蚪91| 无限看片的www在线观看| 精品亚洲乱码少妇综合久久| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 亚洲成人手机| videos熟女内射| 国产熟女欧美一区二区| 成人国语在线视频| 午夜激情av网站| 久久婷婷青草| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 中文字幕制服av| 岛国毛片在线播放| 狂野欧美激情性xxxx| 中文字幕精品免费在线观看视频| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区av网在线观看 | 亚洲精品第二区| 久久精品久久久久久久性| 97在线人人人人妻| 久久久欧美国产精品| 欧美日本中文国产一区发布| 在线天堂最新版资源| 成人黄色视频免费在线看| 国产成人91sexporn| 我的亚洲天堂| 曰老女人黄片| 国产亚洲精品第一综合不卡| 成人午夜精彩视频在线观看| 不卡视频在线观看欧美| 久久久国产精品麻豆| 黄频高清免费视频| 国产精品无大码| 中文字幕色久视频| 久久综合国产亚洲精品| 欧美日韩av久久| 天天躁夜夜躁狠狠躁躁| 一区福利在线观看| 国产免费现黄频在线看| 又大又爽又粗| 爱豆传媒免费全集在线观看| 亚洲精品久久午夜乱码| 欧美日韩精品网址| 丁香六月天网| 免费看不卡的av| 欧美日韩综合久久久久久| 啦啦啦 在线观看视频| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 国产熟女欧美一区二区| 精品国产一区二区久久| 国产一区亚洲一区在线观看| 日本爱情动作片www.在线观看| 久久久久国产精品人妻一区二区| 欧美精品高潮呻吟av久久| bbb黄色大片| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 爱豆传媒免费全集在线观看| 丝袜美足系列| 九色亚洲精品在线播放| 国产亚洲精品第一综合不卡| 老汉色av国产亚洲站长工具| 午夜福利网站1000一区二区三区| 街头女战士在线观看网站| 一级片'在线观看视频| 毛片一级片免费看久久久久| 一级黄片播放器| 少妇精品久久久久久久| 国产精品.久久久| av在线观看视频网站免费| 国产精品人妻久久久影院| 精品少妇内射三级| 一区二区三区激情视频| 午夜福利乱码中文字幕| 精品国产一区二区三区久久久樱花| 最黄视频免费看| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 日韩欧美一区视频在线观看| 男女下面插进去视频免费观看| 精品国产一区二区久久| 久久久久久久精品精品| 日本91视频免费播放| 亚洲av欧美aⅴ国产| 中文字幕最新亚洲高清| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品| 99久久99久久久精品蜜桃| 在线观看一区二区三区激情| 国产 一区精品| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 十八禁人妻一区二区| 国产99久久九九免费精品| 亚洲精品一区蜜桃| 这个男人来自地球电影免费观看 | 精品人妻在线不人妻| 国产精品偷伦视频观看了| 亚洲成人手机| 秋霞伦理黄片| 99久久精品国产亚洲精品| 国产精品一区二区精品视频观看| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 亚洲国产成人一精品久久久| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 美女主播在线视频| 最近的中文字幕免费完整| 岛国毛片在线播放| 欧美精品av麻豆av| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久 | 男女无遮挡免费网站观看| 免费高清在线观看视频在线观看| 中文字幕高清在线视频| 熟女av电影| 日韩一卡2卡3卡4卡2021年| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 最新在线观看一区二区三区 | 国产欧美日韩一区二区三区在线| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 亚洲美女黄色视频免费看| 午夜91福利影院| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 国产成人系列免费观看| 国产色婷婷99| 久久97久久精品| 一二三四在线观看免费中文在| 人妻 亚洲 视频| 国产精品 国内视频| av天堂久久9| 久久久久国产精品人妻一区二区| 一级爰片在线观看| 亚洲中文av在线| 日本av免费视频播放| 男女边吃奶边做爰视频| 啦啦啦在线免费观看视频4| a级毛片黄视频| 国产精品免费视频内射| 人人妻,人人澡人人爽秒播 | 国产成人av激情在线播放| 久久久久国产精品人妻一区二区| h视频一区二区三区| 免费观看av网站的网址| 久久久精品国产亚洲av高清涩受| 校园人妻丝袜中文字幕| 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| 久久久久视频综合| 看免费av毛片| 女的被弄到高潮叫床怎么办| 亚洲一区二区三区欧美精品| 亚洲综合精品二区| 亚洲,欧美,日韩| 桃花免费在线播放| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 伦理电影免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本av免费视频播放| 国产在视频线精品| 深夜精品福利| 国产亚洲欧美精品永久| 成年av动漫网址| 一级片免费观看大全| 亚洲 欧美一区二区三区| 丝袜喷水一区| 日本午夜av视频| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| 日本一区二区免费在线视频| 欧美日韩av久久| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站| 综合色丁香网| 久久婷婷青草| 一级毛片 在线播放| 一级a爱视频在线免费观看| 国产在线免费精品| 丰满迷人的少妇在线观看| 巨乳人妻的诱惑在线观看| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| kizo精华| svipshipincom国产片| videos熟女内射| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 国产福利在线免费观看视频| 人妻人人澡人人爽人人| videosex国产| 丁香六月欧美| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 多毛熟女@视频| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 水蜜桃什么品种好| 男女下面插进去视频免费观看| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 久久热在线av| 久久久欧美国产精品| 狂野欧美激情性xxxx| 自线自在国产av| 中文欧美无线码| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 欧美乱码精品一区二区三区| 免费高清在线观看日韩| 大片免费播放器 马上看| 人妻一区二区av| 欧美另类一区| 两个人免费观看高清视频| 可以免费在线观看a视频的电影网站 | 一级片免费观看大全| 亚洲精品国产av成人精品| 日韩熟女老妇一区二区性免费视频| 日日撸夜夜添| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91 | 美女视频免费永久观看网站| 香蕉国产在线看| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看| 久久国产亚洲av麻豆专区| 中文字幕人妻丝袜一区二区 | 女人久久www免费人成看片| 成人漫画全彩无遮挡| 青春草视频在线免费观看| 色婷婷av一区二区三区视频| 人妻一区二区av| 天天影视国产精品| 十分钟在线观看高清视频www| 在线亚洲精品国产二区图片欧美| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频| 街头女战士在线观看网站| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频 | 99久久人妻综合| 亚洲天堂av无毛| 日韩中文字幕欧美一区二区 | 制服人妻中文乱码| 午夜免费观看性视频| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 欧美日韩福利视频一区二区| 如何舔出高潮| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线 | 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 欧美 日韩 精品 国产| 亚洲精品久久久久久婷婷小说| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| av女优亚洲男人天堂| 亚洲国产精品一区二区三区在线| 中文乱码字字幕精品一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 好男人视频免费观看在线| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 成年人免费黄色播放视频| 青青草视频在线视频观看| a级片在线免费高清观看视频| 国产激情久久老熟女| 搡老岳熟女国产| 国产成人欧美在线观看 | 亚洲欧美精品自产自拍| 老司机影院成人| 亚洲七黄色美女视频| av电影中文网址| 国产熟女欧美一区二区| 不卡av一区二区三区| av.在线天堂| 好男人视频免费观看在线| 成人亚洲精品一区在线观看| 欧美乱码精品一区二区三区| 天堂中文最新版在线下载| 高清欧美精品videossex| 国产精品av久久久久免费| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 高清欧美精品videossex| 欧美日韩一区二区视频在线观看视频在线| 亚洲四区av| 久久精品国产亚洲av高清一级| 热99国产精品久久久久久7| 一级毛片黄色毛片免费观看视频| 中文字幕精品免费在线观看视频| 男女下面插进去视频免费观看| 亚洲精品日本国产第一区| 国产成人精品久久二区二区91 | 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看 | 午夜福利在线免费观看网站| 丰满少妇做爰视频| 制服丝袜香蕉在线| 国产精品99久久99久久久不卡 | 久久久久久人人人人人| 一区二区av电影网| 亚洲成人免费av在线播放| 又大又黄又爽视频免费| 亚洲精品日本国产第一区| av卡一久久| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 在线观看免费视频网站a站| 观看av在线不卡| 最近的中文字幕免费完整| 久久精品人人爽人人爽视色| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 成人毛片60女人毛片免费| 91精品国产国语对白视频| 考比视频在线观看| 婷婷色综合大香蕉| 九色亚洲精品在线播放| 国产熟女欧美一区二区| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 亚洲欧美激情在线| 欧美激情高清一区二区三区 | 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 国产精品国产av在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看| 色视频在线一区二区三区| 一本一本久久a久久精品综合妖精| 激情五月婷婷亚洲| 精品视频人人做人人爽| 一区在线观看完整版| 在现免费观看毛片| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 少妇 在线观看| 亚洲欧美精品自产自拍| 精品卡一卡二卡四卡免费| 高清视频免费观看一区二区| 成人国产av品久久久| 晚上一个人看的免费电影| 麻豆av在线久日| 老司机影院成人| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 十八禁网站网址无遮挡| 制服人妻中文乱码| 久久久精品免费免费高清| 亚洲综合色网址| 波多野结衣av一区二区av| 亚洲伊人久久精品综合| 久久久久久人妻| 中文字幕人妻熟女乱码| 性色av一级| 日韩人妻精品一区2区三区| 女人爽到高潮嗷嗷叫在线视频| 捣出白浆h1v1| 天堂8中文在线网| 久久国产精品男人的天堂亚洲| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 最新的欧美精品一区二区| 日本欧美国产在线视频| 免费高清在线观看日韩| 久久 成人 亚洲| 尾随美女入室| 国产精品 欧美亚洲| 在线观看一区二区三区激情| 性少妇av在线| 日日啪夜夜爽| 日本午夜av视频| 久久人人爽人人片av| 天天操日日干夜夜撸| av国产久精品久网站免费入址| 久久久久精品人妻al黑| 精品第一国产精品| 久久毛片免费看一区二区三区| 国产精品三级大全| 美女午夜性视频免费| 成年女人毛片免费观看观看9 | 国产一区二区 视频在线| 宅男免费午夜| 丰满迷人的少妇在线观看| 久久av网站| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜一区二区 | 人妻一区二区av| 黄片播放在线免费| 91精品三级在线观看| 亚洲精品av麻豆狂野| 亚洲中文av在线| 色播在线永久视频| 国产av精品麻豆| 午夜日韩欧美国产| 大陆偷拍与自拍| 午夜91福利影院| 老司机影院毛片| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 两个人看的免费小视频| 亚洲人成网站在线观看播放| 免费久久久久久久精品成人欧美视频| 人人妻,人人澡人人爽秒播 | 精品国产乱码久久久久久男人| netflix在线观看网站| 亚洲av电影在线进入| 午夜免费鲁丝| 91精品三级在线观看| 综合色丁香网| 91精品三级在线观看| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 成人漫画全彩无遮挡| 欧美老熟妇乱子伦牲交| 中国国产av一级| 国产又色又爽无遮挡免| www.熟女人妻精品国产| 男人添女人高潮全过程视频| 亚洲成国产人片在线观看| videos熟女内射| 国产97色在线日韩免费| 97在线人人人人妻| 国产一区二区在线观看av| 国产欧美日韩一区二区三区在线| 亚洲精品,欧美精品| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 91aial.com中文字幕在线观看| 悠悠久久av| 少妇人妻 视频| 国产野战对白在线观看| 狂野欧美激情性xxxx| 美女中出高潮动态图| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 国产一区二区 视频在线| 老汉色av国产亚洲站长工具| 国产成人免费无遮挡视频| 久久国产精品大桥未久av| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 大香蕉久久成人网| 老司机靠b影院| 日本一区二区免费在线视频| 男女午夜视频在线观看| 亚洲综合色网址| 午夜免费男女啪啪视频观看| 国产精品女同一区二区软件| 欧美日本中文国产一区发布| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 在线 av 中文字幕| 日韩人妻精品一区2区三区| 亚洲三区欧美一区| 99精品久久久久人妻精品| av线在线观看网站| 成年女人毛片免费观看观看9 | 啦啦啦中文免费视频观看日本| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 日本欧美国产在线视频| 中文天堂在线官网| 国产精品一区二区精品视频观看| 色精品久久人妻99蜜桃| 亚洲欧美日韩另类电影网站| 久久性视频一级片| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 亚洲成人一二三区av| 哪个播放器可以免费观看大片| 蜜桃国产av成人99| 一区在线观看完整版| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 午夜福利视频在线观看免费| 精品午夜福利在线看| 少妇被粗大的猛进出69影院| 天堂8中文在线网| 90打野战视频偷拍视频| 2021少妇久久久久久久久久久| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 999精品在线视频| 69精品国产乱码久久久| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 尾随美女入室| 亚洲 欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 丰满饥渴人妻一区二区三| 国产国语露脸激情在线看| 男女午夜视频在线观看| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 丝袜美腿诱惑在线| 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 九九爱精品视频在线观看| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| av在线播放精品| 香蕉丝袜av| 久热爱精品视频在线9| av免费观看日本| 极品少妇高潮喷水抽搐| 国产成人啪精品午夜网站| 久久鲁丝午夜福利片| 亚洲国产最新在线播放| 色精品久久人妻99蜜桃| 欧美亚洲日本最大视频资源| 亚洲国产av新网站| 国产日韩欧美在线精品|