• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature extension and matching for mobile robot globallocalization

    2015-02-10 12:26:00PengWangQibinZhangandZonghaiChen

    Peng Wang,Qibin Zhang,and ZonghaiChen

    Departmentof Automation,University of Science and Technology of China,Hefei230027,China

    Feature extension and matching for mobile robot globallocalization

    Peng Wang,Qibin Zhang,and ZonghaiChen*

    Departmentof Automation,University of Science and Technology of China,Hefei230027,China

    This paper introduces an indoor global localization method by extending and matching features.In the proposed method,the environment is partitioned into convex subdivisions. Localextended maps of the subdivisions are then built by extending features to constitute the local extended map set.While the robotis moving in the environment,the localextended map of the currentlocalenvironmentis established and then matched with the localextended map set.Therefore,globallocalization in an indoor environment can be achieved by integrating the position and orientation matching rates.Both theoreticalanalysis and comparison experimentalresult are provided to verify the effectiveness of the proposed method for globallocalization.

    feature extension,global localization,feature matching,mobile robot.

    1.Introduction

    As one ofthe prerequisites formobile robots to achieve autonomous navigation,localization tries to estimate position of a robotin an environment,with the assumption thatthe robotis provided with a map of the environment[1,2].Localization mainly focuses on two issues:localpose tracking and global localization.Local pose tracking aims at precise localization.Optimal states of the robot and features are estimated using filtering techniques to eliminate system and measurement noises[3–5].Global localization,on the other hand,usually exploits the topological modeland locates the robotin a certain localenvironment corresponding to a topological node by feature matching techniques[6].

    Global localization methods can be classified into two categories:probabilistic filter-based approach and scan matching-based approach.The probabilistic filter-based approaches estimate a robot’s position by recursively update conditionaldistributions of the robotstates.Typical examples like multi-hypothesis Kalman filters[7]and gridbased filters[8]are both widely used.The scan matchingbased approaches,on the otherhand,have also attracted attention as they are more intuitive,reliable and accurate[6]. Generally,there are two classes of scan matching-based approaches:global scan matching method and sequential scan matching method[6].The global scan matching method matches geometric features,which should be detected first.Zhang et al.[9]represent an environment using closed line segment,and the globallocalization is performed by finding relevantline segments in the map.Other methods based on global scan matching can be found in [10–12].The sequentialscan matching method,however, matches successive scans with an alignment assumption between them.The most popular sequential scan matching method is the iterative closestpoint(ICP)method[13]. Its application in globallocalization can be found in[6].

    However,in the above mentioned globalscan matching methods,only line or corner estimates are used.In case there are estimation errors,such methods may failto locate the robot.Sequential scan matching method is comparatively robust because it uses sensor scans directly.However,when a bad alignment happens,the sequential scan matching may result in a local minimum.To reduce such risks,we propose a novel localization method in this paper.For an indoorenvironment,we firstdivide it into convex subdivisions according to[14,15].Then,we compute error ellipses of features from measurements[16]to construct maximum error circles.Therefore,local extended map(LEM)set can be built up by extend local environments using maximum error circles and their connections offline.While the robot is moving in the environment, we use the ring projection transformation(RPT)method and the two dimensional scan matching(2DSM)method to carry out position matching,and the eigenvalue ratio (EVR)method to complete orientation matching.By integrating the position and orientation matching rates,wedetermine where the robotis located.

    The remainderofthis paperis organized as follows.Section 2 describes how features are extended to build LEMs and LEM set.Section 3 introduces the RPT,2DSM,and orientation matching algorithms,the probability integration process is also given.Section 4 provides the experimental results and analysis,and Section 5 concludes this paper.

    2.Feature extension and LEM set

    According to[15],an indoor environment can be partitioned into a set of convex subdivisions E1,E2,...,Embased on corner features,as shown in Fig.1.In this paper,we extend geometric features like corners and lines by using the error ellipse.

    Fig.1 Partition results of an indoor environment

    Suppose that[xy]are measurements of a corner O,in which x=(x1,...,xn)Tand y=(y1,...,yn)T.Then, we compute covariance matrix M of x and y using(1).

    Suppose that a and b(a≥b)are eigenvalues of M,v1and v2are the corresponding eigenvectors.Then error ellipse of the n measurements is given in(2)with geometric

    where the majoraxis and the minoraxis ofthe errorellipse are along v1and v2,respectively.

    Based on what is mentioned above,we have the following definitions.

    Definition 1The maximum errorcircle is a circle centered atand with a radius a/2.

    Definition 2The LEMof a subdivision is builtby representing the subdivision using maximum error circles and their connections.

    In this paper,two classes of LEMs are built:the current LEM(CLEM)and the targetLEM(TLEM).The CLEMis built from current observations,and the TLEM is defined as an LEMin the LEMsetthatindicates possibly the same subdivision in the environment.

    Definition 3The background template(BT)is a square which contains D×D small square grids,where D is a naturalnumber.

    For convenience,the BT is set with the same scale of the CLEM(or TLEM),and D is set to be an even number. Area of the grids is determined by applications.

    Fig.2 shows the LEM and BT of E17in Fig.1.In this paper,we first build LEMs of all subdivisions in Fig.1 and constitute an LEM set offline.Then,while the robot is moving in the environment,CLEM of the current local environmentis builtand matched with the LEM setto determine where the robotis located.

    Fig.2 LEMof E17and the corresponding BT

    3.LEMmatching

    3.1 RPT matching

    We denote centerpoints of the CLEM,the TLEM,and the BT as Pc(xc,yc),Pt(xt,yt),and Pb(xb,yb),respectively. Pi(x?i,yi)is the coincidentpoint.Then the coordinate systemshown in Fig.3(a)is established with the origin point Pi.A ring Rrcentered at Piis constructed by two circles,with radiuses r and r+s.Fig.3(b)shows the RPT matching result of E17.The RPT matching algorithm is shown as follows:

    Algorithm 1RPT algorithm

    Input:CLEM,LEMset

    Output:match rate

    Compute Pt,Pi,Pband Pc,build

    Construct Rr,compute v(r)=Ur/Nr;

    Construct vcand vt;

    Compute the match rate prpt.

    In Algorithm 1,Nris the numberof BT elements(small square grids)occupied by Rr.The elements of Rroccupied by the LEM is Ur.v(r)=Ur/Nris the duty ratio(DR)of the LEM at the radius r.DR vectors vc= (vc(0),...,vc(D/2))Tand vt=(vt(0),...,vt(D/2))Tof the CLEMand TLEMare computed with radius stretchingfrom zero to D/2.The normalized correlation coefficient (NCC)of vcand vtcan be calculated by(3)

    indicates the match rate of the CLEMand the TLEM.

    Fig.3 RPT matching method

    3.2 2DSM

    The reliability of the RPT matching is sometimes reduced due to information oversimplification[17,18].Thus,we propose the 2DSMmethod to improve the position matching rate.

    Normally,if the CLEM and the TLEM represent the same local environment,by rotating the TLEM with an angle,we will find out that the TLEM will overlap with the CLEM.Fig.4(a)shows an example of the 2DSM and Fig.4(b)is the matching result.Suppose that grids occupied by the LEM in the j th row and column of the BT are Nrjand Ncj.We then define the row DR and column DR as wrj=Nrj/D and wcj=Ncj/D,respectively.

    Fig.4 2DSMmethod

    are row and column DR vectors ofare NCC vectors.We then propose Algorithm 2 to compute the 2DSMrate ofthe TLEMand the CLEMas follows:

    Algorithm 22DSMalgorithm

    Input:CLEM,TLEM

    Output:ρr,ρc

    for i=1:K

    end for

    Normally,after rotate the TLEM with an angle,it will overlap the CLEM,i.e.,the maximum elements ofρrand ρcare of the same serial number.However,due to system perturbations and measurementerrors,angles corresponding to the maximum row and column NCC elements are different.We solve the problem as follows.corresponding to the maximum elements of the row and column NCC vectors separately.

    (ii)GivenΔθrandΔθc,we first calculateThen,we compute the average row and column NCCs correspondingLikewise,the average row and column NCCs corre-are computed and

    We compute row and column matching rates of the CLEM and TLEM separately through/2.Then the finalmatching rate of the 2DSMis computed by p2d=(px+py)/2.

    3.3 Orientation matching

    Four typical local environments in indoor environments and the corresponding segmentations are shown in Fig.5. According to[19],we can obtain orientation information of the robot locating in such environments by using the EVR method.Therefore,we use the orientation matching as a supplementto improve the position matching rate.

    Fig.5 Typicallocalenvironments and segmentations

    Suppose that Scis a setof measurements of the current

    localenvirontment,andΣHis the coordinate system.are segmentations of Sc,whereandindicate data above and below x axis,cate data atthe leftand rightof y axis.

    We define a slide window with size N and slide directioncan be computed.We first select N elements along→νwith xc=(x1,x2,...,xN)Tand yc=(y1,y2,...,yN)T.Then,we compute the covariance matrix Mcof xcand ycusing(1).Suppose thatλmaxandλminare eigenvalues of Mc,we then define EVR of the currentwindow asλmin/λmax.By sliding the window along→νstep by step,we construct EVR vectorby calculating all EVRs.Similarly,we construct EVR vec-

    tors in other three directions and denote them as

    Select arbitrarily a vector of the current environmentwith constantstep.Samples along x axis form a vector and we denote it asLikewise,we sample vectors of the target local environment along the same axis,and denote the sample vectorsThen,we compute similarities(i=1,2,3,4)using(4).

    where the firstpartindicates the orientation matching rate,are sample numbers,αis the adjusting factor.

    Through(4),we get the original similarity vector?=(?1,?2,?3,?4).Then?maxis constructed by computing the maximum elements of the four originalsimilarity vectors separately.Suppose the numberofelements greaterthan the set threshold?thin?maxis Nmax,then the final orientation matching rate is pdir=Nmax/4.

    3.4 Globallocalization

    Fig.6 shows the global localization algorithm flow chart. Details are given below.

    Fig.6 Localization algorithm flow chart

    3.4.1 Currentmatching probability

    (i)Build the CLEM ELbased on observations of the currentlocalenvironment;

    (ii)Match ELwith E={E1,E2,E3,...,Em}. By fusing the RPT and 2DSM matching rates,we get Pmat=(pmat(E1),...,pmat(Em))with pmat(Ej)= prpt(Ej)·p2d(Ej).Then we normalize Pmatand denote the result as P=(p(E1),...,p(Em))withThe maximum normalized probability in P is denoted as pmax(Ej)whichmeans that Ejhas the highest probability pmax(Ej)= p(zt|Ej,u1∶t)thatthe robot is located in it(1?j?m), z is measurementand u is action.

    3.4.2 State transition probability

    Suppose probabilities that the robot is located in E are Pt?1=(p(E1|u1∶t,z1∶t?1),...,p(Em|u1∶t?1,z1∶t?1)at time t?1.The robotmoves from Ehto Ejwith probability p(Ej|Eh,u1∶t,z1∶t?1)after the action ut|t?1,1?h?m. Then,at time t,the probability that the robotis located in Ejcan be calculated by(5).

    We denote the expectation of the odometer after the action ut∶t?1as?d with varianceσ2.The distances from Eh(h=1,2,...,m)to Ejare denoted as Do=are the absolute differences between di(i=1,...,m)andmax(Du),dmin=min(Du).Then,the state transition probability p(Ej|Eh,u1∶t,z1∶t?1)can be calculated as follows.

    (i)Divide[dmin,dmax]into 2k+1 subintervals I=1)σ,...,dmid+(2k?1)σ,dmax}as boundary points.

    (ii)Count numbers of the elements in Duthat be-which are denoted as N=then the probability thatthe robotmoves from Ehto Ejafter the action ut|t?1is computed by(6).

    3.4.3 Probability integration

    (i)By integrating the current matching probability and the state transition probability,we compute the probability thatthe robotis located in Ejby(7),

    whereκis the normalization factor.

    (ii)We then integrate p(Ej|u1∶t,z1∶t)and pdirusing(8).

    4.Experiment results and analysis

    The experiments are conducted in an environmentshown in Fig.1.The Pioneer 3-DX robot,which is equipped with an odometer,a gyroscope and 16 ultrasonic sensors with maximum measurement range of 5 m,is employed to carry out the experiments.The sampling rate is 24 Hz. For comparison,the ICP matching method is also applied for globallocalization.We willfirstdescribe results of the proposed method.Then,comparisons with the ICP method are given.

    Fig.7 shows real sonar data of E17and the maximum errorcircle of one corner.Fig.8 shows the position matching rates and the final localization results.Fig.8(a)and Fig.8(b)show the row and column matching rates of the 2DSM.It can be seen that the row and column matching rates of E10are greater compared to the rates of other subdivisions.Fig.8(c)shows the RPT matching rates.We can find outthatthe matching rate of E10is the greatest.Both the RPT matching and 2DSMrates are consistentwith the fact that the robot is located in E10.Fig.8(d)is the integrated probability.We can easily conclude from the results thatthe robotis located in E10.Fig.8(e)shows the results by integrating the orientation matching rates with position matching rates.It can be seen that matching rates of E9and E13are dramatically decreased due to the similar spatial structure.To improve the localization accuracy,more information should be accumulated.Fig.8(f)shows the final localization results by integrating position matching rates and the orientation matching rates.The ICP method is also used in the same environment.Besides the alignment,the performance of the ICP method is also affected by the amount of measurements.As shown in Fig.9,the failure of the ICP method caused by scan insufficiency directly leads to wrong matching results between the current and targetlocalenvironments.Thus,a new corridoris built and global localization thereafter fails.The final localization results of the two methods are shown in Fig.10.We can conclude that when there are not sufficient measurements,the proposed method is more rubust and reliable than the ICP method.

    Fig.7 Error circle built from real data

    Fig.8 Localization results

    Fig.9 Wrong match ofthe ICP method

    Fig.10 Comparison ofthe two methods

    5.Conclusions

    In this paper,a globallocalizaiton method is proposed.In the proposed method,we partition an indoor environment into convex subdivisions.Then,the CLEMand the TLEM are matched by using the RPT and 2DSMmethods.To furtherimprove the matching rate,we propose the orientation matching method.

    While the robotis moving in the environment,the position and orientation matching rates are integrated to compute the current matching probability.The state transition probability is also obatained from the motion model.Then, the current matching probability and the state transition probability are integated.Experimentresults show thatthe proposed method provides relatively robustand reliable localization results in indoorenvironments.

    [1]G.Lakemeyer,B.Nebel.Exploring artificial intelligence in the new millennium.San Francisco:Elsevier Science,2003.

    [2]S.Thrun,D.Fox,W.Burgard,etal.Robust Monte Carlo localization formobile robots.ArtificialIntelligence,2001,128(1): 99–141.

    [3]M.Choi,J.Choi,W.K.Chung.Correlation-based scan matching using ultrasonic sensors for EKF localization.Advanced Robotics,2012,26(13):1495–1519.

    [4]L.Teslic,I.Skrjanc,G.Klancar.EKF-based localization of a wheeled mobile robot in structured environments.Journal of Intelligent&Robotic Systems,2011,62(2):187–203.

    [5]R.Havangi,M.Teshnehlab,M.A.Nekoui,etal.A novelparticle filter based SLAM.International Journal of Humanoid Robotics,2013,10(3):1–23.

    [6]S.Park,S.K.Park.Globallocalization for mobile robots using reference scan matching.International JournalofControl, Automation and Systems,2014,12(1):156–168.

    [7]K.O.Arras,J.A.Castellanos,R.Siegwart.Feature-based multi-hypothesis localization and tracking for mobile robots using geometric constraints.Proc.of the 19th IEEE International Conference on Robotics and Automation,2002:1371–1377.

    [8]J.Reuter.Mobile robotself-localization using PDAB.Proc.of the 17th IEEE International Conference on Robotics and Automation,2000:3512–3518.

    [9]L.Zhang,B.K.Ghosh.Line segmentbased map building and localization using 2D laser rangefinder.Proc.ofthe 17th IEEE International Conference on Robotics and Automation,2000: 2538–2543.

    [10]J.Weber,L.Franken,K.W.Jorg,etal.Reference scan matching forglobalself-localization.Robotics and Autonomous Systems,2002,40(2):99–110.

    [11]M.Tomono.A scan matching method using euclidean invariant signature for global localization and map building.Proc. of the 19th IEEE International Conference on Robotics and Automation,2004:866–871.

    [12]G.Grisetti,L.Iocchi,D.Nardi.Globalhough localization for mobile robots in polygonal environments.Proc.of the 19th IEEE International Conference on Robotics and Automation, 2002:353–358.

    [13]Z.Y.Zhang.Iterative point matching for registration of freeform curves and surfaces.International Journal of Computer Vision,1994,13(2):119–152.

    [14]S.Han,S.J.Li,Z.H.Chen.New representation method for uncertain knowledge-grey probability measure set.Systems Engineering and Electronics,2013,35(5):1018–1022.(in Chinese).

    [15]S.J.Li,P.Wang,Z.H.Chen.An environment modelfor mobile robot:grey qualitative map.Jiqiren/Robot,2012,34(4): 476–484.(in Chinese).

    [16]R.S.M.S.P.Cheeseman,R.Smith,M.Self.A stochastic map for uncertain spatialrelationships.Proc.of the 4th International Symposium on Robotics Research,1987.

    [17]J.Choi,M.Choi,S.Y.Nam,et al.Autonomous topologicalmodeling of a home environment and topological localization using a sonar grid map.Autonomous Robots,2011,30(4): 351–368.

    [18]Y.H.Choi,T.K.Lee,S.Y.Oh.A line feature based SLAM with low grade range sensors using geometric constraints and active exploration formobile robot.Autonomous Robots,2008, 24(1):13–27.

    [19]K.Lee,N.Cho,W.K.Chung,et al.Topological navigation of mobile robotin corridorenvironmentusing sonarsensor.Proc. of the 19th IEEE/RSJ International Conference on Intelligent Robots and Systems,2006:2760–2765.

    Biographies

    Peng Wangwas born in 1988.He is now a Ph.D. student atthe Laboratory of Simulation and Intelligent Control in the Department of Automation, University of Science and Technology(USTC). Hisresearch interests include system modeling and simulation,mobile robot localization and knowledge representation.

    E-mail:pwang@mail.ustc.edu.cn

    Qibin Zhangwas born in 1991.He is now an M.S. student at the Laboratory of Simulation and Intelligent Control in the Department of Automation, University of Science and Technology(USTC).His research interests include mobile robot localization and landmark extraction,knowledge representation and intervalanalysis.

    E-mail:zqb101@mail.ustc.edu.cn

    Zonghai Chenwas born in 1963.He is currently a professor atthe Laboratory of Simulation and Intelligent Control in the Department of Automation, University of Science and Technology(USTC).His research interests include simulation and optimization controlof complex system,theory and technology of intelligent system,and quantum control theory.

    E-mail:chenzh@ustc.edu.cn

    10.1109/JSEE.2015.00091

    Manuscript received March 31,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61375079).

    日本黄大片高清| 亚洲精品日韩av片在线观看| 有码 亚洲区| 好男人视频免费观看在线| 亚洲欧美精品综合久久99| 日韩欧美在线乱码| 99国产极品粉嫩在线观看| 哪里可以看免费的av片| 久久国内精品自在自线图片| 欧美3d第一页| 99久久人妻综合| 久久这里有精品视频免费| 亚洲欧美成人精品一区二区| av在线蜜桃| 日日撸夜夜添| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 久久99蜜桃精品久久| 丰满乱子伦码专区| 国产中年淑女户外野战色| 青春草视频在线免费观看| 你懂的网址亚洲精品在线观看 | а√天堂www在线а√下载| 中文字幕精品亚洲无线码一区| 99精品在免费线老司机午夜| 成年版毛片免费区| 欧美日韩综合久久久久久| 精品不卡国产一区二区三区| 一个人看的www免费观看视频| 黄色配什么色好看| 亚洲中文字幕日韩| 久久精品人妻少妇| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美三级三区| 麻豆国产97在线/欧美| 亚洲av熟女| 午夜福利视频1000在线观看| 青春草国产在线视频 | 夫妻性生交免费视频一级片| 日本免费一区二区三区高清不卡| 亚洲精品成人久久久久久| a级毛片免费高清观看在线播放| 久久久国产成人免费| 国产日韩欧美在线精品| 色哟哟哟哟哟哟| 深夜精品福利| 国产精品美女特级片免费视频播放器| 亚洲精华国产精华液的使用体验 | 午夜福利成人在线免费观看| 在线观看66精品国产| 婷婷六月久久综合丁香| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 精品人妻视频免费看| 日本免费a在线| 色视频www国产| 久久亚洲国产成人精品v| 国产极品天堂在线| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 日本欧美国产在线视频| 波多野结衣巨乳人妻| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| a级毛片免费高清观看在线播放| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 国内精品一区二区在线观看| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 日韩在线高清观看一区二区三区| 国产av在哪里看| av在线天堂中文字幕| 精品人妻熟女av久视频| 久久久久久久久中文| 2022亚洲国产成人精品| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 午夜福利在线在线| 欧美日韩乱码在线| 中文在线观看免费www的网站| 亚洲成人av在线免费| 久久精品国产清高在天天线| 国产美女午夜福利| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 老女人水多毛片| 寂寞人妻少妇视频99o| 国产精品一区二区三区四区久久| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆| 波多野结衣高清无吗| 乱人视频在线观看| 国产乱人偷精品视频| 国产熟女欧美一区二区| 日韩强制内射视频| 欧美成人精品欧美一级黄| 亚洲色图av天堂| 丰满的人妻完整版| 三级毛片av免费| 中国美白少妇内射xxxbb| 日本色播在线视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久丰满| 日本-黄色视频高清免费观看| 又粗又硬又长又爽又黄的视频 | 国产亚洲精品久久久久久毛片| 亚洲自偷自拍三级| 啦啦啦啦在线视频资源| 中文亚洲av片在线观看爽| av又黄又爽大尺度在线免费看 | 亚洲欧美精品综合久久99| 黄色日韩在线| 国产精品日韩av在线免费观看| 麻豆乱淫一区二区| 国产亚洲精品久久久久久毛片| 九色成人免费人妻av| 最近的中文字幕免费完整| 伦精品一区二区三区| 热99在线观看视频| 欧美xxxx性猛交bbbb| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 精品一区二区三区视频在线| 成人高潮视频无遮挡免费网站| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 国产av麻豆久久久久久久| 亚洲精品自拍成人| 嫩草影院新地址| 亚洲第一电影网av| 一进一出抽搐gif免费好疼| 欧美性感艳星| 国产大屁股一区二区在线视频| 亚洲成人久久性| 国产一区二区三区在线臀色熟女| 99久久人妻综合| 12—13女人毛片做爰片一| 美女xxoo啪啪120秒动态图| 午夜精品国产一区二区电影 | 欧美在线一区亚洲| 亚洲三级黄色毛片| av国产免费在线观看| 一区二区三区免费毛片| 91精品一卡2卡3卡4卡| 亚洲精品成人久久久久久| 国产成人影院久久av| 麻豆一二三区av精品| 精品人妻视频免费看| 国产精品久久视频播放| 久久这里有精品视频免费| 国产真实伦视频高清在线观看| 好男人视频免费观看在线| 成人一区二区视频在线观看| 久久精品国产自在天天线| 高清毛片免费观看视频网站| 亚洲无线观看免费| 免费av毛片视频| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 又粗又硬又长又爽又黄的视频 | 日韩av不卡免费在线播放| 在线观看美女被高潮喷水网站| 国产在视频线在精品| 国内少妇人妻偷人精品xxx网站| 亚洲av第一区精品v没综合| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 麻豆一二三区av精品| 久久精品久久久久久噜噜老黄 | 国产精品电影一区二区三区| 在线观看一区二区三区| 欧美xxxx性猛交bbbb| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 久久草成人影院| 国产精品久久久久久久电影| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 人人妻人人澡欧美一区二区| 国产老妇伦熟女老妇高清| 欧美日韩国产亚洲二区| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 亚洲精品国产av成人精品| 精品久久久久久久人妻蜜臀av| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 岛国毛片在线播放| 亚洲欧洲日产国产| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 久久午夜福利片| 日韩欧美在线乱码| 长腿黑丝高跟| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站 | 国产av麻豆久久久久久久| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 免费观看在线日韩| 九九热线精品视视频播放| 国产91av在线免费观看| 只有这里有精品99| 久久久国产成人免费| 国产精品国产高清国产av| 麻豆国产97在线/欧美| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 毛片一级片免费看久久久久| 成人永久免费在线观看视频| 色哟哟·www| 内地一区二区视频在线| 91aial.com中文字幕在线观看| 亚洲av免费高清在线观看| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 男女那种视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 给我免费播放毛片高清在线观看| 网址你懂的国产日韩在线| 国产视频首页在线观看| 啦啦啦韩国在线观看视频| 少妇被粗大猛烈的视频| 亚洲一区高清亚洲精品| 亚洲精品乱码久久久久久按摩| 一区二区三区免费毛片| 婷婷亚洲欧美| 久久综合国产亚洲精品| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 人妻系列 视频| 精品熟女少妇av免费看| 亚洲精品影视一区二区三区av| 在线播放无遮挡| 91麻豆精品激情在线观看国产| 国产69精品久久久久777片| 亚洲电影在线观看av| av视频在线观看入口| 欧美变态另类bdsm刘玥| 变态另类丝袜制服| 久久久精品大字幕| 久久中文看片网| 久久草成人影院| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 亚洲人成网站在线播放欧美日韩| 六月丁香七月| 欧美不卡视频在线免费观看| 激情 狠狠 欧美| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲成a人片在线一区二区| 天堂中文最新版在线下载 | 成人永久免费在线观看视频| 精品久久久久久久久av| 日韩欧美国产在线观看| 热99在线观看视频| 国产91av在线免费观看| 亚洲欧美日韩无卡精品| 国产视频内射| 午夜福利在线在线| 人妻少妇偷人精品九色| 国内精品美女久久久久久| 六月丁香七月| 国产精品乱码一区二三区的特点| 一级二级三级毛片免费看| 亚洲欧美日韩高清在线视频| 亚洲av.av天堂| 晚上一个人看的免费电影| 亚洲精品自拍成人| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 最近手机中文字幕大全| 国语自产精品视频在线第100页| 免费大片18禁| kizo精华| 我要看日韩黄色一级片| 亚洲成av人片在线播放无| 变态另类丝袜制服| 国产色婷婷99| 国产一区亚洲一区在线观看| 精品久久久久久久久久久久久| 日韩欧美精品v在线| 简卡轻食公司| 日韩欧美 国产精品| 一本久久精品| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 在线a可以看的网站| 狠狠狠狠99中文字幕| 少妇的逼水好多| 欧美精品国产亚洲| 久久久精品大字幕| 亚洲熟妇中文字幕五十中出| 精品久久久噜噜| 我的女老师完整版在线观看| 直男gayav资源| www日本黄色视频网| 99热全是精品| 最好的美女福利视频网| 久久精品国产亚洲网站| 国产爱豆传媒在线观看| 在线免费十八禁| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看| 欧美在线一区亚洲| 一个人看的www免费观看视频| 狠狠狠狠99中文字幕| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 国产精品女同一区二区软件| 国产免费男女视频| 两个人视频免费观看高清| 伦精品一区二区三区| 最近视频中文字幕2019在线8| 免费一级毛片在线播放高清视频| 亚洲欧洲日产国产| 18+在线观看网站| 国产一区亚洲一区在线观看| 啦啦啦观看免费观看视频高清| 国产精品免费一区二区三区在线| 99热这里只有是精品50| 久久人人爽人人爽人人片va| 国产av麻豆久久久久久久| 久久精品影院6| 亚洲在线自拍视频| av又黄又爽大尺度在线免费看 | av在线亚洲专区| 舔av片在线| 黄色欧美视频在线观看| 久久热精品热| 少妇熟女欧美另类| 久久99精品国语久久久| 久久精品国产99精品国产亚洲性色| 中文字幕av成人在线电影| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 久久国内精品自在自线图片| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 免费观看在线日韩| 日本欧美国产在线视频| ponron亚洲| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 毛片女人毛片| 成人毛片a级毛片在线播放| 1024手机看黄色片| 边亲边吃奶的免费视频| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 国产亚洲欧美98| 国产精品福利在线免费观看| 国产一级毛片在线| 国产高清激情床上av| 亚洲国产精品久久男人天堂| 色综合亚洲欧美另类图片| 国产乱人偷精品视频| 久久久久久久久大av| 一本精品99久久精品77| av又黄又爽大尺度在线免费看 | 日韩成人伦理影院| 午夜亚洲福利在线播放| 白带黄色成豆腐渣| 午夜老司机福利剧场| 国产亚洲精品久久久久久毛片| 亚洲精品国产av成人精品| 久久精品91蜜桃| 一本一本综合久久| 男女啪啪激烈高潮av片| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 麻豆国产97在线/欧美| 亚洲av中文字字幕乱码综合| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 免费人成视频x8x8入口观看| 欧美区成人在线视频| 国产精华一区二区三区| 22中文网久久字幕| 桃色一区二区三区在线观看| eeuss影院久久| 亚洲图色成人| 亚洲精品色激情综合| 国产成人精品一,二区 | 亚洲色图av天堂| 久久午夜福利片| 你懂的网址亚洲精品在线观看 | av专区在线播放| 国产一区二区激情短视频| 日韩欧美在线乱码| 最近中文字幕高清免费大全6| www.av在线官网国产| 亚洲五月天丁香| 小说图片视频综合网站| 麻豆成人午夜福利视频| 久久99精品国语久久久| 国产91av在线免费观看| 亚州av有码| 亚洲在线自拍视频| 国产视频首页在线观看| 久久鲁丝午夜福利片| 毛片一级片免费看久久久久| 午夜福利在线观看免费完整高清在 | 天天一区二区日本电影三级| 欧美激情在线99| 国产老妇女一区| 好男人在线观看高清免费视频| 国产乱人视频| 蜜桃亚洲精品一区二区三区| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 亚洲av成人av| 欧美日本视频| 女人十人毛片免费观看3o分钟| h日本视频在线播放| 欧美成人一区二区免费高清观看| 国产免费一级a男人的天堂| 亚洲成人久久爱视频| 国产三级在线视频| 亚洲美女搞黄在线观看| 一级黄色大片毛片| 最近中文字幕高清免费大全6| 国语自产精品视频在线第100页| 午夜免费激情av| 亚洲成人久久性| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 色哟哟·www| 国产成人一区二区在线| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 精品人妻熟女av久视频| 精华霜和精华液先用哪个| 直男gayav资源| 中文精品一卡2卡3卡4更新| 国产成人午夜福利电影在线观看| 欧美zozozo另类| 一个人看的www免费观看视频| 春色校园在线视频观看| 又粗又爽又猛毛片免费看| 久久草成人影院| 日日撸夜夜添| 国产午夜精品一二区理论片| 亚洲七黄色美女视频| 亚洲人成网站在线播放欧美日韩| 国产黄色视频一区二区在线观看 | 成人午夜高清在线视频| 全区人妻精品视频| 秋霞在线观看毛片| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 亚洲av一区综合| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说 | 岛国毛片在线播放| 午夜精品在线福利| 12—13女人毛片做爰片一| 国内精品宾馆在线| 久久久久久九九精品二区国产| 成人二区视频| 亚洲av.av天堂| 波多野结衣巨乳人妻| 两个人视频免费观看高清| 日本黄色视频三级网站网址| 少妇熟女欧美另类| 菩萨蛮人人尽说江南好唐韦庄 | 看免费成人av毛片| 春色校园在线视频观看| 国产三级在线视频| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| 欧美不卡视频在线免费观看| 亚洲国产色片| 黄片wwwwww| 亚洲欧美日韩高清在线视频| 日韩成人av中文字幕在线观看| 亚洲人成网站在线播放欧美日韩| 最近的中文字幕免费完整| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 日韩强制内射视频| 一级黄色大片毛片| 99热全是精品| 久久久久久久久大av| 午夜免费男女啪啪视频观看| 嫩草影院新地址| 国产午夜福利久久久久久| 成年免费大片在线观看| www.色视频.com| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 国产精品一区二区性色av| 亚洲成a人片在线一区二区| 国产精品久久久久久精品电影| 国产在线男女| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩在线中文字幕 | 国产成人精品婷婷| 国产成人freesex在线| 99久国产av精品国产电影| 亚洲欧美精品专区久久| 国产在线精品亚洲第一网站| 青青草视频在线视频观看| 小说图片视频综合网站| 欧美色欧美亚洲另类二区| 久久精品国产清高在天天线| 国产亚洲精品av在线| 国产黄片视频在线免费观看| 亚洲欧美精品自产自拍| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 日本熟妇午夜| 国产真实乱freesex| 26uuu在线亚洲综合色| 一级毛片aaaaaa免费看小| 国产高清有码在线观看视频| 国内精品美女久久久久久| 嘟嘟电影网在线观看| 亚洲熟妇中文字幕五十中出| 九草在线视频观看| 亚洲国产精品成人久久小说 | 亚洲国产精品久久男人天堂| 亚洲国产欧美人成| 国产精品1区2区在线观看.| 国产中年淑女户外野战色| 免费av毛片视频| 日日摸夜夜添夜夜添av毛片| 国产成人影院久久av| 久久人人精品亚洲av| 亚洲人成网站高清观看| 日日干狠狠操夜夜爽| 我的老师免费观看完整版| 国产精品久久久久久久久免| 99在线人妻在线中文字幕| 伦理电影大哥的女人| 麻豆国产av国片精品| 在线观看一区二区三区| 看黄色毛片网站| 一边摸一边抽搐一进一小说| 亚洲欧美精品专区久久| 又黄又爽又刺激的免费视频.| 日本av手机在线免费观看| 国产精品一区二区性色av| 国产精品久久久久久久久免| 天堂√8在线中文| 黄色一级大片看看| 最近2019中文字幕mv第一页| 亚洲av男天堂| 精品少妇黑人巨大在线播放 | 老师上课跳d突然被开到最大视频| 久久综合国产亚洲精品| 我的老师免费观看完整版| 亚洲久久久久久中文字幕| 国国产精品蜜臀av免费| 久久久久久久久久久免费av| 久久精品夜色国产| av免费在线看不卡| 国产午夜精品论理片| 黄色配什么色好看| 在线免费观看不下载黄p国产| 成人三级黄色视频| 99热这里只有是精品50| 丝袜美腿在线中文| 国产乱人视频| 国产亚洲av片在线观看秒播厂 | 人人妻人人澡欧美一区二区| 亚洲在线观看片| 99国产精品一区二区蜜桃av| 国产精品久久久久久亚洲av鲁大| 国产又黄又爽又无遮挡在线| 岛国在线免费视频观看| 此物有八面人人有两片| 高清在线视频一区二区三区 | 69av精品久久久久久| 亚洲激情五月婷婷啪啪| 国产色爽女视频免费观看| 久久6这里有精品| 亚洲激情五月婷婷啪啪| 国产高清三级在线| 免费人成视频x8x8入口观看| 国产av在哪里看| 亚洲三级黄色毛片| 久久午夜福利片| 91av网一区二区| 中文字幕av在线有码专区| 男插女下体视频免费在线播放| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 国内精品宾馆在线| 草草在线视频免费看| 久久久久久久久久成人| 日韩 亚洲 欧美在线| 免费不卡的大黄色大毛片视频在线观看 |