• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of DFT in bi-static RCS calculation of complex electrically large targets

    2015-02-10 12:25:38

    1.Schoolof Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China;

    2.Science and Technology on Electromagnetic Scattering Laboratory,Beijing 100854,China

    Application of DFT in bi-static RCS calculation of complex electrically large targets

    Kuisong Zheng1,*,Tengjiang Ding1,HuiYu1,and Zhaoguo Hou2

    1.Schoolof Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China;

    2.Science and Technology on Electromagnetic Scattering Laboratory,Beijing 100854,China

    To handle the electromagnetic problems of the bi-static radar cross section(RCS)calculation of scatterer in a wide frequency band,a fi nite-difference time-domain(FDTD)extrapolation method combining with discrete Fourier transform(DFT)is proposed.By comparing the formulas between the steady state fi eld extrapolation method and the transient fi eld extrapolation method, a novelextrapolation method combining with DFT used in FDTD is proposed when a transient fi eld incident wave is introduced.With the proposed method,the full-angle RCS distribution in a wide frequency band can be achieved through one-time FDTD calculation. Afterwards,the back-scattering RCS distributions ofa double olive body and a sphere-cone body are calculated.Numerical results verify the validity of the proposed method.

    fi nite-difference time-domain(FDTD),radar cross section(RCS),discrete Fourier transform(DFT).

    1.Introduction

    The fi nite-difference time-domain(FDTD)method is an electromagnetic fi eld numerical method proposed by Yee [1]to solve the Maxwell's differential equations.This method has a wide application in many fi elds of the electromagnetic research,for instance,antenna radiation calculation,microwave devices calculation,electromagnetic scattering and radar cross section(RCS),lightpropagation in micro-opticalunits[2-7].The basic calculation unitfor FDTD method is the Yee cell(hexahedron)form.While, the rest of the main numericalmethods adopt the triangular surface,such as method of moment(MoM)[8,9]and multilevel fast multipole algorithm(MLFMA)[10,11].It is convenient that the triangle surface can be obtained by some commercialsoftware packages,such as 3DMax,AutoCAD and UG.Using the triangle surface data fi le of the objectobtained from the above software packages,we can getthe conventionalFDTDformthrough a certain transformation algorithm[12].By the process,we are convenient to handle the electromagnetic scattering ofcomplex targets with the FDTD method.

    Calculating the RCS of the complex targetelectromagnetic scattering with FDTD method has two kinds of nearfi eld far-fi eld extrapolation methods[13,14].One is the steady state fi eld extrapolation method,the other is the transient fi eld extrapolation method.The formergets a full range of RCS distribution in entire space under a single speci fi c frequency,while the latter gets a single speci fi c azimuth of RCS distribution under a wide frequency band. However,these two kinds of extrapolation methods are not suitable when computing the full-angle RCS distribution ofelectrically large complex targets within a wide frequency band.In orderto achieve a full-angle RCS distribution within a wide frequency band,itruns the conventional FDTD method for many times to obtain all RCS data.Itis implied thatit spends a large number of run time to fi nish the whole calculation task.

    In order to solve the above limitation for these two conventional extrapolation methods in a case of calculating RCS distributions of complex electrically large targets,we presented a novel extrapolation method,combining with the discrete Fourier transform(DFT)technique,which is suitable for the case under multiple azimuths and multiple frequenciesfora complex electrically large target.The proposed extrapolation method is illustrated to save a large of run time relative to the conventionalextrapolation method.

    The remainderof this paper is organized as follows:we derived a near-fi eld far-fi eld extrapolation algorithm combining with DFT technique after comparing formulas of these two extrapolation methods in Section 2.Section 3 illustrates the FDTD discrete models from the triangle surface models of electrically large complex targets with a certain transformation algorithm.Section 4 presents nu-merical results of the bi-static RCS distribution of complex electrically large targets.Finally,concluding remarks are drawn in Section 5.

    2.Formulas of RCS calculation

    To calculate the scattering fi elds or radiation fi elds outside the computationaldomain with the FDTD method,we need to use the Huygens principle to extrapolate far fi elds from near fi elds obtained from the FDTD calculation.This kind of method is a so-called near-fi eld far-fi eld extrapolation method.According to the difference type of incident plane wave used in the FDTD method,the near-fi eld farfi eld extrapolation method includes two cases.One is the steady state fi eld extrapolation method.The other is the transient fi eld extrapolation method.The steady state fi eld extrapolation method is to calculate the bi-static RCS distribution undera single designated frequency and multiple azimuths.On the other hand,the transient fi eld extrapolation method deals with the back-scattering RCS distribution under a single designated azimuth within a wide frequency band.In the following paragraph,we list the nearfi eld far-fi eld extrapolation formulas for these two extrapolation methods mentioned above.

    In a three-dimensionalcase,we getthe steady state fi eld extrapolation formula by the following process.According to the Green's function in free space,the vector magnetic potential A(r)and vectorelectric potential F(r)are given as

    In(1),the symbol k stands for the wave number of plane wave in a scalar form,and its vector form is written as k. According to(1),the formulas forthe electric fi eld and the magnetic fi eld in the far-fi eld zone are

    Transform the right-hand side of the fi rst expression in (2)into a spherical coordinate form.Then,combine the current moment f and magnetic current moment fm,and rewrite the electric fi eld parts in a spherical coordinate form as

    where is the intrinsic impedance of the medium.According to properties of the plane wave,the magnetic fi eld H in the far-fi eld zone from the electric fi eld E is solved.As the near fi elds calculated by the FDTD method is usually expressed in a rectangular coordinate,we transform the current moment f and the magnetic currentmoment fmin a sphericalcoordinate to those expressed in a rectangular coordinate.After fi nishing the transformation,the electric fi elds in the far-fi eld zone is written as

    where(θ,φ)is the azimuth of the observation pointatthe far-fi eld zone.From(4),it is noted that the steady state extrapolation method can getthe far fi elds in a single designated frequency and multiple azimuths through one-time FDTD calculation.For example,considering the far fi elds in two designated frequencies,we have to calculate the FDTD program for two times.

    If the incident plane wave form in FDTD is a timedomain pulse,the extrapolation process from the timedomain near fi eld to the time-domain far fi eld is taken into consideration.In a case of using a time-domain pulse source,the expressions for the far zone electric fi elds are written as?

    Note that the equations above are expressed in frequency domain with k=ω/c.The symbol‘?'stands for the fi elds placed in the source area,and the fi elds without the symbol‘?'locate in the observation area.By transforming the source in time domain with Fourieralgorithm,itis found that the incident pulse source possesses a wide frequency bandwidth.Therefore,it is notsuitable to directly calculate the far fi elds by(6).In order to solve this problem,the inverse Fourier transform is used to change(6) into a time-domain form.After transforming with the inverse Fourier transform,the expressions in time domainfor combining(5)and(6)are given by

    where the expressions of w(t)and u(t)are expressed as

    where(θ,φ)expresses the azimuth ofthe observation point in the far-fi eld zone.In(8),the symbol j stands forthe current density in time domain,and jmstands for the magnetic fl ux density in time domain.Using the Fourier transform,(7)and(8)are transformed into the forms in frequency domain.By the above process,the far zone fi elds are obtained within a certain frequency band.Therefore, according to(7)and(8),we getfar fi elds in a single designated azimuth within a wide frequency band through onetime FDTD calculation.

    Comparing these two extrapolation methods,the steady state fi eld extrapolation method can gain far fi elds ata single speci fi c frequency and multiple azimuths through onetime FDTD calculation.While,the transient fi eld extrapolation method is suitable in a single designated azimuth within a wide frequency band.If the far fi elds for multiple frequencies and multiple azimuths are considered,these two extrapolation methods have to be run forseveraltimes. That is to say it is not adequate to run one-time FDTD program with the above extrapolation method to achieve RCS distribution for multiple frequencies and multiple azimuths.In orderto solve forthe limitation of extrapolation method,an originalalgorithm brie fl y mentioned in[12]is presented by using the transient fi eld incidentsource to calculate the bi-static RCS distribution of the targets.In this paper,we extend this algorithm to calculate the bi-static RCS distribution of complex electrically large targets.The idea is to apply the DFT algorithm to each tangentialelectromagnetic fi eld parton outputboundary when the waveform of incident source is a pulse in time domain.The transform formula is given as

    whereΔt and n are,respectively,the time incrementand time step used in FDTD.E(nΔt,r)is the electric fi eld in time domain,and E(f,r)is expressed in frequency domain.By transforming with inverse DFT,we obtain the far fi eld of E(f,r)in frequency domain from those in time domain.

    In(9),the symbol f stands for one or more operating frequency of interest.After fi nishing one-time FDTD calculation in this way,the electromagnetic fi elds in frequency domain can be gained at the same time.We,then, use the extrapolation formulas of(4)to getfar fi elds atthe operating frequency of interest.Ifelectrically smalltargets are considered,the advantages of the proposed extrapolation method are not so obvious in reducing the run time. However,if the complex electrically large targets are considered,this proposed method has an obvious advantage in saving calculation time.The next section illustrates the advantage of the proposed method.

    3.Modeling ofelectrically large targets

    In this section,the CADmodeling method is used to model the electrically large targetin[12].First,draw the geometric pro fi le of complex targetwith some commercialdrawing software packages,such as the AutoCAD,3dMax,UG. Second,mesh surfaces of target into triangular surfaces with the help of the drawing software mentioned above. Third,record every triangular surface's location information.Finally,get the FDTD discrete model of the entire complex targetby a certain transform algorithm,which is used to transform a triangular modelto an FDTD model.

    The transform steps from the triangular surface to FDTD model are mainly presented as follows.First,settle the FDTD unit grid sizes ofΔx,Δy andΔz.Second, fi nd outthe maximum and minimum values in dimensions of the target along the x axis on the base of the triangle surface data fi le.Third,settle the maximum and minimum values in the y direction in a similar matter.Fourth,sweep the model with an FDTD cell along the x,y axis within the scope of the object.Simultaneously,judge whether the scan straight line parallel to the z axis intersects with the triangular surface on the target surface or not.If the scan straightline intersects with the surface,record the coordinate values of intersection points.We,thus,get the maximum and the minimum dimensions of the object in the z axis,and con fi rm the numerical dimensions of target.Finally,assign electromagnetic parameters to each of FDTD cells within the scope,and fi nish the FDTDgrid discretization of target.

    Use the CAD modeling method above to fi nish the FDTDmodeling ofcomplex electrically large targetshown in Fig.1.The physical sizes of target are set as 2.32 m in length(x axis),2.32 m in width(y axis)and 0.39 m in height(z axis).Discretizing the target with FDTD unit is shown in Fig.2.

    Fig.1 Geometric shape model

    Fig.2 FDTD modeling for a complex target

    4.Method validity

    4.1 Metaldouble olive body

    A double olive body is a rotating body formed by rotating along the symmetry axis.It includes two parts:the cone of the large tip and the cone of the small tip.Discretizing the double olive body with FDTD unitaccording to the geometry shape sizes provided in[15],as shown in Fig.3. In FDTD,parameters of calculation are setas discrete spatial intervalδ=0.001 m,time intervalΔt=δ/2c,and operating frequency f=1.57 GHz.The de fi nitions of a parallelpolarization wave and a verticalpolarization wave are the same as the[15].

    Fig.3 FDTD modelof a metaldouble olive body

    The simulated results in the two different polarization cases are plotted in Fig.4.For comparison,the measured results are also provided in Fig.4.In the fi gure,zero degree angle here means the incidentplane wave spreading along the small tip.As seen from Fig.4,the FDTD simulated results are in good agreement with the measured results. The average errors between the simulated results and the measured results keep within 2 dB,which is considered acceptable.The average error formula is de fi ned by

    In(10),the symbol‘Com'stands for the results simulated by the proposed extrapolation method.The symbol‘Mea' stands for the measured results from the[15].If considering the measurementerror and the modeltoleranterror,it is reasonable to meeta betteragreementwith the measured results.

    Fig.4 Back-scattering RCS of the metaldouble olive body

    4.2 Metalsphere-cone body

    The sphere-cone body consists of the hemisphere partand the cone part.The metalmodelafter the FDTD discretiza-tion is drawn in Fig.5 according to the geometry shape sizes provided in[15].In the FDTD calculation,discrete spatialintervalis setasδ=0.002 m,time intervalisΔt= δ/2c,and the operating frequency is f=0.869 GHz.The simulation results of sphere-cone body in these two different polarization cases are depicted in Fig.6.Zero degree angle here means an incident plane wave spreading along the cone tip.Meanwhile,the Cicero results are also given in Fig.6 for comparison.From Fig.6,the proposed extrapolation results in FDTD match well with the Cicero results.The average errors between these two methods keep in a range of 2 dB within proper acceptance.

    Fig.5 FDTD modelof a sphere-cone body

    Fig.6 Back-scattering RCS ofthe sphere-cone body

    4.3 Complex electrically large target

    Using the transient fi eld extrapolation formulas(5)-(8) and the DFT formula(9),we calculate the bi-static RCS distribution of the complex electrically large targetshown in Fig.1.To corroborate the effectiveness of the proposed extrapolation method,the results calculated by the commercial software Feko are also plotted in Figs.7-9 for comparison.In these fi gures,the solid line stands for the FDTD results,and the dotted line is for the Feko results. The proposed FDTD computing parameters are set with discrete spatial intervalδ=5 mm and time interval Δt=δ/2c.According to the coordinate system in Fig.1, the incident angle of incident wave are set asφi=180°andθi=90°,and the polarization angle isαi=0°.Calculate the bi-static RCS distribution in the xoy plane with receiving angleθr=90°and polarization angelαr=0°. In Figs.7-9,the operating frequencies of interest are set as f=2.6 GHz,f=3.0 GHz and f=3.6 GHz,respectively.An inspection of the curves in Figs.7-9 shows that numericalresults of these two methods are in an agreement with each otherwell.

    Fig.7 Operating frequency f=2.6 GHz

    Fig.8 Operating frequency f=3.0 GHz

    Fig.9 Operating frequency f=3.6 GHz

    Seen from the contrast curves in Figs.7-9,the proposed extrapolation method is effective for calculating the bi-static RCS of electrically large targets when the waveform of incidentwave is set to a Gaussian pulse.Note that the bi-static RCS distribution of the complex electrically large targetwas simulated on the workstation HP xw9400 CPU 2.4 GHz MEM 16.0 GB.To further show the advantage of the proposed extrapolation method,we recorded the run time and consumed memory for these two extrapolation methods.First,we used the steady state fi eld extrapolation method to calculate the bi-static RCS oftargetata single frequency point.The computermemory needs about 700 Mbytes.The run time costis 10 071.25 s for one operating frequency through one-time FDTDcalculation.Second,we use the transient fi eld extrapolation method forthe same case.The 880 Mbytes computer memory is required. However,we gain the bi-static RCS distribution of fi ve differentoperating frequencies through one-time FDTD calculation.It is noted that the entire run time cost is only 9818.45 s for fi ve operating frequencies through one-time FDTDcalculation.The run time costby the FDTDwith the proposed extrapolation method is 15%times less than that by the conventionalextrapolation method in FDTD.If the bi-static RCS distributions within a wide frequency band are considered,itis implied thatthe advantage ofproposed extrapolation method are especially more obvious than the conventionalextrapolation method.

    Of course,the commercial software packages,such as CST,HFSS and Feko are very powerful to deal with various electromagnetic problems.As all know,we should make a concrete analysis of each speci fi c question.For example,HFSS and Feko are usually used to deal with electromagnetic problems in frequency domain.If a wide pulse source in time domain is considered,these two software packages will sweep all frequency points of interest included in the source.It will cost a large number of run time.Certainly,CST is a time-domain software package. However,if both severaloperating frequencies and whole azimuth are considered,CST willrun severaltimes to meet these two aspects,and costa lotofrun time.Therefore,for calculating bi-static RCS of electrically large target in a wide frequency band,the proposed extrapolation method in FDTD supplies a novelpowerfultoolto engineering researchers.

    In summary,the fi rstand second cases verify the validity and accuracy of the proposed extrapolation method.The third case shows thatthe run time costby the proposed extrapolation method is,just costing a little more consumed memory,greatly less than thatspentby the originalextrapolation method.

    5.Conclusions

    This paper proposed a novel extrapolation method in FDTD to calculate the bi-static RCS distribution of the complex electrically large targets.The bi-static RCS distribution of the targetformultiple concerned frequencies and multiple azimuths were obtained by the proposed extrapolation method through one-time FDTD calculation.By comparing the calculation results of typical targets from the reference,the validity and accuracy ofthe proposed extrapolation method were proved.Finally,the bi-static RCS distribution of complex electrically large targets has been considered.The simulated results match well with those gained from the commercial software.The advantage of the proposed extrapolation method is to get the bi-static RCS distribution in a wide frequency band through onetime FDTD calculation.If several operating frequencies are considered,the run time cost is greatly less than that of the steady state fi eld extrapolation method.It has been pointed out that fi ve different operating frequencies are considered,85%of run time are saved while maintaining numericalerror within proper acceptance relative to these two conventionalextrapolation methods.

    [1]A.Ta fl ove,S.Hagness.Computational electrodynamics:the finite-difference time-domain method.3rd ed.Boston:Artech House,2005.

    [2]B.Chaudhury,S.Chaturvedi.Study and optimization of plasma-based radar cross section reduction using threedimensional computations.IEEE Trans.on Plasma Science, 2009,37(11):2116-2127.

    [3]C.M.Kuo,C.W.Kuo.A novel FDTD time-stepping scheme to calculate RCS ofcurved conducting objectsusing adaptively adjusted time steps.IEEE Trans.on Antennas and Propagation,2013,61(10):5127-5134.

    [4]Y.N.Jiang,D.B.Ge,S.J.Ding.Analysis of TF/SF boundary for 2D-FDTD with plane wave propagation in layered dispersive and lossy media.Progress in Electromagnetics Research, 2008,83(1):157-172.

    [5]B.Salski,M.Celuch,W.Gwarek.FDTDfornanoscale and opticalproblems.IEEE Microwave Magazine,2010,11(2):50-59.

    [6]D.Y.Li,C.D.Sarris.Time-domain modeling ofnonlinearoptical structures with extended stability FDTD schemes.Journalof Lightwave Technology,2011,29(7):1003-1010.

    [7]D.B.Ge,Y.B.Yan.Electromagnetic finite difference time domain method.3rd ed.Xi'an:Xian University ofElectronic Science and Technology Press,2011.(in Chinese)

    [8]R.F.Harrington.Field computation by moment method.New York:The Macmillan Company,1968.

    [9]C.Z.Dong,F.Z.Geng,H.C.Yin,etal.New hybridization of PO,SBR,and MoM for scattering by large complex conducting objects.Journal of Systems Engineering and Electronics, 2007,18(4):726-730.

    [10]J.M.Song,W.C.Chew.Fast multipole method solution of three dimensional integral equations.Proc.of the Antennas and Propagation Society International Symposium,1995: 1528-1531.

    [11]X.F.Que,Z.P.Nie.Analysis of wire antennas mounted on large perfectly conducting platforms using MLFMA.Journal of Systems Engineering and Electronics,2007,18(4):679-684.

    [12]S.T.Zhang,X.Ren,L.Yang,D.B.Ge.A double station RCS computation method and its application based on the FDTD. Journal of Microwaves,2011,27(3):5-8.

    [13]K.S.Yee,D.Ingham,K.Shlager.Time-domain extrapolation to the far fi eld based on FDTD calculations.IEEE Trans.on Antennas and Propagation,1991,39(3):410-413.

    [14]R.J.Luebbers,D.Ryan,J.Beggs.A two-dimensional timedomain near-zone to far-zone transformation.IEEE Trans.on Antennas and Propagation,1992,40(7):848-851.

    [15]A.C.Woo,H.T.G.Wang,M.J.Schuh.Benchmark radar targets for the validation of computational electromagnetics programs.IEEE Trans.on Antennas and Propagation,1993, 35(1):84-89.

    Biographies

    Kuisong Zhengwas born in 1980.He received his Ph.D.degree in radio science from Xidian University in 2006.Now he is an associate professor in Northwestern Polytechnical University.His main research interests focus on electromagnetic theory,electromagnetic radiation and scattering,and modern antenna design.

    E-mail:kszheng@nwpu.edu.cn

    Tengjiang Dingwas born in 1990.He received his B.S.degree in electronic and information engineering from Northwestern Polytechnical University in 2012.Now he is a graduate student in Northwestern Polytechnical University.His main research interests focus on electromagnetic computation.

    E-mail:949206962@qq.com

    Hui Yuwas born in 1991.He received his B.S.degree in communication engineering from EastChina Jiaotong University in 2012.Now he is a graduate student in Northwestern Polytechnical University. His main research interests focus on electromagnetic computation.

    E-mail:450232763@qq.com

    Zhaoguo Houwas born in 1983.He received his M.S.degree in condensed matter physics from Beijing Institute of Technology in 2007.In 2010,he received his Ph.D.degree in electromagnetic fi eld and microwave technology from Communication University of China.His main research interests focus on electromagnetic scattering and inverse scattering. E-mail:houzg@139.com

    10.1109/JSEE.2015.00081

    Manuscriptreceived September 02,2013.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61401361)and the Fundamental Research Funds for the Central Universities of China(31020150104).

    伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 免费观看a级毛片全部| 夫妻午夜视频| 欧美精品亚洲一区二区| 成人午夜精彩视频在线观看| 欧美精品人与动牲交sv欧美| 啦啦啦在线观看免费高清www| 97热精品久久久久久| 女的被弄到高潮叫床怎么办| 日韩,欧美,国产一区二区三区| 亚洲精品乱码久久久久久按摩| 国产亚洲91精品色在线| 国产人妻一区二区三区在| 欧美成人午夜免费资源| 精品国产一区二区三区久久久樱花 | www.av在线官网国产| 91午夜精品亚洲一区二区三区| 国产一区亚洲一区在线观看| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 成人国产麻豆网| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频 | 精品少妇黑人巨大在线播放| av免费观看日本| 久久影院123| 18禁动态无遮挡网站| 久久久欧美国产精品| 日本黄大片高清| 99久久中文字幕三级久久日本| 国产成人免费无遮挡视频| 91精品国产九色| 日韩成人伦理影院| 日本av免费视频播放| 噜噜噜噜噜久久久久久91| 热99国产精品久久久久久7| av在线app专区| 网址你懂的国产日韩在线| 亚洲美女黄色视频免费看| 国产亚洲最大av| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| 深夜a级毛片| 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 大香蕉久久网| 亚洲国产av新网站| 亚洲欧美清纯卡通| 亚洲av成人精品一区久久| 精品国产一区二区三区久久久樱花 | 天美传媒精品一区二区| 午夜精品国产一区二区电影| 波野结衣二区三区在线| 亚洲国产精品专区欧美| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 97热精品久久久久久| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 国产在视频线精品| 又爽又黄a免费视频| av福利片在线观看| 国产欧美另类精品又又久久亚洲欧美| 在线免费十八禁| 亚洲不卡免费看| 丝袜喷水一区| 一个人看视频在线观看www免费| 久久久久久久久久久免费av| 亚洲精品乱码久久久久久按摩| 亚洲成人中文字幕在线播放| 爱豆传媒免费全集在线观看| 91精品国产国语对白视频| 春色校园在线视频观看| 久久久久久久大尺度免费视频| 国产大屁股一区二区在线视频| 在线观看免费视频网站a站| 亚洲精品一二三| 女性生殖器流出的白浆| av在线观看视频网站免费| 日本午夜av视频| 一本—道久久a久久精品蜜桃钙片| 有码 亚洲区| 最近的中文字幕免费完整| 亚洲精品一二三| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美 | 在线精品无人区一区二区三 | 亚洲第一av免费看| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 欧美极品一区二区三区四区| 日本-黄色视频高清免费观看| 啦啦啦在线观看免费高清www| 国产美女午夜福利| 人妻一区二区av| 日本色播在线视频| 亚洲精品久久午夜乱码| 精品99又大又爽又粗少妇毛片| 女性生殖器流出的白浆| 国产国拍精品亚洲av在线观看| 国产精品99久久99久久久不卡 | 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 久久青草综合色| 久久久久久久国产电影| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 天堂俺去俺来也www色官网| 国产一区二区三区综合在线观看 | 男人添女人高潮全过程视频| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 亚洲精品456在线播放app| 亚洲经典国产精华液单| 97在线视频观看| 国产无遮挡羞羞视频在线观看| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 国产黄色视频一区二区在线观看| 九草在线视频观看| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 国产乱人视频| 卡戴珊不雅视频在线播放| 老女人水多毛片| 欧美精品人与动牲交sv欧美| 欧美成人a在线观看| 国产精品麻豆人妻色哟哟久久| 午夜福利高清视频| 欧美成人a在线观看| 一级爰片在线观看| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 午夜免费观看性视频| 国产精品偷伦视频观看了| 久久 成人 亚洲| av在线老鸭窝| 免费观看a级毛片全部| 午夜老司机福利剧场| 精品视频人人做人人爽| 国产精品偷伦视频观看了| av卡一久久| 亚洲第一av免费看| 少妇被粗大猛烈的视频| 黄色视频在线播放观看不卡| 色综合色国产| 多毛熟女@视频| 亚洲av综合色区一区| h日本视频在线播放| 久久综合国产亚洲精品| 国产爽快片一区二区三区| 国产免费福利视频在线观看| 久久6这里有精品| 乱码一卡2卡4卡精品| 久久热精品热| 97热精品久久久久久| 人妻 亚洲 视频| 五月伊人婷婷丁香| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 亚洲欧美一区二区三区国产| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 特大巨黑吊av在线直播| 国产永久视频网站| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 日本午夜av视频| 国产精品久久久久成人av| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 最近的中文字幕免费完整| 国产精品一区二区三区四区免费观看| 多毛熟女@视频| 亚洲精品国产av蜜桃| 身体一侧抽搐| 国产免费视频播放在线视频| 另类亚洲欧美激情| 日韩制服骚丝袜av| 免费在线观看成人毛片| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 日本欧美视频一区| 日本wwww免费看| 亚洲欧美一区二区三区国产| 色综合色国产| 18禁在线播放成人免费| 欧美97在线视频| 婷婷色综合大香蕉| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 噜噜噜噜噜久久久久久91| 直男gayav资源| 久久精品人妻少妇| 高清欧美精品videossex| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| 一级黄片播放器| 黄色日韩在线| 日本av手机在线免费观看| 国产成人a区在线观看| 亚洲精品日韩av片在线观看| 色婷婷久久久亚洲欧美| 人妻制服诱惑在线中文字幕| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 日本av免费视频播放| 99久国产av精品国产电影| 91狼人影院| 色吧在线观看| 中文字幕亚洲精品专区| 男女免费视频国产| 精品久久久精品久久久| 黄色配什么色好看| 成人影院久久| 秋霞伦理黄片| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 日韩欧美一区视频在线观看 | 综合色丁香网| 国产深夜福利视频在线观看| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 高清黄色对白视频在线免费看 | 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| a级毛片免费高清观看在线播放| 亚洲精品一区蜜桃| 亚洲欧美日韩无卡精品| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| 午夜老司机福利剧场| 欧美+日韩+精品| 亚洲精品乱久久久久久| 欧美 日韩 精品 国产| av网站免费在线观看视频| 午夜福利视频精品| 国产一区二区三区综合在线观看 | 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区| 观看免费一级毛片| 视频区图区小说| 人妻系列 视频| 精品熟女少妇av免费看| 性色avwww在线观看| 日韩国内少妇激情av| 免费久久久久久久精品成人欧美视频 | 91狼人影院| 国产成人精品婷婷| 99热这里只有是精品50| 最黄视频免费看| 久久人人爽人人片av| 制服丝袜香蕉在线| 春色校园在线视频观看| 99精国产麻豆久久婷婷| 在线观看美女被高潮喷水网站| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 99热6这里只有精品| 天堂中文最新版在线下载| 在线观看免费高清a一片| 国产精品人妻久久久久久| 亚州av有码| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 在线 av 中文字幕| 日本免费在线观看一区| 亚洲国产最新在线播放| 欧美最新免费一区二区三区| 久久人人爽av亚洲精品天堂 | 人人妻人人添人人爽欧美一区卜 | www.色视频.com| 亚洲av综合色区一区| 边亲边吃奶的免费视频| 插阴视频在线观看视频| 亚洲经典国产精华液单| 国产精品久久久久久av不卡| 欧美激情极品国产一区二区三区 | .国产精品久久| 综合色丁香网| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 欧美日韩亚洲高清精品| 中文欧美无线码| a 毛片基地| 成年美女黄网站色视频大全免费 | 舔av片在线| 国产一区有黄有色的免费视频| 日本午夜av视频| 国产美女午夜福利| 天堂中文最新版在线下载| 天堂8中文在线网| 久久婷婷青草| 国产亚洲欧美精品永久| 成人美女网站在线观看视频| 黑人高潮一二区| 亚洲不卡免费看| 亚洲av国产av综合av卡| 国产精品一区www在线观看| 全区人妻精品视频| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 免费av中文字幕在线| 中文字幕久久专区| 欧美精品国产亚洲| 精品视频人人做人人爽| 又粗又硬又长又爽又黄的视频| av黄色大香蕉| 亚洲综合色惰| 内地一区二区视频在线| 在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 黄色怎么调成土黄色| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 又大又黄又爽视频免费| 欧美日韩亚洲高清精品| 只有这里有精品99| 亚洲成人一二三区av| 国产精品福利在线免费观看| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| 午夜福利视频精品| 一个人看的www免费观看视频| 日日摸夜夜添夜夜爱| 伦精品一区二区三区| 在线观看国产h片| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| av专区在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品久久久久久久电影| 亚洲国产最新在线播放| 精品国产一区二区三区久久久樱花 | 晚上一个人看的免费电影| 久久99精品国语久久久| 性色av一级| 国产极品天堂在线| 午夜激情福利司机影院| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 日日啪夜夜撸| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 欧美3d第一页| 26uuu在线亚洲综合色| 嘟嘟电影网在线观看| 亚洲美女黄色视频免费看| 色视频www国产| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 亚洲最大成人中文| 欧美一区二区亚洲| 高清视频免费观看一区二区| av免费在线看不卡| 蜜桃亚洲精品一区二区三区| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| 国产亚洲一区二区精品| 国产一区二区三区av在线| 国产v大片淫在线免费观看| 国产 一区精品| 久热久热在线精品观看| 美女主播在线视频| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 舔av片在线| 亚洲性久久影院| 成人18禁高潮啪啪吃奶动态图 | 国产精品一二三区在线看| av在线观看视频网站免费| 韩国高清视频一区二区三区| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 看非洲黑人一级黄片| 如何舔出高潮| 精品久久久久久电影网| 国产 一区 欧美 日韩| 国产精品国产三级国产av玫瑰| 免费黄频网站在线观看国产| 亚洲自偷自拍三级| 80岁老熟妇乱子伦牲交| 深爱激情五月婷婷| 黄色一级大片看看| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 天堂中文最新版在线下载| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 一级黄片播放器| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 成年女人在线观看亚洲视频| 丰满乱子伦码专区| 日本黄色日本黄色录像| 精品久久久久久久末码| 1000部很黄的大片| 少妇熟女欧美另类| 国产一区二区三区av在线| 精品99又大又爽又粗少妇毛片| 亚洲美女视频黄频| 亚洲第一av免费看| 男女国产视频网站| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 亚洲av日韩在线播放| 国产美女午夜福利| 亚洲天堂av无毛| 直男gayav资源| 国产精品人妻久久久影院| 亚洲av中文字字幕乱码综合| 黄色怎么调成土黄色| 亚洲av二区三区四区| 一本久久精品| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| 看非洲黑人一级黄片| av黄色大香蕉| 多毛熟女@视频| 欧美激情国产日韩精品一区| 精品久久久久久久末码| 交换朋友夫妻互换小说| 成人二区视频| av免费在线看不卡| 久久毛片免费看一区二区三区| 黄色怎么调成土黄色| 久久国产精品大桥未久av | av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品福利在线免费观看| 亚洲图色成人| 少妇的逼好多水| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 最近最新中文字幕大全电影3| 啦啦啦在线观看免费高清www| 97超碰精品成人国产| 人人妻人人添人人爽欧美一区卜 | 免费大片18禁| 性高湖久久久久久久久免费观看| 日本欧美国产在线视频| 亚洲精品自拍成人| 18禁动态无遮挡网站| 日本vs欧美在线观看视频 | 纵有疾风起免费观看全集完整版| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 国产高清三级在线| 丰满迷人的少妇在线观看| 一个人看的www免费观看视频| 大香蕉97超碰在线| 只有这里有精品99| 久久精品国产亚洲av天美| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 午夜福利视频精品| 人妻夜夜爽99麻豆av| 久久久久性生活片| 日本wwww免费看| 成人一区二区视频在线观看| 大码成人一级视频| 中文字幕久久专区| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 夫妻午夜视频| 欧美激情国产日韩精品一区| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 欧美3d第一页| 久久久午夜欧美精品| 久久精品久久久久久久性| 日韩伦理黄色片| 欧美高清性xxxxhd video| av免费在线看不卡| 亚洲第一av免费看| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 人人妻人人看人人澡| 在线观看国产h片| 99国产精品免费福利视频| 女人十人毛片免费观看3o分钟| av天堂中文字幕网| 婷婷色综合www| 在线看a的网站| 国产精品一区www在线观看| 日韩av不卡免费在线播放| 免费在线观看成人毛片| 国产一区二区在线观看日韩| videos熟女内射| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 精品一区在线观看国产| 欧美日本视频| 久久久久人妻精品一区果冻| 伦精品一区二区三区| 高清不卡的av网站| 国产精品久久久久久久电影| 一本一本综合久久| 国产黄色免费在线视频| 狂野欧美白嫩少妇大欣赏| 中文欧美无线码| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 在线观看一区二区三区激情| 夫妻午夜视频| 麻豆成人av视频| 视频中文字幕在线观看| 三级经典国产精品| 国内精品宾馆在线| 欧美精品一区二区大全| 乱系列少妇在线播放| 成年美女黄网站色视频大全免费 | 亚洲精品一二三| 观看美女的网站| 性高湖久久久久久久久免费观看| 午夜老司机福利剧场| 精品熟女少妇av免费看| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 三级国产精品片| 国产黄频视频在线观看| 中文字幕亚洲精品专区| 日韩伦理黄色片| 国产大屁股一区二区在线视频| av又黄又爽大尺度在线免费看| 成人美女网站在线观看视频| 多毛熟女@视频| 亚洲欧美日韩东京热| 在线观看免费高清a一片| 大陆偷拍与自拍| a 毛片基地| 在线观看免费日韩欧美大片 | 亚洲内射少妇av| 在线播放无遮挡| 视频中文字幕在线观看| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| av.在线天堂| 中文乱码字字幕精品一区二区三区| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 久久 成人 亚洲| 国产欧美亚洲国产| 欧美xxxx黑人xx丫x性爽| 亚洲成色77777| 插阴视频在线观看视频| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 亚洲第一区二区三区不卡| 女性被躁到高潮视频| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 国产精品偷伦视频观看了| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 久久久精品免费免费高清| 一区二区三区四区激情视频| 色网站视频免费| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 老师上课跳d突然被开到最大视频| 有码 亚洲区| 人妻一区二区av| 午夜老司机福利剧场| 男的添女的下面高潮视频| 成人二区视频| 少妇丰满av| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 人妻一区二区av| 性色avwww在线观看| 日韩av不卡免费在线播放| 中文字幕制服av|