• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimalship imaging for shore-based ISAR using DCF estimation

    2015-02-10 12:25:39LingWangZhenxiaoCaoNingLiTengJingandDaiyinZhu

    Ling Wang,Zhenxiao Cao,Ning Li,Teng Jing,and Daiyin Zhu

    1.Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;

    2.Departmentof Space Microwave Remote Sensing System,Institute of Electronics,Chinese Academy of Sciences, Beijing 100190,China

    Optimalship imaging for shore-based ISAR using DCF estimation

    Ling Wang1,*,Zhenxiao Cao1,Ning Li2,Teng Jing1,and Daiyin Zhu1

    1.Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;

    2.Departmentof Space Microwave Remote Sensing System,Institute of Electronics,Chinese Academy of Sciences, Beijing 100190,China

    The optimalimaging time selection of ship targets for shore-based inverse synthetic aperture radar(ISAR)in high sea conditions is investigated.The optimalimaging time includes optimalimaging instants and optimalimaging duration.A novelmethod for optimalimaging instants selection based on the estimation of the Doppler centroid frequencies(DCFs)of a series of images obtained over continuous short durations is proposed.Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria,this method can provide the ship images with the highest focus.Simulated and realdata processing results verify the effectiveness of the proposed imaging method.

    inverse synthetic aperture radar(ISAR),ship target, optimalimaging time selection,Dopplercentroid frequency(DCF).

    1.Introduction

    Inverse synthetic aperture radar(ISAR)can obtain two-dimensional(2D)high resolution images of noncooperative moving targets under all weather and all day [1,2].An ISAR system usually obtains high range resolution by transmitting large bandwidth signals combined with the pulse compression technique,and obtains high cross-range resolution by coherently integrating the echoes backscattered from differentaspectangles[1,2].

    As compared with the ISAR imaging of aircraftand vehicles,the characteristic of the ship imaging is that the ship angularmotion(including yaw,pitch and roll)induced by the ocean waves can be used to achieve the desired cross-range resolution[3].However,the ship motion is three-dimensional(3D)and time-varying,which increases the difficulty of the ISAR imaging[4].

    A number of ISAR imaging algorithms for ship targets have been proposed in literature[5–13],which mainly utilize the time-frequency analysis methods[5–8],cleanbased methods[9,10],and optimaltime selection methods [11–13].Moreover,the methods based on Markovian approach[14],parameter estimation[15],and match Fourier transform[16]also have been proposed.Time-frequency analysis methods are time-consuming and suffer from well-known cross-term interference[5–8].The methods using clean techniques need the searching of parameters and are also time-consuming[9,10].The methodsbased on optimaltime selection can achieve high-quality images for targetrecognition and allow a complete real-time imaging and surveillance operations in wide sea areas[11–13,17]. In[11],Doppler spread of ship ISAR images was used as an indicator to select good ship images,and this method can work in real time,but it needs to set a threshold to segmentthe target from the background which influences the accuracy ofthe estimates.Furthermore,Dopplerspread can only reflect the absolute value of the effective rotation vector(ERV)of the ship.In[12],the maximum contrast based time selection method was proposed,which can obtain high focused plane orship images automatically,however,the performance of this method will be decreased in high sea conditions.In[13],a slope-based time selection method was proposed,which is able to select the time instants better suited for top or side view image formation and estimate the rotation motion for image cross-range scaling.Nevertheless,this method needs to know geometricalrelation between radar and the targetpreviously.

    In this paper,an optimal-time-selection based ship imaging method is proposed for shore-based ISAR.A novel method that relies on measuring the Doppler centroid frequency(DCF)of a sequence of sub-images gener-ated with successive sub-intervals is proposed to estimate the variations ofthe ERV.The optimalimaging instants are determined according to the change of the ERV.The optimalimaging duration centred with the chosen time instant is determined by maximizing the image contrast[12].The proposed method does notneed any priorknowledge about the target shape and geometrical relation.Furthermore,it can work automatically in high sea conditions.Processing results using simulated and real data demonstrate the effectiveness of the proposed method.

    The organization ofthispaperis as follows.In Section 2, the received signal model is developed.In Section 3,the ERV variation estimation method is presented,which relies on the DCF estimation.In Section 4,the algorithm for optimal imaging time selection is presented.In Section 5, simulated and real data processing results are presented. Section 6 gives the conclusions.

    2.Signalmodel

    The shore-based ship ISAR imaging geometry is shown in Fig.1.(X,Y,Z)is an inertial reference system which acts as the absolute reference system with O being the origin.(XS,YS,ZS)is a local coordinate system embedded on the ship body.The XS,YSand ZSaxes represent the ship length,width and height,respectively.Without loss of generality,we assume that(XS,YS,ZS)coincides with (X,Y,Z)atthe starting time.(R,H,V)is anothercoordinate system defined from the perspective of radar.The R axis represents the vectorofthe radarline ofsight(RLOS). The H axis lies in the(X,Y)plane and is perpendicular to the direction of R.The V axis is perpendicular to the (R,H)plane.

    Fig.1 Shore-based ship ISAR imaging geometry

    For shore-based radar,the height is very low and the grazing angleψis approximately 0°.?is the angle between the RLOS and the X axis.θr,θpandθyrepresent the angles changed by ship roll,pitch and yaw motion,respectively.

    The echo signalof the n th scatterer on the ship attime t is expressed as

    where Rn(t)denotes the range between the n th scatterer and the radar,λis the transmitted wavelength and a(t)is the amplitude modulation function ofthe echo signalin the cross-range.

    The relative motion between the targetand the radarcan be decomposed as a translational motion along the RLOS direction and a rotationalmotion around a reference point. Thus,Rn(t)can be expressed as where Ra(t)is the range between the centre of the target and the radar which represents the component of translational motion,rs,n(t)is the range between the centre of the targetand the n th scatterer,which represents the component of rotational motion.In what follows,we assume that the translational motion has been compensated,and therefore Ra(t)is removed from(2).The explicitform of rs,n(t)in(2)can be obtained by using the 3D rotation matrix ofthe ship[3]:

    where(rs,n,0,hs,n,0,vs,n,0)is the coordinate of the n th scatterer in(R,H,V)at the starting time of the imaging interval.andθvrepresentthe angle decomposed by total rotation of the target along the R axis,H axis and V axis,respectively.Totalrotation of the targetrelative to the radar includes the ship own 3D sway and the tangentialtranslation relative to the radar.θhandθvhave the form:

    whereΔ?is the aspectangle changed by the ship tangentialtranslation relative to the radar.

    Sinceθhandθvare relatively small in a shortimaging interval,using(3),we obtain:

    Substituting(5)into(2),and the result back into(1), and calculating the first derivative of the phase,we obtain the Dopplerfrequency of the n th scattererafter the motion compensation:

    whereωeis the ERV,γis the angle betweenωeand V axis,ωhandωvare the first derivatives ofθhandθv, which representthe horizontalrotation vector and vertical rotation vector,respectively.The term in the parentheses,

    hs,n,0cosγ?vs,n,0sinγ,is the cross-range coordinate of the n th scatterer in the image projection plane.We denote itwith xn,c.

    3.ERV variation estimation

    As shown in(6),in orderto obtain wellfocused ship ISAR images,time intervals during which the ERVs have large amplitude and are almost constant should be selected to form good ISAR images[3].Due to the non-cooperative characteristics ofthe target,ERV variation with time needs to be estimated from the received data.In this section,a method based on the DCF estimation in the range-Doppler (RD)image domain is presented to estimate ERVvariation. The DCF of ship ISAR images is calculated as follows:

    where Fnis the 1D cross-range profile,PRF is the pulse repetition frequency and N is the number of cross-range bins.

    The DCF of the RD image varies with the ERV.When the amplitude of ERV increases,the Doppler occupied by the targeton the image plane spreads wider.The DCF accordingly deviates from the zero Doppler further.

    From(6),we see that the change of xn,calso induces the Doppler variation.However,in practice the pitch motion of the ship is much larger than roll and yaw and the yaw motion is weakest among the three rotations due to the control of the rudder[4].Furthermore,since the ship moves slow,the rotation induced by the ship tangential translation relative to radar is much small and can be neglected as compared to the ship own sway induced rotation. Thus,for shore-based ISAR,the verticalrotation is much weaker than the horizontal rotation.The resulting image plane varies little and is nearly the side-view of the ship during the observation and hence,xn,c(t)varies little.Note thatthis side-view is notthe complete side-view.The view angle of the radar?determines the projection.

    As analysed above,the Doppler variation is mainly caused by the variation of ERV in shore-based ISARimaging.Thus,the DCF variation is consistentwith the trend of ERV and can be used to predictthe ERV variation.In this paper,successive sub-intervals are processed by the RD algorithm to obtain a series of images.Then,DCF is estimated in the image domain for each sub-image.Finally, DCF variation is estimated by interpolating and smoothing DCFs ofallsub-intervals.The steps of the DCF estimation in each image are given as follows:

    Step 1Obtain the ship image via fastFouriertransform (FFT)in the cross range.

    Step 2Select severalrange bins around the range bin with maximum energy.

    Step 3Obtain the 1Dcross-range profile Fnofthe ship by adding up with selected range bins in Step 2.

    Step 4Calculate DCF of the ship image using(7).

    After the ERV variation is obtained,the instantaneous time corresponding to extreme values of ERV can be selected as the optimal imaging instants.Besides,optimal imaging duration must be determined for the trade-off between the blur effects due to the ERV variation and the loss of resolution due to shortcoherentprocessing interval (CPI).In this paper,the optimalimaging duration centred with the chosen time instantis determined by maximizing the image contrastbased on the fact thatwell-focused images have high contrast[12].

    4.Algorithm for optimalimaging time selection

    The algorithm for optimalimaging time selection is summarized below.Forthe sake ofclarity,a flow chartis given in Fig.2.

    Step 1Perform translationalmotion compensation on the received data,which includes the range alignmentand phase compensation.In this step,a global minimum entropy technique is used to achieve the range alignment [18].The phase gradient autofocus(PGA)method combined with the rank one phase estimation(ROPE)is used forphase compensation[19,20].

    Step 2Divide the received data into successive partially overlapped or non-overlapped sub-intervals.

    Step 3Estimate the DCF in the image domain foreach sub-interval.

    Step 4Interpolate and smooth DCFs ofallsub-intervals to obtain the trend ofthe ERV variation.

    Step 5Determine the optimalimaging time instants by locating localextreme points of the DCF curve.

    Step 6Search for the optimal duration centered with the chosen instantby maximizing the resulting image contrast[12].

    Step 7Obtain the final ship images using the optimal time intervals selected above.

    Fig.2 Flowchart of optimaltime selection for ship imaging

    5.Simulated and realdata processing and analysis

    5.1 Simulation results

    The performance of the proposed method is demonstrated firstby using simulated data.The ship is modelled by 301 scatterers with identicalreflectivity,as shown in Fig.3.

    Fig.3 Ship model

    The size of the target is 150 m(length)×30 m (width)×60 m(height).The space between two scatterers is 5 m,exceptfor those atthe bow.

    The geometry of radar imaging of the ship used in the simulation is shown in Fig.1.The radar works in X band with a bandwidth of 60 MHz.The pulse repetition frequency(PRF)is 1 000 Hz.The altitude of radar is 200 m. Atthe starting time,the slantrange between the targetcentre and the radar is 50 km and the aspectangle is 30°.The target motion parameters are listed in Table 1.Note that in practice the yaw motion tends to be damped by rudder control.Thus,yaw motion is usually very weak compared to pitch and rollmotion[4],as shown in Table 1.

    Table 1 Target motion parameters

    The data collection time is 15 s.Here,0.256 s is used as the duration of each sub-intervalwith 50%overlapping between adjacentsub-intervals.Fig.4 shows both the measured and smoothed DCF curves obtained by the presented DCF estimation method.The result is consistent with the trend of ERV.From Fig.4,we see that the DCF variation is periodical and the amplitude of DCF changes significantly,which indicates thatthe targetto be imaged has obvious angular motions.Fig.5 shows the theoretical ERV of the ship target computed using the known target motion parameters.Comparing Fig.4 and Fig.5,we see that the measured DCF follows the variations of the theoretical ERV.The imaging results are shown in Fig.6,which are obtained by applying the proposed optimal time selection method.Note thatthe horizontalaxis represents the range and the verticalaxis represents the Dopplerfrequency.Two optimal imaging instants tn(n=1,2)corresponding to the extreme values of the DCF curve are chosen as the optimal imaging time instants,which are indicated with arrows in Fig.4.The optimal durations Tn(n=1,2)centred with the chosen instants are determined by maximizing the contrast of the resulting image.The initial duration is set to 0.128 s and the step size is chosen to be 0.01 s.For the purpose of comparison,we reconstructed two other ship ISAR images:the first image is shown in Fig. 7(a)where the imaging instant t3is chosen corresponding to the zero DCF,which represents the worst case.We see that the resulting image has a very poor cross-range resolution and the ship mast cannot be identified.The second image is shown in Fig.7(b)where the imaging instant t4is randomly chosen.Note that the DCF varies around t4. Comparing Fig.7(b)with Fig.6(a)and Fig.6(b),we see thatthe image resolution of Fig.7(b)gets degraded due to the smaller DCF as expected and the image is defocuseddue to the variation of ERV around t4.The imaging durations of Fig.7(a)and Fig.7(b)are both setto 0.256 s.

    Fig.4 Estimated results of DCF using simulation data

    Fig.5 Theoretical ERV of ship target of simulation data

    Fig.6 Ship imaging results of simulated data by choosing optimal time using the proposed method

    Fig.7 Ship imaging results ofsimulated data corresponding to nonoptimal imaging time

    As we analyzed in Section 3,all ship images shown in Fig.6 are approximately side-view.Furthermore,Fig.6(a) and Fig.6(b)are well focused.However,due to different norms and directions of the ERV of the two chosen instants,the resulting two ship images are with different heights of superstructures and reversed orientation in cross-range.

    5.2 Realdata results

    In this section,two real ISAR data sets are performed to demonstrate the performance of the proposed optimal time selection method.The data collection time is about 17.279 s.The radar works in X band with a bandwidth of 170 MHz.The pulse width of the transmitted signal is 30μs.The PRF is 1 250 Hz.

    Each data setcontains 21 600 pulses.We chose 1.638 s corresponding to 2 048 pulses as the duration of each sub-interval with 75%overlapping between adjacentsubintervals.The estimated DCF variation is shown in Fig.8 and four typical ship images are shown in Fig.9 and Fig.10.The same with the simulated case,the optimal imaging instants tn(n=1,2)of Fig.9(a)and Fig.9(b)are obtained by the proposed method.The initial duration for the searching for the optimalduration determination is set to be 0.8 s and the step size is chosen to be 0.08 s.Forcomparison,two images formed corresponding to an imaging instant t3where the DCF is close to zero and a randomly chosen imaging instant t4,are presented in Fig.10(a) and Fig.10(b),respectively.The imaging duration for Fig.10(a)and Fig.10(b)are both setto be 1.638 s.

    Fig.8 Estimated results of DCF variation with time for data sets

    From Fig.9 and Fig.10,we can see that all resulting ship images are approximately side-view.Furthermore,we find out that the inclination angle of the ship long axis changes over the sub-images,which is more evident in Fig.9(a)and Fig.9(b).This is consistentwith the periodicity of ship 3D rotationalmotion as expected,which may lead to differentcross-range resolutions and reverses ofthe images in the cross-range direction.In Fig.10(a),there is almost no resolution in the cross-range.We just see the long axis of the ship,but we can not see other structures as Fig.9(a)and Fig.9(b).In Fig.10(b),the image is obviously blurred due to the change of ERV.The resolution of Fig.10(b)is notas good as thatof Fig.9(a)and Fig.9(b).

    Fig.9 Ship imaging results of first real data set by choosing the optimaltime using the proposed method

    Fig.10 Ship imaging results of first real data set corresponding to non-optimalimaging time

    Four ship images reconstructed at four optimal imaging instants using the second real data set are shown in Fig.11.We see thatthe ship side-view is clearly shown in each image in Fig.11 and we can also see the ship pitch by observing the attitude change of the ship in the four continuous images.

    Fig.11 Ship imaging results ofsecond realdata set by choosing optimaltime using the proposed method

    6.Conclusions

    ISAR imaging of ship targets is of great significance in practicalapplications,however,itis difficultto realize due to the complexity of the ship 3D rotational motion and the unpredictable sea state.In this paper,a noveloptimum imaging instants selection method based on DCF is proposed for shore-based ISAR imaging.This method does not have a high computational burden and can be potentially used in operational systems for real-time processing.Simulated and realradardata sets have been processed and the results verify the effectivenessofthe proposed ship imaging method.

    [1]C.C.Chen,H.C.Andrews.Targetmotion induced radarimaging.IEEE Trans.on Aerospace and Electronic Systems,1980, 16(1):2–14.

    [2]J.L.Walker.Range-Dopplerimaging ofrotating objects.IEEE Trans.on Aerospace and Electronic Systems,1980,16(1):23–52.

    [3]L.Wang,D.Y.Zhu,Z.D.Zhu.Study on airborne ISAR imaging ofship targets.Proc.of the IGARSS,2004:4666–4669.

    [4]A.W.Doerry.Ship dynamics for maritime ISAR imaging. SANDIA Report,SAND2008-1020,2008.

    [5]Z.Bao,C.Y.Sun,M.D.Xing.Time-frequency approaches to ISAR imaging of maneuvering targets and theirlimitations. IEEE Trans.on Aerospace and Electronic Systems,2001, 37(3):1091–1099.

    [6]Y.X.Wang,H.Ling,V.C.Chen.ISAR motion compensation via adaptive joint time-frequency technique.IEEE Trans.on Aerospace and Electronic Systems,1998,34(2):670–677.

    [7]Y.Wang.New method of time-frequency representation for ISAR imaging of ship targets.Journal of Systems Engineering and Electronics,2012,23(4):502–511.

    [8]R.Li,J.Tao,T.Z.Yue.The ISAR imaging of ship based on adaptive optimal kernel time-frequency representation.Proc. of the 5th International Conference on Machine Vision:Computer Vision,Image Analysis and Processing,2013,878312-878312-7.

    [9]M.Martorella,N.Acito,F.Berizzi.Statistical CLEAN technique for ISAR imaging.IEEE Trans.on Geoscience and Remote Sensing,2007,45(11):3552–3560.

    [10]L.Wang,X.Ye,D.Y.Zhu,etal.Novelside-view imaging of ships at sea for airborne ISAR.Proc.of the IEEE Radar Conference,2010:767–772.

    [11]D.Rapsilber.Air borne ISAR processor for ship targetimaging.Proc.ofthe EUSAR,1996:435–438.

    [12]M.Martorella,F.Berizzi.Time windowing forhighly focused ISAR image reconstruction.IEEE Trans.on Aerospace and Electronic Systems,2005,41(3):992–1007.

    [13]D.Pastina,C.Spina.Slope-based frame selection and scaling technique for ship ISAR imaging.IET Signal Processing, 2008,2(3):265–276.

    [14]C.Benedek,M.Martorella.Ship structure extraction in ISAR image sequences by a Markovian approach.Proc.of the IET InternationalConference on Radar Systems,2012:1–5.

    [15]X.Bai,R.Tao,Z.J.Wang,etal.ISAR imaging ofa ship target based on parameter estimation of multicomponent quadratic frequency-modulated signals.IEEE Trans.on Geoscience and Remote Sensing,2014,52(2):1418–1429.

    [16]C.Wang,Y.Wang,S.B.Li.Inverse synthetic aperture radar imaging of ship targets with complex motion based on match fourier transform for cubic chirps model.IET Radar,Sonar and Navigation,2013,7(9):994–1003.

    [17]H.P.Sun,M.D.Xing,L.J.Zhou.Divison of imaging intervals and selection ofoptimum imaging time forship ISAR imaging based on measured data.Proc.ofthe InternationalConference on Radar,2006:1–4.

    [18]D.Y.Zhu,L.Wang,Y.S.Yu,etal.RobustISAR range alignment via minimizing the entropy of the average range profile.IEEE Geoscience and Remote Sensing Letters,2009,6(2): 204–208.

    [19]D.E.Wahl,P.H.Eichel,D.C.Ghiglia,et al.Phase gradientautofocus—a robusttoolfor high-resolution SAR phase correction.IEEE Trans.on Aerospace and Electronic Systems, 1994:30(3):827–835.

    [20]L.Wang,Z.D.Zhu.ISAR motion compensation using ROPE. Transaction ofNanjing University ofAeronautics&Astronautics,2004,21(1):64–68.

    Biographies

    Ling Wangreceived her B.S.degree in electrical engineering and her M.S.and Ph.D.degrees in information acquirement and processing from Nanjing University of Aeronautics and Astronautics,in 2000,2003,and 2006,respectively.She has been with Nanjing University of Aeronautics and Astronautics since 2003,where she is currently a professor with the Department of Information and Communication Engineering.From February 2008 to May 2009,she was a post-doctoral research associate with the Department of Mathematical Sciences and the Departmentof Electrical,Computer,and Systems Engineering,Rensselaer Polytechnic Institute,Troy,New York.Her current research interests include inverse scattering,wave-based imaging, radar imaging,and passive imaging.

    E-mail:tulip wling@nuaa.edu.cn

    Zhenxiao Caowas born in 1990.He graduated from Nanjing University of Information Science&Technology in 2012.Now he is a master student in Nanjing University of Aeronautics and Astronautics.His currentresearch interestis inverse synthetic aperture radar imaging.

    E-mail:c522692522@gmail.com

    Ning Liwas born in 1987.He is now pursuing his Ph.D.degree in the Institute of Electronics,Chinese Academy of Sciences,Beijing,China.His research interests include synthetic aperture radar(SAR)and inverse SAR(ISAR)imaging algorithms and autofocusing techniques,SAR polarmetric theory,and SAR image analysis of naturalhazards and extreme events.

    E-mail:LiNing nuaa@163.com

    Teng Jingwas born in 1989.He is a master student in College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics.Now,he is an engineer in China AeronauticalRadio Electronics Research Institute.His current research interest is inverse synthetic aperture radar imaging.

    E-mail:jingteng nuaa@163.comDaiyin Zhuwas born in 1974.He received his B.S. degree in electronic engineering from the Southeast University,Nanjing,in 1996 and M.S.and Ph.D. degrees in electronics from Nanjing University of Aeronautics and Astronautics(NUAA),in 1998 and 2002,respectively.From 1998 to 1999,he was a guestscientistwith the Institute of Radio Frequency Technology,German Aerospace Canter,Germany, where he worked in the field of SAR interferometry.In 1998,he joined the Department of Electronic Engineering,NUAA,where he is currently a professor.He has developed algorithms forseveraloperational airborne SAR systems.His current research interests include radar imaging algorithms,SAR/ISAR autofocus techniques,SAR ground moving target indication(SAR/GMTI),and SAR interferometry.

    E-mail:zhudy@nuaa.edu.cn

    10.1109/JSEE.2015.00082

    Manuscript received April 15,2014.

    *Corresponding author.

    This work was supported by the Innovation Foundation for Scientific Research Base(NJ20140008;NJ20150018),the Aeronautical Science Foundation of China(20132052035),and the NationalDefense Basic Scientific Research(B2520110008).

    免费av中文字幕在线| 最新的欧美精品一区二区| 亚洲av日韩在线播放| 亚洲视频免费观看视频| 国产淫语在线视频| 久久av网站| 黑丝袜美女国产一区| 18禁国产床啪视频网站| 熟女av电影| 宅男免费午夜| 精品人妻在线不人妻| av视频免费观看在线观看| 免费黄网站久久成人精品| 老司机亚洲免费影院| 中文字幕精品免费在线观看视频| 热99国产精品久久久久久7| 国产片特级美女逼逼视频| 一区二区三区精品91| 免费看av在线观看网站| 午夜福利影视在线免费观看| 91精品伊人久久大香线蕉| av卡一久久| 天美传媒精品一区二区| 日本欧美国产在线视频| 亚洲精品国产av蜜桃| 美女中出高潮动态图| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av涩爱| 欧美精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 观看av在线不卡| 人人妻人人澡人人看| 日韩中文字幕视频在线看片| 中文字幕色久视频| 香蕉国产在线看| 99精国产麻豆久久婷婷| 欧美人与善性xxx| 赤兔流量卡办理| 美女午夜性视频免费| 99久久人妻综合| 一个人免费看片子| 国产成人午夜福利电影在线观看| 国产xxxxx性猛交| 无遮挡黄片免费观看| 老熟女久久久| 日韩制服丝袜自拍偷拍| 亚洲成人免费av在线播放| 国产在线一区二区三区精| 国产日韩欧美亚洲二区| 男人舔女人的私密视频| 亚洲伊人色综图| 久久精品国产亚洲av涩爱| 成年人免费黄色播放视频| 老汉色av国产亚洲站长工具| 亚洲国产精品999| 性高湖久久久久久久久免费观看| 国产精品久久久久久人妻精品电影 | 99久久99久久久精品蜜桃| 人人澡人人妻人| 观看av在线不卡| 欧美亚洲 丝袜 人妻 在线| 日韩大码丰满熟妇| 日韩精品有码人妻一区| 免费在线观看黄色视频的| 天堂中文最新版在线下载| 最近中文字幕2019免费版| 亚洲国产精品一区二区三区在线| 午夜福利免费观看在线| 国产男女超爽视频在线观看| 制服丝袜香蕉在线| 在线天堂最新版资源| 亚洲国产欧美一区二区综合| av免费观看日本| 成人国语在线视频| 国产亚洲午夜精品一区二区久久| 一本色道久久久久久精品综合| 一本色道久久久久久精品综合| 少妇的丰满在线观看| av一本久久久久| 男女国产视频网站| 王馨瑶露胸无遮挡在线观看| av国产久精品久网站免费入址| 精品第一国产精品| 亚洲精品av麻豆狂野| 国产激情久久老熟女| xxxhd国产人妻xxx| 热99国产精品久久久久久7| 九色亚洲精品在线播放| 国产在线一区二区三区精| 人人妻,人人澡人人爽秒播 | 久久久久人妻精品一区果冻| 多毛熟女@视频| 亚洲精品国产一区二区精华液| 欧美精品av麻豆av| 久久精品亚洲熟妇少妇任你| 婷婷色av中文字幕| 亚洲国产欧美日韩在线播放| 免费看av在线观看网站| 国产精品一二三区在线看| 久久久国产欧美日韩av| 一区福利在线观看| 国产午夜精品一二区理论片| 亚洲av日韩精品久久久久久密 | 国产精品蜜桃在线观看| 久久久久久久大尺度免费视频| 一级爰片在线观看| 高清视频免费观看一区二区| 大陆偷拍与自拍| 色94色欧美一区二区| 久久99一区二区三区| 波多野结衣一区麻豆| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 七月丁香在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品一级二级三级| 成人影院久久| 好男人视频免费观看在线| 久久久久久免费高清国产稀缺| 国产乱人偷精品视频| a级片在线免费高清观看视频| 亚洲人成77777在线视频| 久久99一区二区三区| 国产黄色免费在线视频| 日韩伦理黄色片| 国产成人啪精品午夜网站| 国产一区二区 视频在线| 午夜日韩欧美国产| 欧美日韩精品网址| 另类精品久久| 97在线人人人人妻| 国产精品国产av在线观看| kizo精华| av.在线天堂| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 亚洲欧美中文字幕日韩二区| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人爽人人夜夜| 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区| 国产精品女同一区二区软件| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 美女午夜性视频免费| 日本黄色日本黄色录像| 欧美日韩亚洲综合一区二区三区_| 两性夫妻黄色片| 夫妻午夜视频| 2021少妇久久久久久久久久久| 中文字幕制服av| 一区二区日韩欧美中文字幕| 尾随美女入室| 波野结衣二区三区在线| 国产欧美日韩综合在线一区二区| 国产男女内射视频| 丰满少妇做爰视频| 一区二区三区激情视频| 中文字幕亚洲精品专区| 婷婷成人精品国产| 在线观看人妻少妇| av在线app专区| 九色亚洲精品在线播放| 午夜精品国产一区二区电影| 巨乳人妻的诱惑在线观看| 欧美激情极品国产一区二区三区| 男女边摸边吃奶| 免费不卡黄色视频| 亚洲av电影在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 999久久久国产精品视频| 亚洲精品美女久久久久99蜜臀 | 成人手机av| 国产国语露脸激情在线看| 国产视频首页在线观看| 男人爽女人下面视频在线观看| 18禁观看日本| 另类亚洲欧美激情| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频| 天天躁日日躁夜夜躁夜夜| 欧美日韩av久久| 久久精品久久久久久久性| 精品国产一区二区三区四区第35| 老汉色av国产亚洲站长工具| 成年美女黄网站色视频大全免费| 一区在线观看完整版| 国产精品一区二区在线不卡| 国产精品久久久久成人av| 99久久人妻综合| 成年人免费黄色播放视频| 电影成人av| 又粗又硬又长又爽又黄的视频| 免费在线观看视频国产中文字幕亚洲 | 欧美老熟妇乱子伦牲交| 极品人妻少妇av视频| 九色亚洲精品在线播放| 黑丝袜美女国产一区| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 日韩 欧美 亚洲 中文字幕| 国产一区二区三区av在线| 国语对白做爰xxxⅹ性视频网站| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 免费看av在线观看网站| 色精品久久人妻99蜜桃| 一级毛片我不卡| 国产一卡二卡三卡精品 | 国产精品久久久久久精品古装| 国产av码专区亚洲av| 精品一区在线观看国产| 日韩视频在线欧美| 精品久久久久久电影网| 悠悠久久av| 男女免费视频国产| 咕卡用的链子| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网 | 成年美女黄网站色视频大全免费| av卡一久久| 午夜免费男女啪啪视频观看| 亚洲av福利一区| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美网| 黄片小视频在线播放| 一级毛片 在线播放| 在线观看www视频免费| 亚洲第一区二区三区不卡| 黄色怎么调成土黄色| 精品一区二区三卡| 性少妇av在线| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 欧美中文综合在线视频| 精品亚洲乱码少妇综合久久| 亚洲精品,欧美精品| 日本欧美国产在线视频| 叶爱在线成人免费视频播放| av天堂久久9| 丁香六月天网| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 国产精品一区二区在线观看99| 久久午夜综合久久蜜桃| 欧美变态另类bdsm刘玥| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 少妇被粗大猛烈的视频| 精品国产超薄肉色丝袜足j| 男女下面插进去视频免费观看| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 久热爱精品视频在线9| 欧美日韩综合久久久久久| 国产一区二区 视频在线| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 精品国产一区二区久久| 亚洲专区中文字幕在线 | 极品少妇高潮喷水抽搐| 制服诱惑二区| 亚洲三区欧美一区| 母亲3免费完整高清在线观看| 咕卡用的链子| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 久久久久久免费高清国产稀缺| 成年美女黄网站色视频大全免费| 久久ye,这里只有精品| 色婷婷av一区二区三区视频| 亚洲av欧美aⅴ国产| 国产一区二区在线观看av| 欧美国产精品va在线观看不卡| 一个人免费看片子| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 成年人午夜在线观看视频| 亚洲,欧美精品.| bbb黄色大片| 老司机亚洲免费影院| 亚洲,欧美,日韩| 精品国产乱码久久久久久小说| 亚洲熟女毛片儿| 伊人亚洲综合成人网| 无限看片的www在线观看| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 男女床上黄色一级片免费看| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| 丝袜脚勾引网站| 精品国产露脸久久av麻豆| 久久韩国三级中文字幕| 成人亚洲精品一区在线观看| av卡一久久| 成年人免费黄色播放视频| 成人漫画全彩无遮挡| 一个人免费看片子| 可以免费在线观看a视频的电影网站 | 久久精品人人爽人人爽视色| 美女福利国产在线| 成人亚洲精品一区在线观看| 啦啦啦在线免费观看视频4| 欧美黑人欧美精品刺激| 欧美日韩视频高清一区二区三区二| 人妻 亚洲 视频| 精品午夜福利在线看| 丝袜喷水一区| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 国产亚洲欧美精品永久| 日韩电影二区| 欧美中文综合在线视频| 成人午夜精彩视频在线观看| 欧美国产精品一级二级三级| 免费看不卡的av| www.精华液| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9 | 免费在线观看完整版高清| 激情五月婷婷亚洲| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 两个人免费观看高清视频| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 成人国语在线视频| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 一区福利在线观看| 伦理电影免费视频| 高清视频免费观看一区二区| 亚洲 欧美一区二区三区| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 亚洲精品一二三| 久久ye,这里只有精品| 久久久欧美国产精品| 一级毛片电影观看| 宅男免费午夜| 综合色丁香网| 看免费成人av毛片| 精品卡一卡二卡四卡免费| 亚洲av日韩精品久久久久久密 | 午夜激情av网站| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 男女下面插进去视频免费观看| a级毛片黄视频| 国产免费福利视频在线观看| a 毛片基地| 色精品久久人妻99蜜桃| 激情视频va一区二区三区| 日韩大码丰满熟妇| 中文字幕精品免费在线观看视频| 亚洲精华国产精华液的使用体验| 两性夫妻黄色片| 久久天躁狠狠躁夜夜2o2o | 一级片'在线观看视频| 三上悠亚av全集在线观看| 亚洲人成电影观看| 99久久综合免费| 午夜免费观看性视频| 色吧在线观看| 超碰97精品在线观看| 久久99一区二区三区| 午夜福利视频精品| 免费看不卡的av| 国产男人的电影天堂91| www.自偷自拍.com| 黄片无遮挡物在线观看| 9热在线视频观看99| 亚洲人成77777在线视频| 色视频在线一区二区三区| 久久久精品免费免费高清| e午夜精品久久久久久久| 国产成人欧美| 久久免费观看电影| 国产在视频线精品| 欧美激情极品国产一区二区三区| 丰满乱子伦码专区| 午夜福利视频在线观看免费| 婷婷色综合大香蕉| 少妇人妻精品综合一区二区| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 亚洲精品国产av成人精品| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡| 久久性视频一级片| 一本大道久久a久久精品| 久热这里只有精品99| 一区二区av电影网| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| 亚洲欧美一区二区三区久久| 欧美激情极品国产一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 九色亚洲精品在线播放| 久久性视频一级片| 黑人巨大精品欧美一区二区蜜桃| 亚洲成国产人片在线观看| 精品视频人人做人人爽| 久久综合国产亚洲精品| 精品酒店卫生间| 午夜91福利影院| 久久99一区二区三区| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 国产精品人妻久久久影院| 欧美黑人精品巨大| 黄片播放在线免费| 成人亚洲精品一区在线观看| www日本在线高清视频| 国产在线一区二区三区精| 视频区图区小说| av在线老鸭窝| 国产视频首页在线观看| 看免费成人av毛片| 超碰成人久久| 汤姆久久久久久久影院中文字幕| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 国产一区有黄有色的免费视频| √禁漫天堂资源中文www| 人人妻人人爽人人添夜夜欢视频| 午夜日韩欧美国产| 精品福利永久在线观看| 国产成人欧美| 国产成人欧美在线观看 | 国产精品国产三级专区第一集| 如何舔出高潮| 可以免费在线观看a视频的电影网站 | av片东京热男人的天堂| 午夜免费观看性视频| 欧美日韩视频高清一区二区三区二| 色94色欧美一区二区| 老司机亚洲免费影院| 18在线观看网站| 久久久久久久国产电影| 国产男人的电影天堂91| 高清视频免费观看一区二区| 天天躁日日躁夜夜躁夜夜| 久久久久久久久久久久大奶| 欧美 日韩 精品 国产| 精品福利永久在线观看| 蜜桃国产av成人99| 亚洲成国产人片在线观看| 在线观看一区二区三区激情| 国产男女内射视频| 看免费成人av毛片| 老司机影院成人| 91国产中文字幕| 久久久久久人妻| 777米奇影视久久| 国产不卡av网站在线观看| av国产精品久久久久影院| 精品酒店卫生间| 国产精品嫩草影院av在线观看| 亚洲精品视频女| 久久久久久人妻| 久久久国产一区二区| 亚洲成av片中文字幕在线观看| 毛片一级片免费看久久久久| 男女下面插进去视频免费观看| 久久久久久免费高清国产稀缺| 少妇人妻久久综合中文| 精品人妻在线不人妻| 黄色怎么调成土黄色| 你懂的网址亚洲精品在线观看| 亚洲精品第二区| 日韩伦理黄色片| 欧美97在线视频| 午夜免费鲁丝| 亚洲七黄色美女视频| 性色av一级| 最新在线观看一区二区三区 | 看十八女毛片水多多多| av女优亚洲男人天堂| 成人黄色视频免费在线看| 91成人精品电影| av一本久久久久| 伦理电影大哥的女人| 中文乱码字字幕精品一区二区三区| 亚洲美女黄色视频免费看| 国产亚洲av片在线观看秒播厂| 丰满乱子伦码专区| 午夜福利在线免费观看网站| 一二三四在线观看免费中文在| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲 | 久久久久久久大尺度免费视频| 精品久久蜜臀av无| 久久久久精品国产欧美久久久 | 日本色播在线视频| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 欧美黄色片欧美黄色片| 亚洲婷婷狠狠爱综合网| a级毛片在线看网站| 999久久久国产精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| 国语对白做爰xxxⅹ性视频网站| 国产极品天堂在线| 精品亚洲成a人片在线观看| 久久影院123| 黑丝袜美女国产一区| 久热爱精品视频在线9| 日本wwww免费看| 国产午夜精品一二区理论片| 99九九在线精品视频| 日韩大码丰满熟妇| 日本91视频免费播放| 久久影院123| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 色婷婷av一区二区三区视频| a级片在线免费高清观看视频| 日韩欧美精品免费久久| 美女扒开内裤让男人捅视频| 国产成人精品福利久久| 丝袜脚勾引网站| 午夜老司机福利片| av视频免费观看在线观看| 色播在线永久视频| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 国产精品女同一区二区软件| 久久精品国产亚洲av高清一级| 女人被躁到高潮嗷嗷叫费观| 国产精品三级大全| 国产高清不卡午夜福利| 青春草国产在线视频| 日韩大片免费观看网站| 国产探花极品一区二区| 欧美日韩精品网址| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 操出白浆在线播放| 国产午夜精品一二区理论片| 美国免费a级毛片| 国产 一区精品| 在线观看免费视频网站a站| 好男人视频免费观看在线| 一区二区三区精品91| 国产日韩欧美在线精品| 日日摸夜夜添夜夜爱| 麻豆av在线久日| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 高清黄色对白视频在线免费看| 狠狠精品人妻久久久久久综合| 国产成人啪精品午夜网站| 国产男女超爽视频在线观看| 久久久久久免费高清国产稀缺| 大片电影免费在线观看免费| 国产成人精品在线电影| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 亚洲av日韩精品久久久久久密 | 免费黄网站久久成人精品| 国产高清国产精品国产三级| 免费观看人在逋| 18禁动态无遮挡网站| 国产视频首页在线观看| 黄频高清免费视频| 999久久久国产精品视频| 久久久久人妻精品一区果冻| 制服丝袜香蕉在线| 亚洲美女搞黄在线观看| 久久久久人妻精品一区果冻| 大话2 男鬼变身卡| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区 视频在线| 国产女主播在线喷水免费视频网站| 亚洲图色成人| 9色porny在线观看| 美女大奶头黄色视频| 精品亚洲成国产av| 久久99热这里只频精品6学生| 电影成人av| 亚洲国产毛片av蜜桃av| 在线观看免费高清a一片| 超色免费av| 精品一品国产午夜福利视频| av国产精品久久久久影院|