• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approximate trace and singleton failures equivalences for transition systems

    2015-02-10 12:26:05ChaoWangJinzhaoWuandHongyanTan

    Chao Wang,Jinzhao Wu,and Hongyan Tan

    1.Schoolof Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;

    2.Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities,Nanning 530006,China;

    3.Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Approximate trace and singleton failures equivalences for transition systems

    Chao Wang1,Jinzhao Wu2,*,and Hongyan Tan3

    1.Schoolof Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;

    2.Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities,Nanning 530006,China;

    3.Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Established system equivalences fortransition systems, such as trace equivalence and failures equivalence,require the observations to be exactly identical.However,an accurate measurementis impossible when interacting with the physicalworld,hence exact equivalence is restrictive and not robust.Using Baire metric,a generalized framework of transition system approximation is proposed by developing the notions of approximate language equivalence and approximate singleton failures(SF)equivalence. The framework takes the traditionalexactequivalence as a special case.The approximate language equivalence is coarser than the approximate SF equivalence,just like the hierarchy of the exact ones.The main conclusion is that the two approximate equivalences satisfy the transitive property,consequently,they can be successively used in transition system approximation.

    approximate equivalence,trace,singleton failures (SF),transition systems.

    1.Introduction

    The term system equivalence is the notion that a component of a system behaves in a similar way as a component of a different system,where similarity means that the components will be mathematically indistinguishable from each other.The system equivalence is used to simplify complex systems in the specification and verification of the behaviourof systems.

    Van Glabbeek studied various semantic equivalences in the linear time-branching time spectrum[1],which is applied to finitely branching,concrete and sequentialprocesses.Finitely branching means a process in each state has only finitely many possible ways to proceed,concrete means a process does not have internal actions,and sequentialmeans a process can perform atmostone action at a time.Note thata process may be non-deterministic(i.e., after a trace,a process may arrive at different states)and may have infinite length traces.

    This paperinvestigates the same range ofprocesses with [1],and only focuses on the following two canonical semantics,which are respectively representatives of linear time semantics and branching time semantics.

    (i)Trace semantics,which is the coarsest semantics as presented in[2].

    (ii)Singleton failures(SF)semantics,which applies in general to asynchrously communicating processes as observed firstly in[3].Its denotationalsemantics forcommunicating sequentialprocesses(CSP)was defined in[4].

    Trace semantics is very importantand a lot of research has been carried outon it.As a variantoffailures semantics [5],SF semantics is also very important,since failures semantics has wide applications.For example,Kennaway’s equivalence[6]and testing equivalence[7]were shown to coincide with the failures equivalence on the domain of finitely branching and concrete transition systems in[8]. Reference[9]developed a framework of timed equivalences for timed event structures,and used trace,testing and bisimulation[10]as standard equivalences.Reference [11]did research on explicitrepresentation of the termination in CSP while itused traces,stable failures and failuresdivergences as standard denotational models of CSP.Reference[12]introduced the concept of a distributed reactive system which works with two semantic equivalences, namely a variant of failures equivalence and a variant of bisimulation equivalence.

    SF semantics distinguishes between pairs of processes that would be identified in trace semantics,yet identifies others that would be distinguished in bisimulation semantics.SF semantics and bisimulation semantics are representatives of branching time semantics,however the complexity of SF semantics versus bisimulation semantics is similar to thatofpolynomialversus nondeterministic polynomial.Different from failures semantics,the refusal set of SF pairs must contain one and only one element and thus easy to handle.In sum,this paper uses SF semantics instead of bisimulation semantics as a representative of branching time semantics.

    Based on previous researches[1],the set of all traces and SF pairs is used to characterize SF equivalence.We give a common example to illustrate that the trace information cannot be obtained from the set of all SF pairs, hence the set of all SF pairs alone cannot characterize the SF equivalence.Then we propose a revised version of singleton failure(RSF)pair and show thatthe set of all RSF pairs alone can characterize the SF equivalence.Furthermore,the RSF algorithm gains in efficiency in terms of speed than the traditionalSF algorithm by reducing redundancy elements,while retaining the same information content.

    Currently,established system equivalences for transition systems,such as trace equivalence and failures equivalence,require the observations to be exactly identical. However,an accurate measurementis impossible when interacting with the physical world,hence the usual exact equivalence is quite restrictive and notrobust.

    The notion of distance between the original transition system and the targettransition system is much more adequate in this context.Instead of requiring the observations of the two transition systems to be equal,the distance between them is only required to remain bounded by some parameter called precision of the approximation.This approach notonly defines more robustrelationsbetween transition systems butalso allows more significantcomplexity reduction.

    Using Baire metric[1],this paper proposes a generalized framework of transition system approximation including approximate language equivalence and approximate SF equivalence.In addition,the exact language equivalence and the exactSF equivalence are specialcases of approximate language equivalence and approximate SF equivalence,respectively.Approximate language equivalence is coarser than approximate SF equivalence,the two approximate equivalences have the same hierarchy as the exact ones.We define and calculate language(or SF)distance between pairs of transition systems,and show that the sets of transition systems together with language(or SF)distance form a pseudo-metric space.

    The unique feature ofthe two approximate equivalences is that they satisfy the transitive property.Hence,for an originalcomplex system,we can successively use the two approximate equivalences to obtain an equivalent system with lesser complexity.Therefore the two approximate equivalences would be very usefulfordevelopers of model checking tools.

    2.Preliminaries

    The following notations are used throughoutthe paper.N denotes the set of all natural numbers(including zero),R denotes the set of all real numbers,and?denotes the empty set.For l,l∈R,ldenotes the round-down of l,which is the largest integer less than or equal to l, max(l,l?)denotes the larger one of l and l?.For a setΠ, Π∞denotes both finite and infinite sequences overΠ.

    Definition 1A pseudo-metric space is a setΠtogether with a function d:Π×Π→[0,+∞](called a pseudometric)such that,?x,y,z∈Π,

    (i)d(x,x)=0;

    (ii)d(x,y)=d(y,x)(symmetry);

    (iii)d(x,z)?d(x,y)+d(y,z)(triangular inequality).

    Hence,a pseudo-metric space is a metric space in which the distance between two distinct points can be zero.In other words,d(x,y)=0 does notalways imply x=y.

    Definition 2The Baire metric dB:Π∞×Π∞→[0,1] is defined by

    where l∈N is the length of the longestcommon prefix of ρ1∈Π∞andρ2∈Π∞.

    For brevity,ifρ1=ρ2,we define l=+∞no matter whatthe length ofρ1.

    Itis easy to verify that(Π∞,dB)is a metric space and dB(ρ1,ρ2)measures the similarity betweenρ1andρ2,the lower the value,the more similar the two sequences.

    The infimum(or supremum)of a subset S of realnumbers is denoted by inf(S)(or sup(S))and is defined to be the biggest(or least)real number which is smaller(or greater)than orequalto allnumbers in S.

    Definition 3LetΠ1?Π,Π2?Π,the Hausdorff distance associated with d,which is a pseudo-metric onΠ,is defined by

    The most important property of the Hausdorff distance is thatthe Hausdorff distance associated with any pseudometric onΠis a pseudo-metric on the setof subsets ofΠ.Informally,two non-empty subsets of a matric space are close in their Hausdorff distances,if every point of either subset is close to some point of the other subset.In other words,the Hausdorff distance dHis the greatest of all the distances from a pointin one subsetto the closest pointin the other subset.Hence,the Hausdorff distance is used to measure the distance(or similarity)between pairs of differentsets.

    Itis easy to prove that dH(Π1,Π2)=0 iff(if and only if)cl(Π1)=cl(Π2),where cl(Π1)and cl(Π2)denote the topologicalclosures ofΠ1,Π2respectively.Moreover,dHis a pseudo-metric.

    Definition 4A labelled transition system with observations is a six-tuple T=(Q,Σ,→,Q0,Π,〈.〉),where Q is a(possibly infinite)set of states;Σis a(possibly infinite)set of labels;→?Q×Σ×Q is a setof transitions; Q0?Q is a(possibly infinite)setof initialstates;Πis a (possibly infinite)set of observations;〈.〉:Q→Πis an observation map.

    If no confusion arises,the transition system will be referred to as the labelled transition system.

    3.Approximate language equivalence

    Firstly,we introduce the definitions of trace,state trajectory,externaltrajectory and the language oftransition systems.Secondly,we depict the distance between pairs of external trajectories and deduce the language distance between pairs of transition systems.Hence,transition systems together with the language distance form a pseudometric space.Finally,we define thattwo transition systems have an approximate language relation if they are“close”according to the language distance,and prove thatthe approximate language relation is an equivalence relation.

    In the remainder of this paper,let T=(Q,Σ,→, Q0,Π,〈.〉)be a transition system with observations, (qi,ai+1,qi+1)∈→,i=0,1,2,...and q0∈Q0.

    A trace of T is a(possibly infinite)sequence of labels α=a1a2....

    A state trajectory of T is a(possibly infinite)sequence

    An external trajectory of T is a(possibly infinite)sequence of elements ofΠ×Σ×Π,ψ=〈q0〉a1〈q1〉a2〈q2〉....

    Since the trace,state trajectory and external trajectory are similar,we only discuss the external trajectory for brevity,it is obvious that our approximation method also works for trace and state trajectory.

    The set of allexternal trajectory of T is called the language of T,and is denoted by L(T).

    By convention,a transition(q,a,q?)∈→is denoted byWrite o for the empty sequences ofexternaltrajectories,ψ1ψforthe concatenationrecursively by

    The remaining partofthis section is devoted to approximate language equivalence.Atthe very beginning,the traditionalexactlanguage equivalence is given as follows.

    Definition 5Two transition systems T1and T2are language equivalent,in other words,there is a language equivalence relation between T1and T2,notation T1=LT2,iff L(T1)=L(T2).

    Definition 6The distance dψ:L(T1)×L(T2)→[0,1] between pairs of externaltrajectoriesψ1andψ2is defined by ?

    where l∈N is the length of the longestcommon prefix of ψ1andψ2.

    This definition is a generalization of the Baire metric (Definition 2)for externaltrajectories.The following is an easy observation.

    Theorem 1?ψi∈L(Ti),i=1,2,3,dψ(ψ1,ψ3)? max(dψ(ψ1,ψ2),dψ(ψ2,ψ3)).

    ProofIfψ1=ψ2orψ2=ψ3,then the right-hand side of the inequality is equalto the left-hand side.Hence,the inequality trivially holds.

    Ifψ1=ψ3,then the left-hand side of the inequality is equalto 0.Hence,the inequality holds.

    Otherwise,ψ1/=ψ2,ψ2/=ψ3andψ1/=ψ3.Let l∈N be the length of the longestcommon prefix ofψ1andψ2, and l?∈N be the length of the longestcommon prefix of ψ2andψ3.Withoutloss of generality,assume l?l?,then the length ofthe longestcommon prefix ofψ1andψ3is no less than l.

    Hence,dψ(ψ1,ψ3)?max(dψ(ψ1,ψ2),dψ(ψ2,ψ3)) holds in allcases.

    The following theorem shows that the definition of dψis reasonable,i.e.,the distance is a pseudo-metric.

    Theorem 2dψis a pseudo-metric on the setofexternal trajectories.

    ProofLetψ1,ψ2,ψ3be arbitrary externaltrajectories. dψ(ψ1,ψ2)≥0,dψ(ψ1,ψ1)=0.

    (i)Firstly,we prove that dψ(ψ1,ψ2)=dψ(ψ2,ψ1) (symmetry).

    Ifψ1=ψ2,then dψ(ψ1,ψ2)=0=dψ(ψ2,ψ1).Other-wise,dψ(ψ1,ψ2)=dψ(ψ2,ψ1),where l∈N is the length of the longest common prefix ofψ1andψ2. Hence,dψ(ψ1,ψ2)=dψ(ψ2,ψ1)holds in allcases.

    (ii)Second,we prove that dψ(ψ1,ψ3)?dψ(ψ1,ψ2)+ dψ(ψ2,ψ3)(triangularinequality). By Theorem 1,

    Consequently,dψis a pseudo-metric.

    Furthermore,the metric dψo(hù)n the setof externaltrajectories induces a naturallanguage distance between pairs of transition systems.

    Definition 7The language distance between T1and T2is defined by dL(T1,T2)=dH(L(T1),L(T2)).

    Since the Hausdorffdistance is pseudo-metric,the definition of the language distance is reasonable.Hence,transition systems together with the language distance form a pseudo-metric space.

    The intuitive meaning of the language distance is the following.For any external trajectory of T1,we can find an externaltrajectory of T2such thatthe distance between them remains bounded by dL(T1,T2).

    Example 1Consider the transition systems of T1,T2and T3in Fig.1,where the firsttwo transition systems are taken from counter Example 5 in[1].

    Fig.1 A complex case

    dL(T1,T2)=0 intuitively means that for any external trajectory of T1(or T2),we can find an externaltrajectory of T2(or T1)such thatthe two executions are indistinguishable to an external observer,in other words,they have the same observations.

    dL(T2,T3)=2?3intuitively means that for any externaltrajectory of T2(or T3),we can find an externaltrajectory of T3(or T2),such that from the view of an external observer,they are indistinguishable from the firstthree observations.

    One of the great advantages of having metric structure on transition systems is that the distance enables us to use quantitative approximation.

    Definition 8Two transition systems T1and T2are approximate language equivalent with the precisionξ≥0, in other words,there is an approximate language relation?L,ξbetween T1and T2,notation T1?L,ξT2,iff dL(T1,T2)?ξ.

    It is intuitive that the lower the value ofξ,the higher the degree to which?L,ξis a language relation.It should be emphasized thattwo transition systems are approximate language equivalent with the precisionξ=0,which is also known as they are exactlanguage equivalent.In other words,the traditionalexactlanguage equivalence is a special case(ξ=0)of approximate language equivalence. Hence,Definition 8 is a generalization of Definition 5.

    Theorem 3?L,ξ(ξ≥0)is an equivalence relation on the setof transition systems.

    ProofLet T1,T2,T3be arbitrary transition systems.

    (i)First,we prove that?L,ξis a reflexive relation. dL(T1,T1)=dH(L(T1),L(T1))=0?ξ,thus,T1?L,ξT1.

    (ii)Second,we prove that?L,ξis a symmetric relation. Since dψand max are symmetric,we have the following equation:

    Assume T1?L,ξT2,then dL(T2,T1)=dL(T1,T2)? ξ,namely,T2?L,ξT1.Hence,?L,ξis a symmetric relation.

    (iii)Third,we prove that?L,ξis a transitive relation.

    Assume T1?L,ξT2and T2?L,ξT3.

    ?ψ1∈L(T1),by(1),?ψ2∈L(T2)such that dψ(ψ1,ψ2)?ξ.

    Forψ2,by(2),?ψ3∈L(T3)such that dψ(ψ2,ψ3)?ξ.

    By Theorem 1,

    This formula holds forallψ1∈L(T1). Hence,

    Consequently,?L,ξis a transitive relation.?

    Example 2Consider again the transition systems in Example 1.Since dL(T1,T2)<0.125,T1?L,0.125T2. Since dL(T2,T3)=0.125,T2?L,0.125T3.By Theorem 3, T1?L,0.125 T3.

    4.Approximate SF equivalence

    Firstly,we introduce the definitions of SF pair,failure pair and Kennaway pairoftransition systems.Secondly,we depictthe distance between pairs of SF pairs by extending the definition ofthe Baire metric,and deduce the SF distance. Therefore,transition systems togetherwith the SF distance form a pseudo-metric space.Finally,we define that two transition systems have an approximate SF relation if they are“close”according to the SF distance,and we prove that this approximate SF relation is an equivalence relation.

    The setofnextactions of a state q is defined by N(q)= {a∈Σ|?q?∈Q such that(q,a,q?)∈→}.

    (ψ,π)is an SF pair of T,whereψis an externaltrajectory andπis a singleton refusalaction,if?q0∈Q0,q∈Q such that q=ψ?q andπ∈/N(q).

    0

    (ψ,D)is a failure pair of T,if?q0∈Q0,q∈Q such that q=ψ?q and D∩N(q)=?where D?Σ(note that

    0??Σ,namely,D can be?).

    (ψ,D)is a Kennaway’s pair[10]of T,if?q0∈Q0,q∈Q such that q=ψ?q and D∩N(q)/=?where D?Σ.

    0

    Since the SF pair,failure pair and Kennaway’s pair are similar,we only analyze the SF pair for brevity,it is obvious that our approximation method also works for the failure pair and the Kennaway’s pair.

    The definition of the SF pair presented here is that of [1].Itdiffers from thatof[4]in one importantrespect,the refusalsetofthe SF pairmustcontain one element,instead of atmostone element.

    Let F?(T)denote the setofall SF pairs of T.The traditionalexact SF equivalence is given as follows.

    Definition 9Two transition systems T1and T2are SF equivalent,in other words,there is an SF equivalence relation between T1and T2,notation T1=FT2,iff F?(T1)= F?(T2)and L(T1)=L(T2).

    Example 3Fig.2 considers T0with justone node p and a self-loop action from and to thatnode labelled a.F?(T0) is the empty setforitis neverpossible to refuse any action. T1firstdoes an action a and then reaches either the node p or deadlock 0.Therefore,F?(T1)=F?(T2).Yet,L(T1)is notequalto L(T2).

    Fig.2 F'(T)and L(T)

    This example illustrates that F?(T)does not imply L(T),hence F?(T)alone cannot characterize SF equivalence.Then we propose an RSF pair and show that the set of all RSF pairs alone can characterize SF equivalence.Furthermore,the RSF algorithm gains in efficiency in terms of speed than the traditional SF algorithm by reducing redundancy elements,while retaining the same information content.

    Here we present the basic definitions.For an external trajectoryψo(hù)f T,the set of all possible actions is de-fined by Cont(T,ψ)={a∈Σ|?q0∈Q,q,q∈Q such that q0=ψ?q and(q,a,q?)∈→}.

    |ψ|denotes the length ofψ.ψwill be denoted by |ψ|=+∞ifψhas infinite length.The maximum length of the language of T1and T2is defined by Len(T1,T2)= max(ψm∈La(xT)|ψ1|,ψm∈La(xT)|ψ2|).

    1122

    ∈denotes the zero-length actions.In order to make the external trajectory and the SF pair have the same form,ψ is identified with a pair(ψ,∈)in this paper.

    Definition 10(ψ,π)is an RSF pair of T if?q0∈Q0,q∈Q such that

    Let F(T)denote the setof all RSF pairs of T.

    F(T)has the following two advantages.Firstly,F(T) is easy to calculate,since the definition of the RSF pair only involves N(q)and Cont(T,ψ).Secondly,F(T)removes the following two classes of elements from L(T)∪F?(T),

    (i)(ψ,∈)∈L(T)where Cont(T,ψ)/=?∧|ψ|/=+∞.

    (ii)(ψ,π)∈F?(T)whereπ/∈Cont(T,ψ).

    In order to prove that the set of all RSF pairs alone can characterize SF equivalence,namely,T1=FT2iff F(T1)=F(T2)(Theorem 4).We firstly prove that F(T) is the subsetof the union of L(T)and F?(T)(Lemma 1). Secondly,we prove thatiftransition systems have the same F(T),they have the same L(T)(Lemma 2).Thirdly,we prove that if transition systems have the same F(T),they have the same F?(T)(Lemma 3).

    Lemma 1F(T)?L(T)∪F?(T).

    Proof?(ψ,π)∈F(T),we shallprove that(ψ,π)also belongs to L(T)∪F?(T).

    Since(ψ,π)∈F(T),?q0∈Q0,q∈Q such that

    Case 1π=∈.Hence(ψ,∈)∈L(T).

    Case 2π∈Cont(T,ψ)∧π∈/N(q).Hence(ψ,π)∈

    In both cases,(ψ,π)∈L(T)∪F?(T).

    Informally,F(T)is a smallerversion of L(T)∪F?(T), itreduces redundancy elements which can be derived from the otherelements.

    Lemma 2F(T1)=F(T2)?L(T)=L(T2).

    ProofBy contradiction,assume that L(T)/=L(T2). Since T1and T2are symmetric,we assume there is an element(ψ,∈)which belongs to L(T1)and does not belong to L(T2).

    If Cont(T1,ψ)is the empty set.By the definition of the RSF pair,(ψ,∈)∈F(T1).Since F(T1)=F(T2), (ψ,∈)∈F(T2).By Lemma 1,F(T2)?L(T2)∪F(T2), (ψ,∈)∈L(T2)∪F?(T2).By the definition of the SF pair, (ψ,∈)∈/F?(T2).Hence(ψ,∈)∈L(T2),which contradicts the assumption(ψ,∈)∈/L(T2).

    Otherwise,Cont(T1,ψ)is not an empty set.Hence?a∈Cont(T1,ψ).As(ψ,∈)∈L(T1),?q∈Q such that (ψa〈q〉,∈)∈L(T1).Since(ψ,∈)∈/L(T2),(ψa〈q〉,∈)∈/ L(T2).Sinceψa〈q〉is longer thanψ,using the recursive method,there is an infinite length element(ψ?,∈)which belongs to L(T1)and does not belong to L(T2).By the definition of the RSF pair,(ψ?,∈)∈F(T1)and(ψ?,∈)∈/ F(T2),which contradicts the premise F(T1)=F(T2).

    Hence,L(T1)/=L(T2)has been shown impossible, L(T1)=L(T2)mustbe true.

    Lemma 3F(T1)=F(T2)?F?(T1)=F?(T2).

    ProofBy contradiction,assume that F?(T1)/=F?(T2). Since T1and T2are symmetric,we assume there is an element(ψ,π)which belongs to F?(T1)and does notbelong to F?(T2).

    Since(ψ,π)∈F?(T1),?q0∈Q0,q∈Q such that q=ψ?q,π∈/N(q).This implies that(ψ,∈)∈L(T).

    1Since F(T1)=F(T2),by Lemma 2,L(T1)=L(T2). Then,(ψ,∈)∈L(T2).

    Ifπ∈Cont(T1,ψ),(ψ,π)∈F(T1).Since F(T1)= F(T2),(ψ,π)∈F(T2).By Lemma 1,F(T2)?L(T2)∪F?(T2),(ψ,π)∈L(T2)∪F?(T2).Since(ψ,π)∈/ L(T2),(ψ,π)∈F?(T2),which contradicts the assumption (ψ,π)∈/F?(T2).

    Otherwiseπ∈/Cont(T1,ψ)and L(T1)=L(T2), π∈/Cont(T2,ψ).Since(ψ,∈)∈L(T2),(ψ,π)∈F?(T2), which contradicts the assumption(ψ,π)∈/F?(T2).

    Hence,F?(T1)/=F?(T2)has been shown impossible, F?(T1)=F?(T2)mustbe true.

    Theorem 4T1=FT2iff F(T1)=F(T2).

    ProofNow we prove that L(T1)=L(T2)∧F?(T1)= F?(T2)iff F(T1)=F(T2).

    To prove the sufficiency,by contradiction,assume that F(T1)/=F(T2).Since T1and T2are symmetric,we assume there is an element(ψ,π)which belongs to F(T1) and does notbelong to F(T2).

    Thenπfalls into one of the following two cases:

    Case 1π=∈.Namely,(ψ,∈)∈F(T1).By the definition of the RSF pair,one of the following two cases must hold:

    Case 1A Cont(T1,ψ)=?.Since L(T1)=L(T2), Cont(T2,ψ)=?.Hence(ψ,∈)∈F(T2),which contradicts the assumption(ψ,∈)∈/F(T2).

    Case 1B|ψ|=+∞.Since(ψ,∈)∈L(T1)and L(T1)=L(T2),(ψ,∈)∈L(T2).Hence(ψ,∈)∈F(T2), which contradicts the assumption(ψ,∈)∈/F(T2).

    Case 2π/=∈.By the definition of the RSF pair,?q0∈Q0,q∈Q such that q0=?q andπ∈/ N(q).Hence(ψ,π)∈F?(T1).Since F?(T1)=F?(T2), (ψ,π)∈F?(T2).Namely,?q0?∈Q0,q?∈Q,such that q0?=ψ?q?,π∈/N(q?).Since(ψ,π)∈F(T1),π∈Cont(T1,ψ).Since L(T1)=L(T2),π∈Cont(T2,ψ). Consequently,(ψ,π)∈F(T2),which contradicts the assumption(ψ,π)∈/F(T2).

    Hence,F(T1)/=F(T2)has been shown impossible, F(T1)=F(T2)mustbe true.

    To prove the necessity,by Lemma 2,L(T1)=L(T2). By Lemma 3,F?(T1)=F?(T2).

    Example 4Consider again T1and T2in Example 1. In order to verify whether T1and T2are SF equivalent,it needs 46 comparisons when using the SF algorithm,while itneeds 8 comparisonswhen using the RSF algorithm.The RSF algorithm reduces 82.6%workload in this complex case.

    Example 5Consider T4and T5in Fig.3.In order to verify whether T4and T5are SF equivalent,itneeds atleast six comparisons when using the traditional SF(namely, L(T)∪F?(T))algorithm,while it only needs 1 comparison when using the RSF(namely,F(T))algorithm. The RSF algorithm reduces 83.3%workload in this simple case.

    Fig.3 A simple case

    Note thatitis noteffective to use the method described above to prove that two transition systems are SF equivalentby enumerating their RSF pairs,since these RSF pairs are usually infinitely many.The enumeration is only used to obtain a comparison result.

    The following definition is a generalization of Definition 6 for SF pairs.

    Definition 11The distance df:(L(T1),Π1)× (L(T2),Π2)→[0,1]between SF pairs(ψ1,π1)and (ψ2,π2)is defined by

    where l∈N is the length of the longest common prefix ofψ1andψ2.If Len(T1,T2)is finite,thenγ=Otherwise,γis an infinitesimalnumber,namely,?k∈N,γ<2?k.

    The following is an easy observation.

    Theorem 5?ψi∈L(Ti),πi∈Πi,i=1,2,3,

    ProofLet l∈N be the length of the longestcommon prefix ofψ1andψ2,l?∈N be the length of the longestcommon prefix ofψ2andψ3,and l∈N be the length of the longestcommon prefix ofψ1andψ3.

    (i)Ifψ1=ψ3andπ1=π3,df((ψ1,π1),(ψ3,π3))=0. Hence,the inequality holds. (ii)Ifψ1=ψ3andπ1/=π3.

    Ifψ1=ψ2,then eitherπ2/=π1orπ2/=π3mustbe true.

    Otherwise,ψ1/=ψ3.

    Ifψ1=ψ2,then l??=l?andψ2/=ψ3.

    Ifψ2=ψ3,itis similar to the above caseψ1=ψ2.

    Otherwise,ψ1/=ψ3,ψ1/=ψ2andψ2/=ψ3,without loss ofgenerality,assume l?l?,then we have l??≥l.

    The following theorem shows thatthe definition of dfis reasonable.

    Theorem6dfis a pseudo-metric on the setof SF pairs.

    The proof is omitted since it is similar to the proof of Theorem 2.

    Furthermore,the metric dfon the set of SF pairs naturally induces an SF distance between pairs of transition systems.

    Definition 12The SF distance between T1and T2is defined by dF(T1,T2)=dH(F(T1),F(T2)).

    Since the Hausdorff distance is a pseudo-metric,the definition of the SF distance is reasonable.Hence,transition systems togetherwith the SF distance form a pseudometric space.

    The intuitive meaning of the SF distance is as follows. For any SF pair of T1,we can find an SF pair of T2such that the distance between them remains bounded by dF(T1,T2).

    Definition 13Two transition systems T1and T2are approximate SF equivalentwith the precisionξ≥0,in other words,there is an approximate SF relation?F,ξbetween T1and T2,notation T1?F,ξT2,iff dF(T1,T2)?ξ.

    Itis intuitive thatthe lower the value ofξ,the higherthe degree to which?F,ξis an SF relation.It should be emphasized that two transition systems are approximate SF equivalentwith the precisionξ=0,which is also known as they are exact SF equivalent.In other words,the traditional exact SF equivalence is a special case(ξ=0)of approximate SF equivalence.Consequently,Definition 12 is a generalization of Definition 9.

    Theorem 7?F,ξ(ξ≥0)is an equivalence relation on the setof transition systems.

    The proof is omitted since it is similar to the proof of Theorem 3.

    5.Hierarchy of equivalences

    In this section,we show thatthe language distance between two transition systems is notgreaterthan their SF distance. A direct consequence is that if two transition systems are approximate SF equivalentwith a precisionξ,then they are approximate language equivalent withξ.In other words, approximate language equivalence is coarser than the approximate SF equivalence,hence these approximate equivalences have the same hierarchy as the exact ones in the lineartime-branching time spectrum[1].Theorem 8dL(T1,T2)?dF(T1,T2)ProofBy the definition of SF,

    By definitions of the distance dfand the distance dψ, Now,we assume that{df((ψ1,∈),(ψ2,π2))|(ψ2, π2)∈F(T2)}reaches the minimum when(ψ2,π2)=by the definition of SF,

    Traditionally,T1=FT2implies T1=LT2.A similar conclusion is reached as follows.

    Corollary 1T1?F,ξT2implies T1?L,ξT2.

    Hence,the approximate language equivalence is coarser than the approximate SF equivalence,and the two approximate equivalences have the same hierarchy as the exact ones.

    6.Cases study

    Two cases are investigated in this section.The firstcase is simple,butnottrivial,as itillustrates thatthe approximate language equivalence and the approximate SF equivalence can be successively used to achieve complexity reduction in the approximation process.The second case illustrates that different error limits may result in different relations between transition systems,in other words,we can define more robustrelations between transition systems.

    It is convenient to describe transition systems by directed graphs.Each state is represented by a circle,the observation is shown inside the circle,and a transition from one state to another is indicated by an arrow with a label.

    A microwave and lightwave oven is a kitchen appliance that heats food using microwaves and lightwaves.We use a transition system to characterize the process ofcooking a pizza in a microwave and lightwave oven.There are different transition systems for different processes of cooking a pizza.The observationsconsistofinitial,microwave heating,lightwave heating and final,which are respectively abbreviated as i,a,b and f.Hence,the setof observations

    Π={i,f,a,b}.We use label1 to denote a 5-minute heating and label0 to denote no heating.Consequently,the set of labelsΣ={0,1}.

    6.1 Transitive property

    Fig.4 depicts that a microwave and lightwave oven takes

    20 minutes(microwave heating)ortakes 15 minutes(lightwave heating)to cook a pizza.Similarly,Fig.5 depicts thata microwave and lightwave oven takes 10 minutes(microwave heating)or takes 15 minutes(lightwave heating) to cook a pizza.And Fig.6 depicts that a microwave and lightwave oven takes 10 minutes(microwave heating)or takes 10 minutes(lightwave heating)to cook a pizza.

    Fig.4 T6

    Fig.5 T7

    We set the error limitξ=0.125,namely,we assume thatthe error0.125 is tolerable.Since the maximum length of the language of T6,T7and T8is 112?7.For more information,see Definition 11.After a straightforward calculation using the definition of SF distance(Definition 12),we obtain

    Since?F,ξis an equivalence relation on the set of transition systems(Theorem 7),(8)and(9)imply that dF(T6,T8)?ξ,i.e.,T6?F,ξT8.And T6?F,ξT8implies T6?L,ξT8(Corollary 1).

    By successively using approximate equivalence,we obtain T6and T8are both approximate language equivalent with the precisionξand approximate SF equivalent with the precisionξ.

    Hence,we should use T8to replace T6in the specification and verification,because T8intuitively has a smaller structure than T6,and the complexity of the specification and verification is typically associated with the size of the state space.

    Note thatthe transitive property plays an importantrole in ourefforts to obtain an equivalentsystem with less complexity,because the transitive property makes itpossible to successively use approximate equivalences.

    6.2 Error limit

    Fig.7 depicts that a microwave and lightwave oven takes five minutes(microwave heating)to cook a pizza or detects an errorand stops.Similarly,Fig.8 depicts thata microwave and lightwave oven takes five minutes(microwave heating)to cook a pizza.

    Fig.7 T 9

    Fig.8 T10

    Since the maximum length ofthe language of T9,T10is=0.062 5.After a straightforward calculation,we obtain

    If the error limitξ<0.062 5,then T9and T10are approximate language equivalent but not approximate SF equivalent.If the error limitξ≥0.062 5,then T9and T10are both approximate language equivalentand approximate SF equivalent.In otherwords,differenterrorlimits may resultin differentrelations between T9and T10.

    7.Comparison

    Our version of the Baire metric is described in[13]which presents an introduction to metric semantics for programming and specification languages.In this paper,we extend the definition of the Baire metric to suit the specific requirements of externaltrajectories and SF pairs.

    A metric very similar to this definition is defined by Baire in[14].The alternative version of the Baire metric is typically used to measure the similarity between strings [15,16],butitdoes notsupportTheorem 1 and Theorem 5, which are the essential precondition for the derivation of the transitive property of approximate language equivalence(Theorem 3)and approximate SF equivalence(Theorem 7).

    In the pastseveraldecades,there have been a lotof researches on system approximation.Approximate trace and approximate(bi)simulation relations are studied for transition systems[17]and hybrid systems[18,19]by Girard and Pappas.Their approximation is based on a metric on the setof observations which can be any metric.However, none of their approximate relations is an equivalence relation,as they do not satisfy the transitive property.Hence, their approximate relations cannot be successively used, while our approximate equivalences do nothave this limit. For example,T1?F,ξT2,T2?F,ξT3,...,Tn?1?F,ξTnimply that T1?F,ξTn.

    Previous work on SF is relatively sparse.Since the computationalcomplexity of SF is lowerthan bisimulation,this paper uses SF semantics instead of bisimulation as a representative of branching time semantics.

    8.Conclusions

    Using the Baire metric,this paper proposes a generalized framework of transition system approximation by developing the notions of approximate language equivalence and approximate SF equivalence.The language semantics and SF semantics are,respectively,representatives of linear time semantics and branching time semantics.The exactlanguage equivalence and the exact SF equivalence are specialcases of approximate language equivalence and approximate SF equivalence,respectively.Approximate language equivalence is coarser than approximate SF equivalence,and two approximate equivalences have the same hierarchy as the exactones.

    A revised version of SF pairs is proposed to simplify SF equivalence checking,and the RSF algorithm gains in efficiency in terms of speed than the traditional SF algorithm by reducing redundancy elements,while retaining the same information content.

    The motivation of the approximate equivalence is to define more robustrelations between transition systems,and to achieve a considerable complexity reduction in the approximation process.

    We may be the first to give a reasonable definition of the distance between pairs of SF pairs,and deduce the SF distance between pairs of transition systems.Transition systems together with this distance form a pseudo-metric space.

    The main conclusion of this paper is that the twoapproximate equivalences satisfy the transitive property, hence,they can be successively used in transition system approximation.In otherwords,we can successively use the two approximate equivalences to obtain a much more simplified equivalentsystem from an originalcomplex system. The two approximate equivalences guarantee some quality and efficiency in the specification and verification,therefore,they would be very useful for developers of model checking tools.

    In the future work,we plan to develop approximate equivalences for other types of systems,such as hybrid systems and hybrid event structures.Future interests also include the computer-aided analysis software for verifying SF equivalence which stems from the RSF pair definition.

    [1]R.J.Van Glabbeek.The linear time-branching time spectrum i-the semantics ofconcrete,sequentialprocesses.Handbook of Process Algebra,2001.

    [2]U.Fahrenberg,A.Legay.The quantitative lineartime branching time spectrum.Theoretical Computer Science,2014,538: 54–69.

    [3]F.S.de Boer,J.N.Kok,C.Palamidessi,etal.The failure of failures in a paradigm for asynchronous communication.Lecture Notes in Computer Science,1991,527:111–126.

    [4]C.Bolton,J.Davies.A singleton failures semantics for communicating sequential processes.Formal Aspects of Computing,2006,18(2):181–210.

    [5]S.D.Brookes,C.A.R.Hoare,A.W.Roscoe.A theory ofcommunicating sequential processes.Journal of the ACM,1984, 31(3):560–599.

    [6]J.R.Kennaway.Formalsemantics ofnondeterminism and parallelism.Oxford:University of Oxford,1981.

    [7]R.de Nicola,M.C.B.Hennessy.Testing equivalences forprocesses.TheoreticalComputer Science,1984,34(1):83–133.

    [8]R.de Nicola.Extensional equivalences for transition systems. Acta Informatica,1987,24(2):211–237.

    [9]M.V.Andreeva,I.B.Virbitskaite.Timed equivalences for timed event structures.Parallel Computing Technologies. Berlin:Springer,2005:16–26.

    [10]M.V.Andreeva,I.B.Virbitskaite.Modular bisimulation theory for computations and values.Foundations ofSoftware Science and Computation Structures.Berlin:Springer,2005:16–26.

    [11]S.Dunne.Termination withoutcheckmark in CSP.FM 2011: FormalMethods.Berlin:Springer,2011:278–292.

    [12]R.J.Van Glabbeek,U.Goltz,J.Wolfhard,etal.On characterising distributability.Logical Methods in Computer Science, 2013,9(3):1–58.

    [13]F.Van Breugel.An introduction to metric semantics:operationaland denotationalmodels forprogramming and specification languages.Theoretical Computer Science,2001,258(1): 1–98.

    [14]R.Baire.Sur la reprsentation des fonctions discontinues.Acta mathematica,1906,30(1):1–48.

    [15]Y.Cao,M.Ying.Similarity-based supervisory control of discrete-event systems.IEEE Trans.on Automatic Control, 2006,51(2):325–330.

    [16]Y.Cao,G.Chen.Towards approximate equivalences of workflow processes.Proc.of the 1st International Conference on E-Business Intelligence,2010.

    [17]A.Girard,G.J.Pappas.Approximation metrics for discrete and continuous systems.IEEE Trans.on Automatic Control, 2007,52(5):782–798.

    [18]A.Girard,A.A.Julius,G.J.Pappas.Approximate simulation relations forhybrid systems.Discrete EventDynamic Systems, 2008,18(2):163–179.

    [19]A.Girard,G.J.Pappas.Approximate bisimulation:a bridge between computer science and control theory.European Journal of Control,2011,17(5):568–578.

    Biographies

    Chao Wangwas born in 1982.He received his B.S.degree atSchoolof Mathematics from Nankai University.He is currently a Ph.D.candidate atthe School of Computer and Information Technology from Beijing Jiaotong University.His research interests are in the fields offormalmethods and symbolic computation.

    E-mail:wangchao@bjtu.edu.cn.

    Jinzhao Wuwas born in 1965.He received his Ph.D.degree in science from Institute of Systems Science,Chinese Academy of Sciences.He is now a professor in the College of Information Science and Engineering,GuangxiUniversity for Nationalities,a concurrent professor of Computer and Information Technology,Beijing Jiaotong University,and a researcher at Chengdu Institute of Computer Application,Chinese Academy of Sciences.His research interests are in the fields offormalmethods,symbolic computation,and automated reasoning.

    E-mail:wujz2009@gmail.com.

    Hongyan Tanwas born in 1966.She received her M.S.degree in computer science at Lanzhou University.She is now a research associate at the Institute of Acoustics,Chinese Academy of Sciences. Her research interests are in the fields of distributed computing systems and peer-to-peer systems.

    E-mail:wcharles8@sina.com.

    10.1109/JSEE.2015.00096

    Manuscript received April 15,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(11371003;11461006),the Natural Science Foundation of Guangxi(2011GXNSFA018154;2012GXNSFGA060003),the Science and Technology Foundation of Guangxi(10169-1),the Scientific Research Project from Guangxi Education Department(201012MS274), and Open Research Fund Program of Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis(HCIC201301).

    精品少妇黑人巨大在线播放| 国产视频首页在线观看| 丝袜美腿在线中文| 三级国产精品片| 男人添女人高潮全过程视频| 国产午夜福利久久久久久| 免费播放大片免费观看视频在线观看| 亚洲国产精品成人综合色| 亚洲成人一二三区av| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区 | 夜夜爽夜夜爽视频| 高清午夜精品一区二区三区| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| 亚洲人成网站在线播| 伦精品一区二区三区| 日韩av不卡免费在线播放| 国产男人的电影天堂91| 乱系列少妇在线播放| 国产成人精品一,二区| 国产老妇女一区| 美女主播在线视频| 久久久久久久精品精品| 极品教师在线视频| 成年版毛片免费区| 久久久久久久久大av| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 亚洲成人一二三区av| 麻豆成人av视频| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 久久久色成人| 黄色欧美视频在线观看| 久久久久久九九精品二区国产| xxx大片免费视频| 热99国产精品久久久久久7| 在线观看人妻少妇| 亚洲精品aⅴ在线观看| xxx大片免费视频| 热99国产精品久久久久久7| tube8黄色片| 亚洲国产高清在线一区二区三| 久久久久久伊人网av| 国产成人免费无遮挡视频| 小蜜桃在线观看免费完整版高清| 联通29元200g的流量卡| 黄色欧美视频在线观看| 可以在线观看毛片的网站| 看黄色毛片网站| 十八禁网站网址无遮挡 | 午夜激情福利司机影院| 又爽又黄无遮挡网站| 尤物成人国产欧美一区二区三区| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 午夜亚洲福利在线播放| 别揉我奶头 嗯啊视频| 黄色日韩在线| 777米奇影视久久| 色婷婷久久久亚洲欧美| 熟女av电影| 亚洲精品,欧美精品| 中国国产av一级| 色视频www国产| 中国美白少妇内射xxxbb| 日韩人妻高清精品专区| 中国国产av一级| 成人鲁丝片一二三区免费| 国产精品99久久久久久久久| 一区二区av电影网| 禁无遮挡网站| 看黄色毛片网站| 亚洲精品,欧美精品| 日韩成人av中文字幕在线观看| 亚洲精品中文字幕在线视频 | 国产v大片淫在线免费观看| 在线精品无人区一区二区三 | 欧美激情在线99| 亚洲精品国产av蜜桃| 网址你懂的国产日韩在线| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 美女被艹到高潮喷水动态| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看| 国产v大片淫在线免费观看| 白带黄色成豆腐渣| 亚洲av男天堂| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 天堂中文最新版在线下载 | 在线观看人妻少妇| 亚洲精品视频女| 嫩草影院精品99| 久久精品久久久久久久性| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 亚洲四区av| 成年女人在线观看亚洲视频 | 晚上一个人看的免费电影| 国产精品一区二区三区四区免费观看| 国产精品国产三级国产av玫瑰| 日本欧美国产在线视频| 尾随美女入室| 免费av毛片视频| 在现免费观看毛片| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级经典国产精品| 国产成人福利小说| 女的被弄到高潮叫床怎么办| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 欧美日韩亚洲高清精品| 99精国产麻豆久久婷婷| 舔av片在线| 国产精品伦人一区二区| 日本黄大片高清| 久久久久久国产a免费观看| a级毛色黄片| 亚洲最大成人中文| 一级毛片 在线播放| 久久久久精品性色| 人妻制服诱惑在线中文字幕| www.色视频.com| 在线 av 中文字幕| 国产一区二区三区综合在线观看 | 99久久精品国产国产毛片| 大又大粗又爽又黄少妇毛片口| 日韩一本色道免费dvd| 欧美一区二区亚洲| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 亚洲av一区综合| 免费黄网站久久成人精品| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 国产在线一区二区三区精| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 亚洲国产成人一精品久久久| 永久免费av网站大全| 我要看日韩黄色一级片| 国产综合懂色| 欧美日韩在线观看h| 欧美激情在线99| 亚洲人成网站高清观看| 国产 一区精品| 欧美日韩国产mv在线观看视频 | 日韩av在线免费看完整版不卡| 黄色怎么调成土黄色| 国产在线一区二区三区精| 国产高潮美女av| 久久人人爽av亚洲精品天堂 | 九九在线视频观看精品| 超碰av人人做人人爽久久| 高清在线视频一区二区三区| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 精品人妻一区二区三区麻豆| 日韩欧美精品v在线| 久久午夜福利片| 免费人成在线观看视频色| 2021天堂中文幕一二区在线观| 国产免费视频播放在线视频| 看黄色毛片网站| 视频区图区小说| 国产精品嫩草影院av在线观看| 欧美日本视频| 高清日韩中文字幕在线| 国产一级毛片在线| 欧美精品一区二区大全| 成人无遮挡网站| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 亚洲人成网站在线播| 久久精品熟女亚洲av麻豆精品| 国产成人午夜福利电影在线观看| 午夜福利在线观看免费完整高清在| 日韩伦理黄色片| 嫩草影院新地址| 秋霞在线观看毛片| 免费少妇av软件| 插逼视频在线观看| 亚洲av男天堂| 婷婷色综合www| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| 欧美日韩综合久久久久久| 男女国产视频网站| 国产高清三级在线| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| 内射极品少妇av片p| 七月丁香在线播放| 热re99久久精品国产66热6| 你懂的网址亚洲精品在线观看| 久久影院123| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 97在线人人人人妻| 欧美日韩视频精品一区| 午夜激情福利司机影院| av在线蜜桃| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 日本色播在线视频| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 日本av手机在线免费观看| 在线观看一区二区三区激情| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 午夜亚洲福利在线播放| 免费看不卡的av| 国产成人91sexporn| 日韩一区二区三区影片| 国产精品一区二区性色av| 免费观看性生交大片5| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 特大巨黑吊av在线直播| 国产永久视频网站| 99久国产av精品国产电影| 特级一级黄色大片| 一级毛片电影观看| 精品一区二区三卡| 免费不卡的大黄色大毛片视频在线观看| 建设人人有责人人尽责人人享有的 | av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产乱人视频| 亚洲四区av| 国产精品一区二区三区四区免费观看| 美女xxoo啪啪120秒动态图| 天堂网av新在线| 久久精品久久久久久噜噜老黄| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 搡老乐熟女国产| 又爽又黄a免费视频| 日本与韩国留学比较| 亚洲精品国产av成人精品| 在线精品无人区一区二区三 | 少妇 在线观看| 国产老妇女一区| 校园人妻丝袜中文字幕| 午夜精品一区二区三区免费看| 3wmmmm亚洲av在线观看| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 高清欧美精品videossex| 免费大片黄手机在线观看| 国产亚洲最大av| 99热这里只有是精品50| 高清日韩中文字幕在线| 久久久久久久久久久丰满| 蜜臀久久99精品久久宅男| 好男人在线观看高清免费视频| 国产精品.久久久| 99九九线精品视频在线观看视频| 久久久精品免费免费高清| 美女国产视频在线观看| 亚洲av在线观看美女高潮| 国产真实伦视频高清在线观看| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 日韩欧美精品免费久久| .国产精品久久| 一级毛片久久久久久久久女| 另类亚洲欧美激情| 色哟哟·www| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩无卡精品| 成年免费大片在线观看| 国产极品天堂在线| 亚洲人与动物交配视频| 永久网站在线| 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 青春草亚洲视频在线观看| 99热这里只有是精品50| 亚州av有码| 国产爽快片一区二区三区| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花 | 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 精品一区二区三区视频在线| 日本黄大片高清| 精品久久久精品久久久| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 国产综合懂色| 爱豆传媒免费全集在线观看| 99热这里只有是精品50| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 香蕉精品网在线| 亚洲精品久久久久久婷婷小说| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 一个人看的www免费观看视频| 午夜亚洲福利在线播放| 国产成人freesex在线| 听说在线观看完整版免费高清| 波多野结衣巨乳人妻| 啦啦啦在线观看免费高清www| 久久久a久久爽久久v久久| 国产成人91sexporn| 高清毛片免费看| av国产免费在线观看| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 中文乱码字字幕精品一区二区三区| 99久久九九国产精品国产免费| 97超视频在线观看视频| 久久久亚洲精品成人影院| 国产精品av视频在线免费观看| 91精品伊人久久大香线蕉| 亚洲图色成人| 三级国产精品欧美在线观看| 日韩强制内射视频| 精品少妇久久久久久888优播| 亚洲综合精品二区| 久久影院123| 国产乱来视频区| 网址你懂的国产日韩在线| 97在线视频观看| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 日本一本二区三区精品| 2018国产大陆天天弄谢| 日韩视频在线欧美| 久久久久久国产a免费观看| 国产欧美日韩精品一区二区| 日韩强制内射视频| 久久久久久久久久成人| 日本爱情动作片www.在线观看| 欧美日本视频| 精品少妇久久久久久888优播| 在线精品无人区一区二区三 | 春色校园在线视频观看| 在线看a的网站| 久久久久网色| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 一区二区三区精品91| 一级黄片播放器| 2022亚洲国产成人精品| 国产精品一二三区在线看| 亚洲真实伦在线观看| 久久99热6这里只有精品| 一区二区三区精品91| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 成人一区二区视频在线观看| 搡老乐熟女国产| 91狼人影院| 日韩成人av中文字幕在线观看| 免费看光身美女| 久久人人爽av亚洲精品天堂 | 少妇人妻久久综合中文| 综合色av麻豆| 国产乱人偷精品视频| 亚洲熟女精品中文字幕| 蜜桃久久精品国产亚洲av| 成人国产麻豆网| 国产乱人偷精品视频| 我的女老师完整版在线观看| 在线观看一区二区三区激情| 国国产精品蜜臀av免费| 欧美日本视频| 欧美zozozo另类| 色综合色国产| 最后的刺客免费高清国语| 免费观看在线日韩| 最近2019中文字幕mv第一页| 国产精品无大码| 女的被弄到高潮叫床怎么办| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 国产亚洲午夜精品一区二区久久 | 亚洲成色77777| 亚洲综合色惰| 久久精品夜色国产| 亚洲精品自拍成人| 女人被狂操c到高潮| 五月伊人婷婷丁香| 美女高潮的动态| 三级国产精品欧美在线观看| 久久久久国产精品人妻一区二区| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影小说 | www.av在线官网国产| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 国产精品一区www在线观看| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 少妇人妻久久综合中文| 国产淫语在线视频| 国产精品女同一区二区软件| 白带黄色成豆腐渣| 一本一本综合久久| 欧美亚洲 丝袜 人妻 在线| 嘟嘟电影网在线观看| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 久久人人爽人人爽人人片va| 中国美白少妇内射xxxbb| av国产精品久久久久影院| 国产精品一区二区在线观看99| 禁无遮挡网站| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 99久久精品热视频| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 国产永久视频网站| 如何舔出高潮| 一级毛片 在线播放| 欧美潮喷喷水| 久久久久久久精品精品| 插逼视频在线观看| 免费黄色在线免费观看| 看非洲黑人一级黄片| 国产 一区 欧美 日韩| 国产成人福利小说| 伊人久久精品亚洲午夜| 亚洲国产最新在线播放| 日韩一本色道免费dvd| 一级av片app| 国产精品av视频在线免费观看| 99热这里只有是精品50| 国产精品精品国产色婷婷| 成年版毛片免费区| 成年人午夜在线观看视频| 自拍偷自拍亚洲精品老妇| 99热这里只有精品一区| 日韩三级伦理在线观看| 尾随美女入室| 亚洲国产最新在线播放| 亚洲激情五月婷婷啪啪| 精品99又大又爽又粗少妇毛片| 亚洲精品乱久久久久久| 中文资源天堂在线| 国模一区二区三区四区视频| 男的添女的下面高潮视频| 久久99热6这里只有精品| 搡女人真爽免费视频火全软件| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 国产黄片美女视频| 成年人午夜在线观看视频| 国产精品福利在线免费观看| 久久精品国产a三级三级三级| 亚洲国产欧美在线一区| 高清视频免费观看一区二区| 18禁裸乳无遮挡免费网站照片| 国产高潮美女av| 国产精品伦人一区二区| 亚州av有码| 熟女av电影| 王馨瑶露胸无遮挡在线观看| 精品人妻偷拍中文字幕| 欧美极品一区二区三区四区| 国产国拍精品亚洲av在线观看| 欧美激情国产日韩精品一区| 欧美日韩国产mv在线观看视频 | 狂野欧美激情性xxxx在线观看| 少妇高潮的动态图| 亚洲精品日本国产第一区| 国产一区二区三区av在线| 亚洲天堂国产精品一区在线| 嫩草影院精品99| 亚洲成色77777| 水蜜桃什么品种好| 久久久久精品久久久久真实原创| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 欧美日韩一区二区视频在线观看视频在线 | 国产探花在线观看一区二区| 欧美日韩视频高清一区二区三区二| 九九在线视频观看精品| 久久99热6这里只有精品| 免费av毛片视频| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 国产乱人视频| 99久久人妻综合| av一本久久久久| 五月开心婷婷网| 丝袜脚勾引网站| 精品国产乱码久久久久久小说| 日本一本二区三区精品| 观看美女的网站| 永久网站在线| 久热久热在线精品观看| 国产av不卡久久| 久久鲁丝午夜福利片| 在现免费观看毛片| 3wmmmm亚洲av在线观看| 可以在线观看毛片的网站| 69av精品久久久久久| 人妻夜夜爽99麻豆av| 晚上一个人看的免费电影| 一级片'在线观看视频| 看免费成人av毛片| 久久久久网色| 免费播放大片免费观看视频在线观看| 久热这里只有精品99| 国产精品久久久久久av不卡| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 国产视频首页在线观看| 欧美区成人在线视频| 99热6这里只有精品| 99热网站在线观看| 欧美老熟妇乱子伦牲交| 国产亚洲91精品色在线| 男人添女人高潮全过程视频| 中文资源天堂在线| 国产亚洲午夜精品一区二区久久 | 国产午夜精品久久久久久一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 久久影院123| 国产精品久久久久久久电影| 性色av一级| xxx大片免费视频| www.av在线官网国产| 国产成人aa在线观看| 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 免费观看的影片在线观看| 亚洲精品日韩av片在线观看| 欧美潮喷喷水| 久久午夜福利片| 2021天堂中文幕一二区在线观| 日本一本二区三区精品| 欧美激情在线99| 亚洲精品乱码久久久久久按摩| 久久精品国产鲁丝片午夜精品| 99九九线精品视频在线观看视频| 亚洲第一区二区三区不卡| 女的被弄到高潮叫床怎么办| 久久久久久久午夜电影| 国产有黄有色有爽视频| 香蕉精品网在线| 国国产精品蜜臀av免费| 精品国产露脸久久av麻豆| 免费看日本二区| 亚洲欧洲日产国产| 成人亚洲欧美一区二区av| 成人鲁丝片一二三区免费| 久久久国产一区二区| 人人妻人人澡人人爽人人夜夜| 国产视频内射| 一级片'在线观看视频| 久久女婷五月综合色啪小说 | 在线观看av片永久免费下载| 日日啪夜夜爽| 亚洲av一区综合| 午夜福利高清视频| 亚洲天堂国产精品一区在线| 免费观看性生交大片5| 久久久亚洲精品成人影院| 国产综合懂色| 亚洲欧美日韩卡通动漫| 男女啪啪激烈高潮av片| 真实男女啪啪啪动态图| 亚洲aⅴ乱码一区二区在线播放| 日日啪夜夜撸| 久久久久久久亚洲中文字幕| 亚洲色图综合在线观看| freevideosex欧美| 国产色婷婷99| av国产久精品久网站免费入址| 深夜a级毛片| 80岁老熟妇乱子伦牲交| 午夜福利视频1000在线观看| 欧美bdsm另类| 国产精品人妻久久久久久| 国产精品嫩草影院av在线观看| 搡女人真爽免费视频火全软件| 人人妻人人爽人人添夜夜欢视频 | 中国国产av一级| 两个人的视频大全免费| 又爽又黄a免费视频| 一区二区三区四区激情视频| 汤姆久久久久久久影院中文字幕|