• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numericaldifferentiation ofnoisy data with local optimum by data segmentation

    2015-02-10 12:26:03JianhuaZhangXiufuQueWeiChenYuanhaoHuangandLianqiaoYang

    Jianhua Zhang,Xiufu Que,WeiChen,Yuanhao Huang,and Lianqiao Yang,*

    1.Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education, Shanghai200072,China;

    2.Schoolof Mechanical&Electronic Engineering and Automation,Shanghai University,Shanghai200072,China

    Numericaldifferentiation ofnoisy data with local optimum by data segmentation

    Jianhua Zhang1,2,Xiufu Que1,2,WeiChen1,Yuanhao Huang1,and Lianqiao Yang1,*

    1.Key Laboratory of Advanced Display and System Applications(Shanghai University),Ministry of Education, Shanghai200072,China;

    2.Schoolof Mechanical&Electronic Engineering and Automation,Shanghai University,Shanghai200072,China

    A new numericaldifferentiation method with localoptimum by data segmentation is proposed.The segmentation ofdata is based on the second derivatives computed by a Fourier development method.A filtering process is used to achieve acceptable segmentation.Numerical results are presented by using the data segmentation method,compared with the regularization method. For further investigation,the proposed algorithm is applied to the resistance capacitance(RC)networks identification problem,and improvements of the result are obtained by using this algorithm.

    numerical differentiation,noisy data,local optimum, data segmentation.

    1.Introduction

    The numerical differentiation problem has been studied for years because of its importance in many scientific researches and engineering application[1–6].The obtained derivatives with high accuracy can improve the result of studies,such as the image process in astrophysical applications[7],and the structure function identification of semiconductordevice’s heat-conduction path[8,9].As differentiation is an ill-posed problem that small errors and noise contained in experimentally obtained data would lead to large errors in computed derivatives,proper methods should be taken to derive a precise approximation. Common procedures of these methods are firstfiltering the noise or errors by smoothing the data,then calculating the derivatives simply by the finite difference method.Simple methods,like polynomial or spline fitting over the entire set or short intervals of data,give a quick smoothing result and represent a gentle variation tendency of the data [10–13].Another typicalmethod of this procedure is the regularization method,which is a smoother based on penalized least squares[14–18].Smoothing by Bayesian function learning using the Markov chain Monte Carlo (MCMC)method includes assumption about the priori information of the data[19–21].Recently a number of methods are developed to provide innovation ways calculating the derivatives[22–27].A novelmethod quite differentfrom methods mentioned above computes the function and derivative estimation from the discrete Fouriercoefficients of a constructed set of the data[28–31].It uses Taylor formula artfully to derive the k-derivatives without finite difference,and offers a quite precise result.

    Although differentdifferentiation algorithms may have different rates of convergence and applicability,they all give overall controls on the computed derivatives,which may derive integral optimum results,but not local optimum.The errors atsome localderivatives can be extremely large which may cause bad influence on further computation[9].So a numerical differentiation method with local optimum by data segmentation is proposed in this paper, based on the second derivatives computed by the Fourier development method.Improved numerical results of example functions are achieved using the data segmentation method,compared with the regularization method.Moreover,this method is applied to resistance capacitance(RC) networks identification problem as a practicalapplication.

    2.Theoreticalbackground and numerical analysis

    In order to investigate the common ground of these differentiation algorithms,we take the regularization method [9]as an example,which is mostused and studied for data smoothing and differentiation.Firstwe consider a series of values y(xi)(i=1,...,N),as the experimentally measured data,and the function f(x)for y(x)=f(x)+vk(k), where f(x)is the idealnoise-free data of y,and vk(x)isthe measuring noise.The regularization method introduces a sum:

    where z is the smooth series to y,λis chosen to control the fidelity to the data and the roughness of z,and D is a matrix such that D=Δz.The idea of penalized least squares is to find the series z thatminimizes D,which can be obtained by

    There are many ways to determine the regularization parameterλ,which keeps a balance between the fidelity to the originaldata and the smoothness,and gives an overall optimum result[16].On the other hand,the fidelity to the original data and the smoothness of computed derivatives are contradictory in numericaldifferentiation and smoothing problems.To study this contradiction more clearly,we consider the function f(x):

    We choose x∈[0,1],the sample number N=500, and for the noise vkwe assume that vk~N(0,0.1).The functions f(x)and y(x)with the added noise are shown in Fig.1.

    Fig.1 Functions of f(x)and y(x)

    The functions can be approximately divided into two intervals,as we see from Fig.1,ofwhich the data in abscissa [0,0.8]vary gently,and in[0.8,1]have a sharp peak.We use the regularization method to compute the derivatives. The parameterλis chosen asλ=2 andλ=30,and the smoothed function yapp(x)and derivation yshown in Fig.2.

    Fig.2 Smoothed function and derivatives

    From Fig.2,we can see thatthe largerλis,the smoother yapp(x)would be,but with less fidelity in the interval of abscissa[0.85,0.95].This effect shown in Fig.2 is more obvious at the derivation function,where a largerλfixes the differentiation(ill-posed)problem well,but reduces derivatives at the sharp interval,and a smallerλfits the sharp intervalbetter atthe costof the fitto the gentle area getting worse.In orderto evaluate the results and also discriminate the two intervals,we pick up intervals of abscissa[0.1,0.7]and abscissa[0.85,0.95]intuitively,and the root mean square(RMS)error of each interval is calculated with differentλ,as shown in Fig.3.

    The RMS errors give an agreement to the ideas stated before,as the computed results show different variation tendencies withλchanging.Allthe othermethods presentthe same conclusions that the fidelity to the data and the smoothness cannotbe guaranteed at the same time.Some disagreements appearing at the first few values of studied parameters in Fig.3(a)and Fig.3(b),could be explained as noisy effect,that when the control parameters are too small,the fidelity of the computed result becomes better so the noise may contribute more influences on the result.

    Fig.3 Comparison of RMS errors between two intervals

    As discussed before thatthe intervals ofsharp areas and gentle areas cannot achieve the best smoothing or differentiation results at the same time,a simple idea to solve this problem tries to divide the data into severalsegments and using proper parameters to compute with corresponding segments,which willbe discussed in the nextsection.

    3.Localoptimum by data segmentation

    The firstdifferentiation problem is mainly considered here. In order to achieve localoptimum for derivative computation,we try to divide the first derivatives into several segmentations,where the second derivatives of the data can be a good criterion for it can describe the first derivative’s changing rate.The Fourier development method[28]is chosen here to compute the second derivatives,because it has acceptable accuracy and can be computed withoutthe first derivatives.The second derivatives of function f(x) with the computing parameter u0=0.014 are shown in Fig.4(a).From the figure,we can see there are still a lot oflarge noise and errors contained in the computed second derivatives,so a smoother is applied by using the regularization method withλ=10(see Fig.4(b)).

    Fig.4 Second derivatives

    For the smoothed second derivatives,the values near zero mean the corresponding first derivatives change gently,while values away from zero mean corresponding derivatives change sharply.Here,we define the segmentation number Snumas the identification weightof the computed y(2)(xi)(i=1,...,N)as follows:

    where Sv is the segmentation value defined by users.The connecting data with the same Snumare defined as one segment,and Nnumis defined as the length of each segment,referring to the number of the data in this segment. The segmentation value Sv should be chosen to ensure that segments of Snumcontain enough data which have large second derivatives,and the data with relatively small second derivativesare classified into segments of Snum=0.5.Here we use Sv=1 200,and the Snumfunction applied for Fig.4(b)is shown in Fig.5.The Snumvalues of abscissa about[0.875,0.925]are assigned to 1 as expected, but there are some exceptions at about abscissa 0.89 and 0.91.These exceptions divide the sharp interval[0.875, 0.925]into three parts,which should be classified into one part.So a filtering process is applied to the Snumseries here.Considering the complexity of the measuring data, we define the filtering process as the algorithm shown in Fig.6(a),the parameters a and b are defined by the user according to the sampling rate of the data.We use a=4 and b=8 in the filter for the Snumfunction in Fig.5.The function Snumwith the filtering process applied is shown in Fig.6(b).

    Fig.5 Snumfunction

    Fig.6 The algorithm of filtering process and Snumfunction with the filtering process applied

    The Snumfunction of Fig.6 shows an acceptable segmentation of the originaldata.When an acceptable Snumfunction is achieved,we can apply the numerical method with different parameters to the two-kind segments of data,oreven apply differentmethods forcertain situations, which is stated in(5).

    where i=1,...,N.

    Fig.7 Derivatives computed by data segmentation method

    The derivatives computed with data segmentation using a combination of the Fourier developmentmethod and the Bayesian method show some improvements for each segments compared with derivatives shown in Fig.2(b).Some large errors occur atthe jointof differentsegments,whichis a common problem nearthe sharp area when the smoothness is mainly emphasized.A procedure is taken to reduce this problem,that the data of the sharp area are removed and filled with the data just nearby.Taking function y(x) in Fig.1(b)for example,the refilled data for computing derivatives of Snum=0.5 are shown in Fig.8.And original measured data are used for computing derivatives of Snum=1.The optimal derivatives are shown in Fig.9. The errors atthe joint partare reduced compared with the function in Fig.7.

    Fig.8 y(x)with refilled data

    Fig.9 Derivatives computed by data segmentation method with refilled data

    4.Numericalresults

    Numerical results of different functions presented in[28] are calculated in this section,using the data segmentation method described in Section 3,compared with the regularization method.As mentioned before,for each function f(x)we add a noise vk(x)and get the simulated measuring signal y(x)=f(x)+vk(x).Still we assume thatthe noise vkhas a Gaussian distribution of N(0,σ2),whereσ2is a given parameter.

    4.1 Example 1

    For example 1,we consider the function

    We choose the parameters as x∈[0,1],sample number N=500,and forthe noise vkwe assume vk~N(0,0.1). The function f(x)and y(x)are shown in Fig.10.

    Fig.10 Function(x∈[0,1])

    For data segmentation we choose the parameters u0= 0.02,λ=10 and Sv=900.The Snumfunction is shown in Fig.11(b).The derivatives shown in Fig.12(a)are computed with the Fourier developmentmethod ofμ0=0.26 to the data of Snum=0.5,and with the Bayesian method ofσ2=0.1 to the data of Snum=1.The segmentation function distinguishes the sharp intervals nearabscissa x=0.6 and x=0.8.Compared with derivatives computed by the regularization method,the derivatives with data segmentation present smoother results for gentle intervals of Snum=0.5,and more accurate values for sharp intervals of Snum=1.

    Fig.11 Smoothed second derivatives and Snumfunction

    Fig.12 Comparison of derivatives by two methods

    4.2 Example 2

    For the second example,we consider the function

    We choose x∈[?5,5],the sample number N=500,and for the noise vkwe assume vk~N(0,0.1).The function has discontinuity on f(x)and f(1)(x)at xThe functions f(x)and y(x)are shown in Fig.13.

    Fig.13 Function(x∈[?5,5])

    For data segmentation we choose the parameters u0= 0.03,λ=20 and Sv=2,and the Snumfunction is shown in Fig.14(b).The derivatives are computed with the Fourier developmentmethod ofμ0=0.06 to the data of Snum=0.5,and with the Bayesian method ofσ2=3 to the data of Snum=1,and are shown in Fig.15(a).The segmentation function distinguishes a sharp intervalatabscissa x=1 2.Comparing Fig.15(a)with Fig.15(b),both the results of gentle intervals and sharp intervals make improvements by the data segmentation method.

    Fig.14 Smoothed second derivatives and Snumfunction

    Fig.15 Comparison of derivatives by two methods

    5.Example in practice

    The issue of transient thermal measurement for semiconductor devices using a function-map to describe the physical structure of the heat removing path is dealt as the identification of RC networks from their time-domain or frequency-domain response,which can be carried out by the network identification by deconvolution(NID)method [9].Here we justdiscuss the influence ofthe differentiation process on the identification problem.An RC one-portnetwork is shown in Fig.16(a),and the calculated response of the Z(jω)port-impedance is shown in Fig.16(b).

    A Gaussian distributed noise vk~N(0,0.1)is added to the real part of Z(jω).We use the data segmentation method and the regularization method to calculate the derivativesof Re(Z(ω)).For data segmentation we choose the parameters u0=0.02,λ=10 and Sv=10 000. The Snumfunction is shown in Fig.17.The derivatives are computed with the Fourier development method of μ0=0.26 to the data of Snum=0.5,and with the Bayesian method ofσ2=0.1 to the data of Snum=1.

    The derivatives of Re(Z(ω))is shown in Fig.18(a),and the R(Ω)function is carried out by the NID method,as shown in Fig.18(b).In Fig.18(a),the derivatives calculated by the data segmentation method show a better accuracy at the interval around f=5 036.5 Hz.From the R(Ω)function in Fig.18(b),we just expect the function depicts the pole-pattern of the circuit,but only one peak lying at f=5 036.5 Hz is clearly identified due to the noise corruption effect,and the two functions derived from derivativesofdifferentmethods differwidely.We can builda finite Foster network by discretization of the R(Ω)function,and the corresponding approximation complex locus can be derived,as shown in Fig.19,in which the function derived from the data segmentation method gives a better result.

    Fig.17 Snumfunction

    Fig.18 First derivatives of Re(Z(ω))and identified R(Ω) function

    Fig.19 Comparison between the exact complex locus and the approximations derived from the R(Ω)function in Fig.18(b)

    6.Conclusions

    A local optimum problem of the existing numericalalgorithms to calculate the derivatives of noisy data are discussed in this paper,and it is concluded that the fidelity to the data and the smoothness cannot be guaranteed at the same time using these algorithms.When the derivatives ofgentle intervals are computed with higheraccuracy, they would have more distortion at the sharp intervals.A numerical differentiation method with local optimum by data segmentation,on the basis of second derivatives computed by the Fourier development method,is proposed to solve this problem on a certain degree.The noisy data are sorted into two kinds of segments,and different methods with properparameters are applied to these segments.The numericalresults achieve more accuracy forboth gentle intervals and sharp intervals.As choosing the parameters of differentmethods used in the data segmentation are complicated,the rules to determine the optimum parameters willbe studied in the furtherwork.

    [1]L.Yang.A perturbation method for numericaldifferentiation. Applied Mathematics and Computation,2008,199(1):368–374.

    [2]Z.Y.Zhao,Z.H.Meng,G.Q.He.A new approach to numericaldifferentiation.Journal ofComputationaland Applied Mathematics,232(2):227–239.

    [3]H.N.Mhaskar,V.Naumova,S.V.Pereverzyev.Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions. Applied Mathematics and Computation,2013,224(1):835–847.

    [4]S.Riachy,M.Mboup,J.P.Richard.Multivariate numerical differentiation.Journal of Computationaland Applied Mathematics,2011,236(6):1069–1089.

    [5]W.Y.Choi.A new method forstable numericaldifferentiation. Current Applied Physics,2009,9(6):1463–1466.

    [6]G.H.Gao,Z.Z.Sun,H.W.Zhang.A new fractionalnumerical differentiation formula to approximate the Caputo fractional derivative and its applications.Journal of Computational Physics,2014,259:33–50.

    [7]N.Oppermann,G.Robbers,T.A.En?lin.Reconstructing signals from noisy data with unknown signal and noise covariance.Physical Review E-Statistical,Nonlinear,and SoftMatter Physics,2011,84(4):041118-1-10.

    [8]V.Sz′ekely.Anew evaluation method ofthermaltransientmeasurement results.Microelectronics Journal,1997,28:277–292.

    [9]V.Sz′ekely.Identification of RC networks by deconvolution: chances and limits.IEEE Trans.on Circuits and Systems I: Fundamental Theory and Applications,1998,45(3):244–258.

    [10]P.Reyneke,N.Morrison,D.Kourie,etal.Smoothing irregular data using polynomialfilters.Proc.ofthe Conference on IEEE Electronics in Marine,2010:393–397.

    [11]N.Rodriguez,E.Yaez.Wavelet smoothing based multivariate polynomialfor anchovy catches forecasting.Proc.of Conference on Computational Intelligence and Security,2009,1: 38–41.

    [12]P.H.C.Eilers,B.D.Marx.Flexible smoothing with B-splines and penalties.Statistical Science,1996,11(2):89–121.

    [13]H.Kano,H.Nakata,C.F.Martin.Optimalcurve fitting and smoothing using normalized uniform B-splines:a tool for studying complex systems.Applied Mathematics and Computation,2005,169(1):96–128.

    [14]J.J.Stickel.Data smoothing and numericaldifferentiation by a regularization method.Computers and ChemicalEngineering, 2010,34:467–475.

    [15]P.H.C.Eilers.A perfect smoother.Analytical Chemistry, 2003,75(14):3631–3636.

    [16]D.N.H`ao,L.H.Chuong,D.Lesnic.Heuristic regularization methods for numerical differentiation.Computers and Mathematics with Applications,2012,63(4):816–826.

    [17]J.Cullum.Numericaldifferentiation and regularization.SIAM Journal on Numerical Analysis,1971,8(2):254–265.

    [18]S.Lu,S.Pereverzev.Numerical differentiation from a viewpointof regularization theory.Mathematics and Computation, 2006,75(256):1853–1870.

    [19]P.Magni,R.Bellazzi,G.D.Nicolao,etal.Bayesian function learning using MCMC methods.IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20(12):1319–1331.

    [20]E.Punskaya,C.Andrieu,A.Doucet,etal.Bayesian curve fitting using MCMC applications to signal segmentation.IEEE Trans.on Signal Processing,2002,50(3):747–758.

    [21]M.Sanquer,F.Chatelain,M.El-Guedri,et al.A reversible jump MCMC algorithm for Bayesian curve fitting by using smooth transition regression models.Proc.of the IEEE InternationalConference on Acoustics,Speech and SignalProcessing,2011:3960–3963.

    [22]R.Malgouyres,F.Brunet,S.Fourey.Binomial convolution and derivatives estimation from noisy discretizations.Lecture Notes in Computer Science,2008:370–379.

    [23]Z.Y.Zhao,J.F.Liu.Hermite spectral and pseudospectralmethods for numerical differentiation.Applied Numerical Mathematics,2011,61(12):1322–1330.

    [24]Z.W.Wang,R.S.Wen.Numerical differentiation for high orders by an integration method.Journal of Computational and Applied Mathematics,2010,234(3):941–948.

    [25]D.Y.Liu,O.Gibaru,W.Perruquetti.Differentiation by integration with Jacobi polynomials.Journal of Computational and Applied Mathematics,2011,235(9):3015–3032.

    [26]G.Schmeisser.Numericaldifferentiation inspired by a formula of R.P.Boas.Journal of Approximation Theory,2009(1–2): 202–222.

    [27]F.F.Dou,C.L.Fu,Y.J.Ma.A wavelet-Galerkin method for high ordernumericaldifferentiation.Applied Mathematics and Computation,2010,215(10):3702–3712.

    [28]F.Jauberteau,J.L.Jauberteau.Numericaldifferentiation with noisy signal.Applied Mathematics and Computation,2009, 215:2283–2297.

    [29]Z.Qian,C.L.Fu,X.T.Xiong,etal.Fouriertruncation method forhigh ordernumericalderivatives.Applied Mathematics and Computation,2006,181(2):940–948.

    [30]C.C.Tseng,S.C.Pei,S.C.Hsia.Computation of fractional derivatives using Fourier transform and digital FIR differentiator.SignalProcessing,2000,80(1):151–159.

    [31]O.Hendl,J.A.Howell,J.Lowery,et al.A rapid and simple method for the determination of iodine values using derivative Fourier transform infrared measurements.Analytica Chimica Acta,2001,427(1):75–81.

    Biographies

    Jianhua Zhangwas born in 1972.She is a professor of photoelectronic and mechanical engineering with Shanghai University,Shanghai,China.She is the head of the Light-Emitting Diode(LED)and Organic Light-Emitting Diode(OLED)Center,and the executive director of the Key Laboratory for Advance Display Technology and System Applications,Ministry of Education,China.She is also the leader of Shanghai New Display Design and Fabrication and System Applications,Shanghai.Hercurrentresearch interests include highpower LEDs,OLED devices,and thin film technology.

    E-mail:jhzhang@staff.shu.edu.cn

    Xiufu Que was born in 1990.She received her B.S. degree from Shanghai University,Shanghai,China, in 2013,and she is studying for her master’s degree in ShanghaiUniversity.Hercurrentresearch interest is developmentofthermal measurement equipment. E-mail:quexf@shu.edu.cn

    Wei Chenwas born in 1990.He received his B.S. degree from Hefei University of Technology,Anhui,China,in 2012,and he is studying for his master’s degree in Shanghai University.His current research interest is development of thermal measurementequipment.

    E-mail:870382998@qq.com

    Yuanhao Huangwas born in 1987.He received his B.S.and master degrees from Shanghai University, Shanghai,China,in 2010 and 2013,respectively. His currentresearch interest is development of thermalmeasurementequipment.

    E-mail:675379392@qq.com

    Lianqiao Yangwas born in 1979.She received her B.S.degree from Wuhan University,Wuhan,China, in 2004,and M.S.and Ph.D.degrees from Myongji University,Seoul,Korea,in 2006 and 2009,respectively.She joined Shanghai University,Shanghai, China,in 2009.Her current research interests include thermal design of opto-electronics and developmentof thermalmeasurement equipment.

    E-mail:yanglianqiao@shu.edu.cn

    10.1109/JSEE.2015.00094

    Manuscript received May 13,2014.

    *Corresponding author.

    This work was supported by the National Basic Research Program of China(2011CB013103).

    我要搜黄色片| 一本久久中文字幕| 男女做爰动态图高潮gif福利片| 欧美日韩精品网址| 高清毛片免费观看视频网站| 国产精品综合久久久久久久免费| 天堂av国产一区二区熟女人妻| 亚洲精品456在线播放app | 成年免费大片在线观看| 亚洲一区高清亚洲精品| 美女高潮的动态| 久久精品国产99精品国产亚洲性色| 国产精品 欧美亚洲| 精品国内亚洲2022精品成人| 搡老熟女国产l中国老女人| 日本一本二区三区精品| 丰满人妻一区二区三区视频av | 村上凉子中文字幕在线| 12—13女人毛片做爰片一| 国产精品98久久久久久宅男小说| 网址你懂的国产日韩在线| 亚洲国产精品合色在线| 欧美乱色亚洲激情| 人妻丰满熟妇av一区二区三区| 国产成人啪精品午夜网站| 99热这里只有精品一区| 最后的刺客免费高清国语| 搡老妇女老女人老熟妇| www.999成人在线观看| 国产午夜精品久久久久久一区二区三区 | 一本综合久久免费| 国产中年淑女户外野战色| 成人特级av手机在线观看| 欧美性感艳星| 亚洲成人久久性| 日韩精品青青久久久久久| 动漫黄色视频在线观看| 国产精品99久久久久久久久| 最后的刺客免费高清国语| 99国产精品一区二区蜜桃av| 国产伦人伦偷精品视频| 亚洲欧美日韩无卡精品| 国产午夜福利久久久久久| 99热这里只有是精品50| 久久草成人影院| 亚洲一区高清亚洲精品| 午夜精品久久久久久毛片777| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 久99久视频精品免费| www国产在线视频色| 特大巨黑吊av在线直播| 亚洲国产精品久久男人天堂| 日韩欧美国产在线观看| 国产激情偷乱视频一区二区| 午夜视频国产福利| 国产精品野战在线观看| 亚洲一区二区三区不卡视频| h日本视频在线播放| 人妻夜夜爽99麻豆av| 最好的美女福利视频网| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 婷婷精品国产亚洲av在线| 午夜a级毛片| 久久久成人免费电影| 麻豆国产97在线/欧美| 一级a爱片免费观看的视频| 精品久久久久久,| 欧美在线黄色| 日韩成人在线观看一区二区三区| 少妇人妻一区二区三区视频| 热99在线观看视频| 色在线成人网| 一进一出好大好爽视频| 亚洲国产欧洲综合997久久,| 国产私拍福利视频在线观看| 听说在线观看完整版免费高清| 男女之事视频高清在线观看| 国产精华一区二区三区| 女人被狂操c到高潮| 日本在线视频免费播放| 中文字幕av在线有码专区| 国语自产精品视频在线第100页| 黄色日韩在线| 午夜福利在线观看免费完整高清在 | 日本成人三级电影网站| 亚洲国产精品999在线| 国产精品久久久人人做人人爽| av欧美777| 他把我摸到了高潮在线观看| 天天添夜夜摸| 精品乱码久久久久久99久播| 亚洲人与动物交配视频| 97超级碰碰碰精品色视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产又黄又爽又无遮挡在线| 一本综合久久免费| 久久精品91蜜桃| 亚洲国产精品sss在线观看| 亚洲激情在线av| 亚洲精品粉嫩美女一区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美网| 天堂√8在线中文| 黄色视频,在线免费观看| 禁无遮挡网站| 99热6这里只有精品| 男女那种视频在线观看| netflix在线观看网站| av福利片在线观看| 日韩欧美 国产精品| 亚洲美女黄片视频| 高清日韩中文字幕在线| 床上黄色一级片| 亚洲av免费在线观看| 精品久久久久久久毛片微露脸| 欧美zozozo另类| 中亚洲国语对白在线视频| 热99re8久久精品国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品久久男人天堂| 中文字幕av在线有码专区| 国产精品一区二区三区四区免费观看 | 亚洲欧美一区二区三区黑人| 在线观看免费视频日本深夜| 成人永久免费在线观看视频| 99精品久久久久人妻精品| 熟妇人妻久久中文字幕3abv| 成熟少妇高潮喷水视频| 淫秽高清视频在线观看| 少妇裸体淫交视频免费看高清| 1024手机看黄色片| 蜜桃久久精品国产亚洲av| 又黄又粗又硬又大视频| 亚洲成人久久性| 他把我摸到了高潮在线观看| 国产精品久久久久久人妻精品电影| 热99re8久久精品国产| 国内久久婷婷六月综合欲色啪| 国产亚洲精品综合一区在线观看| 老司机在亚洲福利影院| 精品福利观看| 丁香欧美五月| 日韩欧美免费精品| 1024手机看黄色片| 亚洲国产精品久久男人天堂| 国产精品亚洲美女久久久| 午夜免费成人在线视频| 深夜精品福利| 免费看十八禁软件| 在线免费观看不下载黄p国产 | 成年版毛片免费区| 午夜日韩欧美国产| 欧美区成人在线视频| 一进一出好大好爽视频| 久久亚洲真实| 亚洲精品乱码久久久v下载方式 | 女人十人毛片免费观看3o分钟| 首页视频小说图片口味搜索| av专区在线播放| 熟女电影av网| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 久久久国产成人精品二区| 免费av观看视频| 亚洲 国产 在线| 久久久国产精品麻豆| 熟女人妻精品中文字幕| av专区在线播放| 国产免费一级a男人的天堂| 男女床上黄色一级片免费看| 黄片大片在线免费观看| 国产单亲对白刺激| 国产伦一二天堂av在线观看| 亚洲真实伦在线观看| 天天添夜夜摸| xxxwww97欧美| 欧美乱码精品一区二区三区| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| 成人av在线播放网站| 国内精品久久久久精免费| 国产午夜福利久久久久久| 亚洲av美国av| 国产亚洲精品久久久com| 国产又黄又爽又无遮挡在线| 在线天堂最新版资源| 色吧在线观看| 俺也久久电影网| 两个人看的免费小视频| 久久香蕉精品热| 久久中文看片网| 给我免费播放毛片高清在线观看| 制服人妻中文乱码| 亚洲成人免费电影在线观看| 丰满人妻一区二区三区视频av | 国产久久久一区二区三区| 一个人观看的视频www高清免费观看| 国产精品 国内视频| 日本 欧美在线| 久久久久久久久久黄片| 国产一区二区三区在线臀色熟女| 国产精品亚洲一级av第二区| 国产精品99久久99久久久不卡| 午夜福利在线观看免费完整高清在 | 操出白浆在线播放| 免费一级毛片在线播放高清视频| 午夜福利高清视频| 长腿黑丝高跟| 欧美黑人巨大hd| 91麻豆av在线| 国产探花极品一区二区| 亚洲美女黄片视频| 亚洲av电影在线进入| 51国产日韩欧美| 91在线观看av| 日韩欧美国产一区二区入口| 成人特级av手机在线观看| 欧美日韩福利视频一区二区| 国产成人av激情在线播放| 身体一侧抽搐| 深夜精品福利| 精品欧美国产一区二区三| 久久人妻av系列| 熟女电影av网| 丰满人妻一区二区三区视频av | 成人一区二区视频在线观看| 他把我摸到了高潮在线观看| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 热99re8久久精品国产| 麻豆成人av在线观看| 免费看美女性在线毛片视频| 亚洲激情在线av| 国产精品日韩av在线免费观看| 亚洲av免费高清在线观看| 一级黄片播放器| 国产亚洲精品av在线| 亚洲真实伦在线观看| 国产精品女同一区二区软件 | 成人三级黄色视频| 我要搜黄色片| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| 亚洲片人在线观看| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 亚洲中文字幕日韩| 亚洲无线在线观看| 少妇的丰满在线观看| 两个人的视频大全免费| 一区二区三区免费毛片| 在线十欧美十亚洲十日本专区| 国产一区二区亚洲精品在线观看| 国内精品久久久久精免费| 日本 av在线| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 长腿黑丝高跟| 国产综合懂色| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 91字幕亚洲| 久久久久九九精品影院| 欧美最新免费一区二区三区 | 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 有码 亚洲区| 亚洲国产精品久久男人天堂| 一a级毛片在线观看| aaaaa片日本免费| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 一本综合久久免费| 天天添夜夜摸| 欧美高清成人免费视频www| 天堂动漫精品| 淫妇啪啪啪对白视频| 少妇丰满av| 97超级碰碰碰精品色视频在线观看| 老汉色∧v一级毛片| 一区二区三区免费毛片| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 亚洲无线在线观看| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 18禁国产床啪视频网站| 精品久久久久久久久久久久久| 91av网一区二区| 久久久久性生活片| 亚洲一区二区三区色噜噜| 乱人视频在线观看| 成人18禁在线播放| 亚洲电影在线观看av| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 亚洲无线观看免费| 欧美bdsm另类| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月| 久久久色成人| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲国产精品成人综合色| 久久精品影院6| 少妇人妻精品综合一区二区 | 蜜桃久久精品国产亚洲av| www.熟女人妻精品国产| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区| 成年女人毛片免费观看观看9| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线观看网站| www国产在线视频色| 国产免费男女视频| 国产真人三级小视频在线观看| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 精品一区二区三区人妻视频| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 麻豆久久精品国产亚洲av| 18禁在线播放成人免费| 亚洲男人的天堂狠狠| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 精品午夜福利视频在线观看一区| 午夜两性在线视频| 偷拍熟女少妇极品色| 欧美大码av| 免费看a级黄色片| 亚洲国产精品成人综合色| 亚洲在线观看片| 亚洲精品一区av在线观看| 亚洲精品久久国产高清桃花| 美女被艹到高潮喷水动态| 国产精品香港三级国产av潘金莲| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 国产男靠女视频免费网站| 久久精品91无色码中文字幕| 在线观看美女被高潮喷水网站 | 免费看光身美女| 欧美性猛交╳xxx乱大交人| 国产成人av激情在线播放| 美女大奶头视频| 69人妻影院| 国产色爽女视频免费观看| 在线a可以看的网站| 99久久精品热视频| 18禁黄网站禁片午夜丰满| 草草在线视频免费看| 最近视频中文字幕2019在线8| 首页视频小说图片口味搜索| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 熟女少妇亚洲综合色aaa.| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| av专区在线播放| 国产成人系列免费观看| 在线观看午夜福利视频| 国产精品野战在线观看| 亚洲国产精品999在线| 国产淫片久久久久久久久 | 美女 人体艺术 gogo| 窝窝影院91人妻| av国产免费在线观看| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| www.色视频.com| 久99久视频精品免费| 亚洲国产欧美网| 精品国产三级普通话版| 1024手机看黄色片| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区久久| 美女高潮的动态| 亚洲精品在线美女| 国产黄色小视频在线观看| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 国产黄色小视频在线观看| 高潮久久久久久久久久久不卡| 亚洲精品成人久久久久久| 亚洲最大成人手机在线| 国产乱人伦免费视频| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 亚洲国产精品sss在线观看| 国产中年淑女户外野战色| 叶爱在线成人免费视频播放| 国产亚洲欧美98| 91麻豆精品激情在线观看国产| 免费av毛片视频| 国产主播在线观看一区二区| 精华霜和精华液先用哪个| 亚洲乱码一区二区免费版| av国产免费在线观看| 亚洲真实伦在线观看| 两个人看的免费小视频| 18+在线观看网站| 一级黄色大片毛片| av中文乱码字幕在线| 亚洲av二区三区四区| 动漫黄色视频在线观看| 亚洲精品一区av在线观看| 露出奶头的视频| 成人av在线播放网站| 看免费av毛片| 波野结衣二区三区在线 | 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 国产成年人精品一区二区| 搡老妇女老女人老熟妇| 免费观看的影片在线观看| 国产中年淑女户外野战色| 亚洲狠狠婷婷综合久久图片| 久久九九热精品免费| 99热这里只有精品一区| 国产精品1区2区在线观看.| 亚洲性夜色夜夜综合| 少妇人妻精品综合一区二区 | 国内毛片毛片毛片毛片毛片| 桃红色精品国产亚洲av| 国产v大片淫在线免费观看| 18禁黄网站禁片午夜丰满| 老司机午夜福利在线观看视频| 啦啦啦韩国在线观看视频| 欧美日韩黄片免| 露出奶头的视频| 性欧美人与动物交配| 熟女电影av网| av欧美777| 久久久久久大精品| 久久天躁狠狠躁夜夜2o2o| xxxwww97欧美| 久久久久久久久中文| 深爱激情五月婷婷| 国产又黄又爽又无遮挡在线| 亚洲国产中文字幕在线视频| 国产探花极品一区二区| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 久9热在线精品视频| 国产精品野战在线观看| 人人妻人人澡欧美一区二区| 日本a在线网址| 久久久久精品国产欧美久久久| av在线蜜桃| 中文字幕熟女人妻在线| 色av中文字幕| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 99久久综合精品五月天人人| 99视频精品全部免费 在线| 日韩欧美一区二区三区在线观看| 欧美中文综合在线视频| 黄片小视频在线播放| 一级毛片女人18水好多| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 久久精品91无色码中文字幕| 国产精品综合久久久久久久免费| 国产精品亚洲av一区麻豆| 亚洲片人在线观看| 欧美一级a爱片免费观看看| 亚洲av日韩精品久久久久久密| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| 2021天堂中文幕一二区在线观| 免费看日本二区| 一进一出好大好爽视频| 亚洲av中文字字幕乱码综合| 性色av乱码一区二区三区2| 婷婷精品国产亚洲av| 男人和女人高潮做爰伦理| 日韩精品青青久久久久久| 欧美一级毛片孕妇| 色吧在线观看| 日韩欧美在线乱码| 男女视频在线观看网站免费| 亚洲中文字幕一区二区三区有码在线看| 国内精品久久久久久久电影| av欧美777| 国内精品久久久久精免费| 嫩草影院精品99| 国语自产精品视频在线第100页| 亚洲成av人片免费观看| 国产三级在线视频| 欧美国产日韩亚洲一区| 国产av不卡久久| 国产精品亚洲美女久久久| 精品久久久久久久末码| 久久久久久人人人人人| 国产成人欧美在线观看| 国产精品,欧美在线| 一区二区三区国产精品乱码| 久久6这里有精品| 精品国产超薄肉色丝袜足j| 在线看三级毛片| 婷婷六月久久综合丁香| a级一级毛片免费在线观看| 国产黄色小视频在线观看| 99视频精品全部免费 在线| 午夜激情欧美在线| 婷婷六月久久综合丁香| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 1000部很黄的大片| 久久草成人影院| 黄片小视频在线播放| 亚洲国产日韩欧美精品在线观看 | 成人一区二区视频在线观看| 性色av乱码一区二区三区2| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 午夜a级毛片| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 老汉色∧v一级毛片| 性欧美人与动物交配| 亚洲,欧美精品.| 国产午夜精品论理片| 久久久久国内视频| 欧美又色又爽又黄视频| 日本三级黄在线观看| 欧美性猛交黑人性爽| 天天一区二区日本电影三级| 毛片女人毛片| 久久人人精品亚洲av| 级片在线观看| 18禁在线播放成人免费| 久久精品91蜜桃| 成年免费大片在线观看| 久久久成人免费电影| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 国产99白浆流出| 欧美黄色淫秽网站| 久久中文看片网| 国产成+人综合+亚洲专区| 男插女下体视频免费在线播放| 国产野战对白在线观看| 亚洲人成网站高清观看| 国产黄色小视频在线观看| 色哟哟哟哟哟哟| 老司机午夜福利在线观看视频| 波多野结衣高清作品| 又黄又粗又硬又大视频| 青草久久国产| 日韩成人在线观看一区二区三区| 国产精品一区二区免费欧美| 日韩欧美免费精品| 亚洲中文字幕一区二区三区有码在线看| 少妇的丰满在线观看| 岛国视频午夜一区免费看| 免费看光身美女| 麻豆国产av国片精品| 18禁黄网站禁片免费观看直播| 天堂网av新在线| 女人十人毛片免费观看3o分钟| 日本免费一区二区三区高清不卡| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 成人国产综合亚洲| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区| 亚洲成av人片在线播放无| 18禁裸乳无遮挡免费网站照片| 国产三级在线视频| 午夜精品一区二区三区免费看| 51午夜福利影视在线观看| 国产精品综合久久久久久久免费| 日本在线视频免费播放| 噜噜噜噜噜久久久久久91| 日本成人三级电影网站| 欧美3d第一页| 亚洲av成人av| 亚洲av五月六月丁香网| 午夜激情福利司机影院| 亚洲av美国av| 国产毛片a区久久久久| x7x7x7水蜜桃| 97超视频在线观看视频| 国内精品一区二区在线观看| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三| 特级一级黄色大片| av女优亚洲男人天堂| 久久婷婷人人爽人人干人人爱| 国产熟女xx| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 欧美日韩国产亚洲二区| 麻豆成人午夜福利视频| 国产免费av片在线观看野外av| 香蕉久久夜色| 欧美日韩一级在线毛片| 久久99热这里只有精品18| 国产亚洲精品一区二区www| 99在线视频只有这里精品首页| 久久亚洲精品不卡| 在线观看舔阴道视频| 亚洲av免费高清在线观看|