• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive coherence estimatorbased on the Krylov subspace technique for airborne radar

    2015-02-10 12:25:34WeijianLiuWenchongXieHaiboTongHonglinWang

    Weijian Liu,Wenchong Xie,Haibo Tong,Honglin Wang,

    CuiZhou2,and Yongliang Wang2,*

    1.College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China; 2.Air Force Early Warning Academy,Wuhan 430019,China

    Adaptive coherence estimatorbased on the Krylov subspace technique for airborne radar

    Weijian Liu1,2,Wenchong Xie2,Haibo Tong1,Honglin Wang2,

    CuiZhou2,and Yongliang Wang2,*

    1.College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China; 2.Air Force Early Warning Academy,Wuhan 430019,China

    A noveladaptive detector for airborne radar space-time adaptive detection(STAD)in partially homogeneous environments is proposed.The noveldetector combines the numerically stable Krylov subspace technique and diagonalloading technique,and it uses the framework of the adaptive coherence estimator(ACE).It can effectively detecta targetwith low sample support.Compared with its natural competitors,the noveldetector has higher probability ofdetection(PD),especially when the number ofthe training data is low.Moreover,it is shown to be practically constant false alarm rate(CFAR).

    airborne radar,space-time adaptive detection(STAD), constant false alarm rate(CFAR),adaptive coherence estimator (ACE),Krylov subspace,numerical stability,partially homogeneous environments.

    1.Introduction

    The problem of detecting a multichannel signal in Gaussian or non-Gaussian noise has received considerable attention more than three decades[1–11].Three most prominent and pioneering adaptive detectors are Kelly’s generalized likelihood ratio test(KGLRT)[1],adaptive matched filter(AMF)[2]and adaptive coherence estimator(ACE)[3].These detectors behave quite well,provided thatsufficientindependentand identically distributed(IID) training data are available.However,in some situations of practical interest,there are insufficient IID training data. Forexample,forthe airborne radarspace-time adaptive detection(STAD),there are usually limited IID training data due to the environmentaland instrumentalfactors[12,13]. In the low sample support environments,all the detectors cited above suffera significantperformance loss.

    The reduced-rank technique is a simple buteffective approach to deal with the problem mentioned above[13]. Other effective techniques include the diagonal loading [14,15],structured covariance matrix based Doppler distributed clutter(DDC)model[16],indirectdominantmode rejection(IDMR)[17],joint iterative optimization(JIO) [18],and so on.Recently,the Krylov subspace technique, originally as a tool in the field of numerical analysis,is successfully adopted in the area of signalprocessing[19–23],which can serve as an effective approach to solve the low sample support problem for the airborne radar. The Krylov subspace technique does not need the eigenvalue decomposition(EVD)or the inversion of the covariance matrix.Moreover,it can reduce the negative effect of the perturbation of small eigenvalues of the sample covariance matrix(SCM).This is very important,especially for the case of the low sample support.The most famous Krylov subspace techniques adopted in signal processing, are the multistage Wienerfilter(MWF)[19],the auxiliaryvector filter(AVF)[21],and the conjugate gradient filter (CGF)[22].They allbelong to the field of adaptive filtering.Recently,the CGF is adopted in the area ofmultichannel detection under the assumption of the known covariance matrix[20],while MWF and AVF are employed in adaptive detection underthe assumption ofno exactknowledge of the covariance matrix[23].In[23],the equivalence of MWF and AVF in a directmannerare proved,and MWF and AVF with AMF and KGLRT are combined to constructreduced-rank detectors in homogeneous environments.Furthermore,itis shown thatthe Krylov subspacebased methods provide improved detection performance than the traditionalreduced-rank approaches in[13].

    In this paper,we consider the STAD for airborne radar with limited sample supportin partially homogeneous environments,where the covariance matrix of the cell under test(CUT)and thatin the training data have the same structure butwith unknown powermismatch[3].Itis found thatthe partially homogeneous model well describes the environmentsforthe airborne radar,especially with low sample support[24].This paperis an outgrowth of[23].The main contribution of the presentpaper is threefold.

    (i)We employ a numericalstable Krylov subspace technique to the ACE for the STAD in the case of low sample support.Note that only the ACE,among the detectors cited above,possesses the constant false alarm rate (CFAR)property in partially homogeneous environments. Moreover,it is worth pointing out that a serious problem usually encountered but often neglected in practice is the rounding error.None of the aforementioned methods,both for the filtering and detection,has considered the effectof the rounding error.It is noteworthy that the essential step of all kinds of the Krylov subspace is the calculation of the orthonormalbasis.The CGF,MWF,and AVF allcompute the orthonormalbasis by the classical Gram-Schmidt (CGS),which has a poor numerical stability[25,26].In this paper we introduce a very stable method to calculate the orthonormalbasis of the Krylov subspace,namely,the CGS of reorthogonalization done by iterative refinement (CGSI)[25].

    (ii)We also adoptthe diagonalloading technique to design the noveladaptive detector,since the diagonalloading is a simple but effective method when no sufficient training data exists.Thus,the noveldetectoris referred to as the KryCGSI-ACE-DL.

    (iii)We derive the asymptotic statisticaldistribution and probability of detection(PD)of the noveldetector,which is verified by Monte Carlo simulations.

    Remarkably,itis found thatthe KryCGSI-ACE-DL significantly improves the detection performance,especially when the number ofthe training data is small.Moreover,it guarantees the practical CFAR property.

    The rest of the paper is organized as follows.Section 2 presents the problem formulation.The design of the adaptive detector is given in Sections 3.Section 4 analyzes the detection performance.Numericalexamples are shown in Section 5.Finally,Section 6 concludes the paper.

    2.Problem formulation

    For simplicity,we assume the data is received by a linear array with Naantennas,and each antenna collects Npsamples.Denote the received data in the CUT by an N×1 dimensionalcolumn vector x,with N=NaNp.We want to decide whether there exists a useful signal in x or not, exceptfor the disturbance n,including clutterand thermal noise.As customary,we also assume that a set of training data xl(l=1,2,...,L),is available.xlonly contains the disturbance nl,and shares the same structure of the covariance matrix as the disturbance d in the CUT.n and nl’s are modeled as independent,zero-mean,complex circular Gaussian vectors,with covariance matrices=R,respectively,where E[·]denotes the statisticalexpectation and(·)Hrepresents the conjugate transpose.The quantityσ2stands forthe unknown power mismatch between the covariance matrix of the CUT and thatof the training data[3].

    To sum up,the detection problem to be solved can be formulated in the following binary hypothesis test:

    where s is the signal steering vector and a is the signal amplitude,which accounts for the target reflectivity and channelpropagation effects.Note thatthe quantities a,σ2and R are allunknown.

    3.Detector design

    The ACE is the uniformly most-powerful-invariant (UMPI)detector[27]forthe problem in(1),with the statistic

    as the weightvector of the ACE,then(2)can be recastas

    When the number of the training data approaches infi-is equalto R.Therefore,(3)turns into

    As a consequence,(4)becomes

    which is the optimum detector for the problem in(1)for the partially homogeneous environments,and it is known as the normalized matched filter(NMF)[28].However,for the sample-starved scenario,(3)suffers a significant performance loss with respect to(5).The Krylov subspace technique is an effective approach to deal with this problem.Its weightvector for the problem at hand is given by [23]where Tcgsis the basis of the Krylov subspaceis defined as

    where Sp{·}denotes the subspace spanned by the corresponding arguments,D=r+1 is defined as the dimension of the Krylov subspace,and r is the clutter rank,which is the number of the dominant eigenvalue of the covariance matrix[13].

    Itis worth pointing outthatalthough the weightvectors forthe MWF,AVF,and CGF have forms differentfrom(7), they are equivalentto(7)indeed[23].Otherwise stated,(7) can be taken as the common weight vector for the MWF, AVF,and CGF.Moreover,all the aforementioned weight vectors are usually computed by the CGS orthogonalization.

    Compared with(3),(7)can significantly alleviate the performance loss in the case oflow sample support.Therefore,in a similar manner of(4),we can reasonably introduce the following detector

    which,for convenience,is denoted as the KryCGS-ACE. The diagonalloading is an effective technique for the case of low sample support[14].When the diagonal loading is adopted,(9)becomes

    is the diagonally loaded SCM,and the positive scalathe loading factor[14].

    Note thatthe weightvector wcgsin(10)is differentfrom that in(9).The former is calculated according to(7)with ?R is replaced by?Rd.For simplicity,we use the same notation.Their differences can be identified from the context. Precisely,the weightvector wcgsin(10)is the orthonormal basis of the following Krylov subspace

    For the comparison purpose,we name the detector in(10) as the KryCGS-ACE-DL.

    Due to the simple substitution of waceby wcgsin(9) or(10),substantial improvement on the detection performance is achieved.This is due to the fact that the negative effect of the small eigenvalue of the SCMmatically reduced.However,a practical effect,which degrades the performance of the detectors in(9)and(10)is the rounding error.An effective approach to dealwith this problem is the numerically stable orthonormalbasis calculation method of the CGSI[25].Moreover,since the diagonalloading is also a robusttechnique for the case of the low sample support,we combine the CGSI and the diagonal loading to calculate the orthonormalbasis.The procedure of the CGSI for the calculation of the orthonormal basis of the Krylov subspace in(12)is described as follows,with some modification with respect to the original version in[25].

    Initialization:

    Notice thatthe value ofα0is setto be 2 in[26].However,as pointed outin[25],itbringslittle effectforthe final result.In orderto assess the orthogonality of the computed orthonormal basis,it is necessary to calculate the loss of orthogonality[30],defined as

    which is called the orthogonality of Tr+1in[25].

    In a manner analogous to(9),we can obtain the novel detector with improved numericalstability,given by

    which is referred to as the KryCGSI-ACE-DL.The quantity wcgsiin(14)has the same form as those in(9)and (10),but the orthonormalbasis is computed by the CGSI approach described as mentioned above.

    In summary,the KryCGSI-ACE-DL has the following three main steps:(i)form the Krylov subspace KD(?Rd,s) in(12)with a proper diagonal loading factor,(ii)calculae the orthonormalbasis wcgsiof KD(?Rd,s)by the numericalstable CGSI,(iii)form the finaldetector shown in(14).

    4.Performance evaluation

    4.1 Asymptotically statisticaldistribution

    The statistical characteristics of the new detector KryCGSI-ACE-DL is rather involved,and the explicitderivation of the statistical distribution is intractable. Therefore,we analyze its asymptotic distribution.Consequently,we derive the asymptotic PD,which is validated by Monte Carlo trials in Section 5.

    Itis worth noting that when the covariance matrix R is known as a priori,the three detectors in(9),(10),and(14) have almostthe same detection performance,and they all approach the detection performance of the NMF in(6).Because of their common forms and asymptotic versions,the asymptotic detectors and the weights are simply denoted as taand wa,respectively.By asymptotic,we mean thatis approximately equal to R.As a consequence,tacan be represented by

    where wais equal to woptin(5),i.e.,wa=R?1s.Let ,then we have

    where E[·]denotes the statisticalexpectation,and Tais the asymptotic version of Tcgsand Tcgsi.Therefore,under hypothesis H1,itfollows that

    One can verify thatthe distribution of(18)is a complex doubly noncentral F-distribution with 1 and N DOFs and noncentrality parametersρaandρ[31],denoted as

    Equation(18)can be furtherexpressed as

    It is shown in[23]thatρais smaller thanρ,however the differenceΔρ=ρ?ρa,which is the output SCNR loss for the Krylov subspace technique compared with the optimum processor,is smallenough and can be neglected. Thereby,underthe hypothesis H1,t3is asymptotically dis-.Therefore,(18)can be approximated asIt can be readily shown that the distribution of(23)is a complex noncentral Beta distribution with 1 and N?1 DOFs and a noncentrality parameterρa, which is written symbolically as

    4.2 Asymptotic PD

    In orderto assess the detection performance ofthe new detectors,itis necessary to analyze the upperbound on detection performance ofthatof the ACE and the new detectors, which is the NMF in(6).Under the hypothesis H1,the NMF is ruled by a complex noncentral Beta distribution with 1 and N DOFs and a noncentrality parameterρ[28], as denoted as tNMF~Cβ1,N?1(ρ),whereρis given in (19).

    It should be emphasized that a common feature of the detectors in(9),(10),and(14)is that they suffer certain SCNR loss,due to the rank reduction process,which,in turn,alleviates the perturbation caused by the SCM.Fortunately,the latter effectdominates the former one,and it brings significantly performance improvement.

    Under the hypothesis H0,the probability density function(PDF)of tain(24)is f(t;H0)=N(1?t)N?1[32]. Itfollows thatthe probability of false alarm(PFA)is

    Therefore,the threshold is found to beAccording to the cumulative distribution functions(CDF)ofthe complex noncentralBeta distribution[33],the PDof tais calculated as

    Before closing this section,we would like to give some discussions on the computationalcomplexity forthe detectors.The mosttime consuming terms are the matrix inversion operation and the computation of the orthonormalbasis of Krylov subspace.For the conventional ACE,it only needs the matrix inversion,whereas forthe KryCGS-ACEDL and KryCGSI-ACE-DL they need both the matrix inversion and the orthonormalbasis of the Krylov subspace. Note that the computational complexity of the matrix inversion operation is of order of O(N3).Moreover,the computationalcomplexity of the orthonormalbasis of the Krylov subspaceeither by the CGS or by the CGSI,is of order of O(Nr2)[26].Hence, when r is much smallerthan N,the complexity ofthe computation of the orthonormalbasis can be ignored,as compared with the computation of the matrix inversion.Therefore,the ACE,KryCGS-ACE-DL and KryCGSI-ACE-DL almosthave the same computationalcomplexity.

    5.Numericalexperiments

    It has been shown in[23]that the Krylov subspace-based approaches with the diagonalloading have superiorperformance to the methods employed Krylov subspace-based, diagonal loading technique,or principal component[34]. In otherwords,the KryCGS-ACE-DLand KryCGSI-ACEDL have improved detection performance compared with the KryCGS-ACE,KryCGSI-ACE,diagonal loaded ACE (DL-ACE)[28],reduced-rank ACE(RR-ACE)[13],and the ACE.Therefore,for clarification and simplicity,we mainly focus on the comparison of the KryCGS-ACE-DL and KryCGSI-ACE-DL in this section.

    The parameters are given below.The number of antennas and pulses are Na=4 and Np=6,respectively.Thus, we have N=NaNp=24.The array is assumed to work in the side-looking mode.For simplification,the slope of the clutter line is set to be unity.Thus the clutter rank is r=Na+Np?1=9.To reduce the computationalcomplexity,the PFA is set to be Pfa=10?3and the clutterto-noise ratio(CNR)is chosen as 60 dB.The normalized Dopplerfrequency and normalized spatialfrequency ofthe signalare setto berespectively.

    Fig.1 shows the loss of the orthogonality of the CGS and CGSI for the orthonormal basis computation of the Krylov subspaceThe working precision is 2.220 4×10?16(i.e.,2?52).As shown in Fig.1,the loss of orthogonality ofthe CGSIis of order O(10?16).However, the loss of the orthogonality of the CGS is much larger, i.e.,of the order of O(100).In other words,the CGSI has less loss than the CGS.Therefore,we can reasonably expect that the KryCGSI-ACE-DL has improved detection performance than thatofKryCGS-ACE-DL.This is indeed the case,as shown in the following simulations.

    Fig.1 Loss of orthogonality of the CGS and CGSI

    Fig.2 displays the PD of the KryCGSI-ACE-DL,also in comparison with those of the KryCGS-ACE-DL and ACE when the number of the sample is L=2N.The label Asympt denotes“the asymptotical performance of the novel detector”.The superscript an stands for“analytical”,while mc indicates“the PDs are obtained by Monte Carlo simulations”.The thresholds for the detectors are determined through NPfa=100/PfaMonte Carlo trials.The PDs are obtained using NPd=10 000 independent data realizations.The results in Fig.2 highlight that the asymptotically analyticalPDs ofthe KryCGS-ACE-DL and KryCGSI-ACE-DL approximate that of the NMF.Essentially,itis due to the factthatthey share the same type of statistical distributions and nearly have the same noncentrality parameters.Moreover,the PD of the KryCGSIACE-DL is higher than thatof the KryCGS-ACE-DL,and they are both higherthan thatofthe conventionalACE.For example,the performance improvementof the KryCGSIACE-DL with respect to the KryCGS-ACE-DL is about 0.5 dB in terms of the SCNR when PD=0.9.Compared with the optimum detector NMF,the aforementioned loss of the KryCGSI-ACE-DL is only about 1 dB when PD= 0.9.

    Fig.2 PDs of the detectors when L=2N

    Fig.3 illustrates the PDs of the detectors with L= [1.2N],where the notation[·]represents the rounding operation.It is shown that the PD of the KryCGSI-ACEDL is higher than that of the KryCGS-ACE-DL,which in turn is significantly higher than that of the ACE.Particularly,when PD=0.8,the performance improvements of the KryCGSI-ACE-DL with respectto the KryCGS-ACEDL and ACE in terms of the SCNR are 1 dB and 8 dB, respectively.

    Fig.3 PDs of the detectors when L=[1.2N]

    Fig.4 displays the PDs of the KryCGS-ACE-DL and KryCGSI-ACE-DL when L<N.When the numberofthe training data is lower than the dimension of the data,i.e., L<N,the ACE is invalid due to the singularity of the SCM.In contrast,the KryCGS-ACE-DL and KryCGSIACE-DL are still effective.The results highlight that the KryCGSI-ACE-DLexhibits a higherPDthan the KryCGSACE-DL.This is due to the numerically stable calculation of the orthonormalbasis of the Krylov subspace.

    Fig.4 PDs of the detectors when L=2r

    Fig.5 depicts the effect of the number of the training data on the detection performance of the detectors.It is shown that when the number of the training data is low (e.g.,less than 35 for the specific parameter setting),the traditionalACE cannotdetecta targetwith PD higherthan 0.5.Instead,the Krylov subspace-based methods are still valid.In addition,when the number of the training data is large enough(e.g.,L=70),the PDs of the detectors are almostthe same.

    Fig.5 PDs of the detectors versus the number of the training data

    Fig.6 plots the PDs of the KryCGS-ACE-DL and KryCGSI-ACE-DL with different loading factors when L=2r.The results indicate that for a wide range of the loading factor,i.e.,[–2.8 dB,22 dB](orequivelently[0.52,170]),the detection performance ofthe detectorsis notdramatically affected by the loading factors.This resultcoincides with the results in[28].

    Fig.6 PDs of the detectors versus the loading factor

    The detection performance of the detectors is characterized in a different way in Fig.7.Precisely,it shows the CFAR property of these new detectors.More precisely, it plots the thresholds of these detectors under different CNRs when the numberofthe sample is setto be L=2N. The thresholds of the detectors vary little for different CNRs.This reveals the factthatthey are practically CFAR. Moreover,the KryCGSI-ACE-DL is mostrobust.

    Fig.7 Thresholds versus CNR

    6.Conclusions

    In this paper,we adopt the Krylov subspace technique for the airborne radar STAD,and propose a noveldetector in partially homogeneous environments,i.e.,the KryCGSIACE-DL.The new detector is numerically stable and improves detection performance,especially when the number of the training data is small.Additionally,the KryCGSIACE-DL has the negligible costin the computationalcomplexity,compared with the traditionalACE.

    [1]E.J.Kelly.An adaptive detection algorithm.IEEE Trans.on Aerospace and Electronic Systems,1986,22(1):115–127.

    [2]F.C.Robey,D.R.Fuhrmann,E.J.Kelly,et al.A CFAR adaptive matched filter detector.IEEE Trans.on Aerospace and Electronic Systems,1992,28(1):208–216.

    [3]S.Kraut,L.L.Scharf.The CFAR adaptive subspace detector is a scale-invariant GLRT.IEEE Trans.on Signal Processing, 1999,47(9):2538–2541.

    [4]T.Jian,Y.He,F.Su,et al.High resolution radar targetadaptive detector and performance assessment.Journal of Systems Engineering and Electronics,2011,22(2):212–218.

    [5]W.Liu,W.Xie,J.Liu,et al.Adaptive double subspace signaldetection in gaussian background—parti:Homogeneous environments.IEEE Trans.on SignalProcessing,2014,62(9): 2345–2357.

    [6]W.Liu,W.Xie,J.Liu,etal.Adaptive double subspace signal detection in gaussian background—partii:Partially homogeneous environments.IEEE Trans.on Signal Processing,2014, 62(9):2358–2369.

    [7]J.Liu,Z.J.Zhang,P.L.Shui,etal.Exactperformance analysis of an adaptive subspace detector.IEEE Trans.on Signal Processing,2012,60(9):4945–4950.

    [8]J.Liu,Z.J.Zhang,Y.Yang,etal.A CFAR adaptive subspace detectorfor first-order or second-order Gaussian signals based on a single observation.IEEE Trans.on Signal Processing, 2011,59(11):5126–5140.

    [9]L.Huang,H.C.So,C.Qian.Volume-based method for spectrum sensing.DigitalSignal Processing,2014,28:48–56.

    [10]J.Xu,J.Yu,Y.N.Peng,et al.Radon-fourier transform for radar targetdetection,i:Generalized doppler filter bank.IEEE Trans.on Aerospace and Electronic Systems,2011,47(2): 1186–1202.

    [11]G.Cui,A.D.Maio,M.Piezzo.Performance prediction ofthe incoherent radar detector for correlated generalized swerlingchi fluctuating targets.IEEE Trans.on Aerospace and Electronic Systems,2013,49(1):356–368.

    [12]W.Liu,W.Xie,Y.Wang.Adaptive detection based on orthogonal partition of the primary and secondary data.Journal of Systems Engineering and Electronics,2014,25(1):34–42.

    [13]Y.Wang,W.Liu,W.Xie,etal.Reduced-rank space-time adaptive detection for airborne radar.Science China:Series FInformation Sciences,2014,57(8):1–11.

    [14]B.D.Carlson.Covariance matrix estimation errors and diagonalloading in adaptive arrays.IEEE Trans.on Aerospace and Electronic Systems,1988,24(4):397–401.

    [15]J.Cao,X.Wang.Diagonally loaded SMIalgorithm based on inverse matrix recursion.Journal of Systems Engineering and Electronics,2007,18(1):160–163.

    [16]J.Xu,Y.Peng,Q.Wan,etal.Dopplerdistributed cluttermodel of airborne radar and its parameters estimation.Science in China:Series F-Information Sciences,2004,47(5):577–586.

    [17]E.L.Santos,M.D.Zoltowski,M.Rangaswamy.Indirect dominant mode rejection:a solution to low sample supportbeamforming.IEEE Trans.on SignalProcessing,2007,55(7): 3283–3293.

    [18]R.Fa,R.C.De Lamare.Reduced-rank STAP algorithms using joint iterative optimization of filters.IEEE Trans.on Aerospace and Electronic Systems,2011,47(3):1668–1684.

    [19]J.S.Goldstein,I.S.Reed,L.L.Scharf.A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans.on Information Theory,1998,44(7):2943–2959.

    [20]C.Jiang,H.Li,M.Rangaswamy.On the conjugate gradient matched filter.IEEE Trans.on Signal Processing,2012,60(5): 2660–2666.

    [21]D.A.Pados,S.N.Batalama.Jointspace-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays.IEEE Trans.on Communications,1999,47(9):1406–1415.

    [22]P.S.Chang,N.W.Jr.Alan.Analysis of conjugate gradient algorithms for adaptive filtering.IEEE Trans.on Signal Processing,2000,48(2):409–418.

    [23]W.Liu,W.Xie,R.Li,et al.Adaptive detectors in the Krylov subspace.Science China:Series F-Information Sciences,2014,57(10):1–11.

    [24]E.Conte,A.D.Maio,G.Ricci.GLRT-based adaptive detection algorithms for range-spread targets.IEEE Trans.on Signal Processing,2001,49(7):1336–1348.

    [25]W.Hoffmann.Iterative algorithms for Gram-Schmidt orthogonalization.Computing,1989,41:335–348.

    [26]J.W.Daniel,W.B.Gragg,L.Kaufman,etal.Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization.Mathematics of Computation,1976,30(136): 772–795.

    [27]S.Kraut,L.L.Scharf,R.W.Butler.The adaptive coherence estimator:a uniformly most-powerful-invariant adaptive detection statistic.IEEE Trans.on Signal Processing,2005, 53(2):427–438.

    [28]W.Liu,W.Xie,Y.Wang.AMF and ACE detectors based on diagonalloading.Systems Engineering and Electronics,2013, 35(3):463–468.(in Chinese)

    [29]J.Liesen,P.Tichy.Convergence analysis of Krylov subspace methods.GAMM Mitteilungen,2000,27(2):153–173.

    [30]L.Giraud,J.Langou,M.Rozloˇzn′?k,etal.Rounding erroranalysis ofthe classical Gram-Schmidtorthogonalization process. Numerische Mathematik,2005,101:87–100.

    [31]R.W.Butler,M.S.Paolella.Calculating the density and distribution function for the singly and doubly noncentral F.Statistics and Computing,2002,12(1):9–16.

    [32]W.Liu,W.Xie,Y.Wang.Some complex statistical distributionsin complex-valued signaldetection theory.Acta Electronica Sinica,2013,41(6):1238–1241.(in Chinese)

    [33]E.J.Kelly.Performance of an adaptive detection algorithm: Rejection of unwanted signals.IEEE Trans.on Aerospace and Electronic Systems,1989,25(2):122–133.

    [34]J.R.Guerci,J.S.Bergin.Principal components,covariance matrix tapers,and the subspace leakage problem.IEEE Trans. on Aerospace and Electronic Systems,2002,38(1):152–162.

    Biographies

    Weijian Liuwas born in 1982.He is currently working toward the Ph.D.degree at National University of Defense Technology,Changsha,China. His currentresearch interests include multichannel signaldetection,statisticaland array signalprocessing.

    E-mail:liuvjian@163.com

    Wenchong Xiewas born in 1978.He received his Ph.D.degree in 2006 from National University of Defense Technology,Changsha,China.Now he is an associate professor in Air Force Early Warning Acadamy.His current research interests indude space-time adaptive processing and ariborne radar signalprocessing.

    E-mail:xwch1978@aliyun.com

    Haibo Tongwas born in 1984.He is currently working toward his Ph.D.degree at National University of Defense Technology,Changsha,China.His currentresearch interests include the weak signaldetection and tracking for the globalsatellite system.

    E-mail:hbo.tong@gmail.com

    Honglin Wangwas born in 1982.He received his M.S.degree on military equipmentin 2006.Now he is a lecture of Scientific Research Departmentin Air Force Earlying Warning Academy,China.His current research interests indude radar technology and its applications in military affairs.

    E-mail:ly whl@163.com

    Cui Zhouwas born in 1983.She received her M.S. degree in communication and information system from China University of Geosciences(Wuhan)in 2008.Her currentresearch interest is FPGA.

    E-mail:cuizhou2014@163.com

    Yongliang Wangwas born in 1965.He received his Ph.D.degree in 1994 from Xidian University. Now he is a professor in Air Force Early Warning Acadamy.His current research interests indude space-time adaptive processing and ariborne radar signalprocessing.

    E-mail:ylwangkjld@163.com

    10.1109/JSEE.2015.00078

    Manuscript received November 06,2013.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(60925005;61102169;61501505).

    亚洲国产av新网站| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 成人黄色视频免费在线看| 亚洲久久久国产精品| 久久久国产欧美日韩av| 免费观看性生交大片5| 少妇人妻 视频| av在线观看视频网站免费| 狠狠婷婷综合久久久久久88av| 老汉色∧v一级毛片| 精品久久久久久电影网| 久久久久久久久久久免费av| 十八禁网站网址无遮挡| 宅男免费午夜| 18禁观看日本| 美女国产高潮福利片在线看| 在现免费观看毛片| 国产精品熟女久久久久浪| 日本猛色少妇xxxxx猛交久久| 免费看不卡的av| 狂野欧美激情性bbbbbb| 高清欧美精品videossex| 精品少妇内射三级| 欧美精品av麻豆av| 亚洲欧美精品自产自拍| 精品人妻一区二区三区麻豆| 天堂俺去俺来也www色官网| 高清不卡的av网站| 色视频在线一区二区三区| 亚洲精品久久午夜乱码| 国产精品亚洲av一区麻豆 | 日本av手机在线免费观看| 亚洲一级一片aⅴ在线观看| 天天躁夜夜躁狠狠久久av| 精品福利永久在线观看| 久久精品国产亚洲av高清一级| 看十八女毛片水多多多| 水蜜桃什么品种好| 国产高清国产精品国产三级| 国产成人欧美在线观看 | 国产精品女同一区二区软件| 日日撸夜夜添| 观看av在线不卡| 电影成人av| www.av在线官网国产| www.自偷自拍.com| 观看av在线不卡| 视频在线观看一区二区三区| 成年美女黄网站色视频大全免费| 免费少妇av软件| 另类精品久久| 久久精品亚洲熟妇少妇任你| 精品一区二区三区av网在线观看 | 亚洲男人天堂网一区| 97在线人人人人妻| 丰满饥渴人妻一区二区三| 老司机深夜福利视频在线观看 | 日韩 欧美 亚洲 中文字幕| 国产精品蜜桃在线观看| 婷婷成人精品国产| 啦啦啦啦在线视频资源| 精品一区二区三区av网在线观看 | 久久久欧美国产精品| 一区福利在线观看| 飞空精品影院首页| 亚洲欧美一区二区三区国产| 在线免费观看不下载黄p国产| 久久人人爽人人片av| 亚洲欧美中文字幕日韩二区| 国产亚洲最大av| 天天操日日干夜夜撸| www.av在线官网国产| 久久精品人人爽人人爽视色| 制服丝袜香蕉在线| 男女免费视频国产| 国产毛片在线视频| 国产亚洲av片在线观看秒播厂| 老司机亚洲免费影院| 大片免费播放器 马上看| 国产av国产精品国产| 99久久99久久久精品蜜桃| 欧美乱码精品一区二区三区| 亚洲色图综合在线观看| 男女边吃奶边做爰视频| 免费av中文字幕在线| 亚洲一级一片aⅴ在线观看| 欧美人与性动交α欧美精品济南到| 免费人妻精品一区二区三区视频| 两性夫妻黄色片| 国产黄色免费在线视频| tube8黄色片| 久久久久精品性色| 久热爱精品视频在线9| 一级黄片播放器| 天美传媒精品一区二区| 精品午夜福利在线看| 中国三级夫妇交换| 久久这里只有精品19| 亚洲天堂av无毛| 丝袜人妻中文字幕| 亚洲欧美精品自产自拍| 久久av网站| 在线精品无人区一区二区三| 久久久国产欧美日韩av| 男人舔女人的私密视频| 建设人人有责人人尽责人人享有的| 老司机深夜福利视频在线观看 | 青春草视频在线免费观看| 日日啪夜夜爽| 欧美 日韩 精品 国产| 亚洲欧美日韩另类电影网站| 国产老妇伦熟女老妇高清| netflix在线观看网站| 日本爱情动作片www.在线观看| 亚洲精品国产色婷婷电影| 午夜久久久在线观看| 亚洲精品乱久久久久久| 日本vs欧美在线观看视频| 成人黄色视频免费在线看| av在线观看视频网站免费| 久久天躁狠狠躁夜夜2o2o | 久久亚洲国产成人精品v| 1024香蕉在线观看| 亚洲中文av在线| 国产又色又爽无遮挡免| 熟妇人妻不卡中文字幕| 欧美成人午夜精品| 秋霞在线观看毛片| 自线自在国产av| 国产一区有黄有色的免费视频| 美女中出高潮动态图| 日韩 亚洲 欧美在线| 热99国产精品久久久久久7| 午夜福利影视在线免费观看| 97精品久久久久久久久久精品| 国产亚洲av高清不卡| 午夜精品国产一区二区电影| 亚洲精品中文字幕在线视频| 男人爽女人下面视频在线观看| 中文字幕高清在线视频| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 新久久久久国产一级毛片| 精品国产超薄肉色丝袜足j| 超碰成人久久| 亚洲欧美一区二区三区国产| 亚洲精品国产区一区二| 在线观看www视频免费| 欧美av亚洲av综合av国产av | 久久这里只有精品19| 亚洲国产中文字幕在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲综合色网址| 校园人妻丝袜中文字幕| 在线观看国产h片| 伦理电影免费视频| 少妇猛男粗大的猛烈进出视频| 久久精品亚洲熟妇少妇任你| 国产精品免费视频内射| 老司机影院成人| 国产精品 欧美亚洲| 夫妻午夜视频| 亚洲av电影在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 精品第一国产精品| 搡老乐熟女国产| 久久热在线av| 日日爽夜夜爽网站| 亚洲欧美一区二区三区久久| 99久国产av精品国产电影| av女优亚洲男人天堂| 免费黄色在线免费观看| 国产精品99久久99久久久不卡 | 国产伦人伦偷精品视频| 夫妻性生交免费视频一级片| 99国产精品免费福利视频| 亚洲在久久综合| 性高湖久久久久久久久免费观看| 欧美激情极品国产一区二区三区| videosex国产| 成人亚洲欧美一区二区av| 免费女性裸体啪啪无遮挡网站| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 亚洲激情五月婷婷啪啪| 免费人妻精品一区二区三区视频| 亚洲熟女精品中文字幕| 在线观看免费午夜福利视频| 国产一区二区在线观看av| 亚洲国产欧美在线一区| 大码成人一级视频| 欧美另类一区| 久久97久久精品| 最近的中文字幕免费完整| 日韩 亚洲 欧美在线| 黄色视频在线播放观看不卡| 国产精品一区二区精品视频观看| 国产黄色视频一区二区在线观看| 91成人精品电影| 啦啦啦 在线观看视频| 国产成人精品无人区| 亚洲一码二码三码区别大吗| 免费人妻精品一区二区三区视频| 久久久久视频综合| 精品少妇内射三级| 妹子高潮喷水视频| 亚洲精品国产区一区二| 日韩一区二区三区影片| 亚洲欧美一区二区三区国产| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久久久99蜜臀 | 国产午夜精品一二区理论片| 久热这里只有精品99| 国产精品国产av在线观看| 色94色欧美一区二区| 日韩一本色道免费dvd| 欧美日韩一级在线毛片| av国产精品久久久久影院| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 91精品三级在线观看| 精品酒店卫生间| 国产av码专区亚洲av| 菩萨蛮人人尽说江南好唐韦庄| www.精华液| 搡老乐熟女国产| 久久午夜综合久久蜜桃| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 久久精品国产亚洲av涩爱| 电影成人av| 色精品久久人妻99蜜桃| 岛国毛片在线播放| 中文字幕最新亚洲高清| 男女国产视频网站| 婷婷色综合www| 国产精品久久久久久久久免| 在线观看免费视频网站a站| 永久免费av网站大全| av在线观看视频网站免费| 一区二区av电影网| 免费av中文字幕在线| 亚洲国产最新在线播放| 一级a爱视频在线免费观看| 十八禁高潮呻吟视频| 欧美老熟妇乱子伦牲交| 叶爱在线成人免费视频播放| 青草久久国产| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 三上悠亚av全集在线观看| 女人被躁到高潮嗷嗷叫费观| 女人高潮潮喷娇喘18禁视频| 亚洲精华国产精华液的使用体验| 色94色欧美一区二区| 男女边摸边吃奶| 日本wwww免费看| 久久久久精品国产欧美久久久 | 亚洲国产精品成人久久小说| 如何舔出高潮| 欧美97在线视频| 大香蕉久久网| 亚洲激情五月婷婷啪啪| 亚洲伊人久久精品综合| www.熟女人妻精品国产| 咕卡用的链子| 妹子高潮喷水视频| 国产色婷婷99| 国产一区二区激情短视频 | www日本在线高清视频| 久久久久久人人人人人| 男女午夜视频在线观看| 国产成人午夜福利电影在线观看| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 久久韩国三级中文字幕| 国产日韩欧美视频二区| 女的被弄到高潮叫床怎么办| 亚洲国产看品久久| 国产成人精品福利久久| 午夜av观看不卡| 精品少妇久久久久久888优播| 久久久精品区二区三区| 亚洲美女搞黄在线观看| 成年动漫av网址| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| av卡一久久| 伊人久久大香线蕉亚洲五| 一本一本久久a久久精品综合妖精| 久久久久精品人妻al黑| 国产伦人伦偷精品视频| 只有这里有精品99| 激情五月婷婷亚洲| a 毛片基地| 青春草视频在线免费观看| 免费高清在线观看日韩| 男女边摸边吃奶| 日韩av免费高清视频| 嫩草影院入口| 乱人伦中国视频| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品一区三区| 999精品在线视频| 九草在线视频观看| 久久99精品国语久久久| 国产成人欧美在线观看 | 人妻 亚洲 视频| 国产免费福利视频在线观看| 高清av免费在线| 久久久久国产精品人妻一区二区| 国产精品国产av在线观看| 亚洲成人av在线免费| 欧美在线一区亚洲| 少妇人妻久久综合中文| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 午夜激情久久久久久久| 一二三四中文在线观看免费高清| 亚洲欧美精品综合一区二区三区| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜制服| 成人国语在线视频| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃| 欧美激情极品国产一区二区三区| 日本av免费视频播放| 观看美女的网站| 丝袜脚勾引网站| 午夜福利一区二区在线看| 国产精品一国产av| 制服人妻中文乱码| 午夜福利影视在线免费观看| 999久久久国产精品视频| 人妻一区二区av| 老鸭窝网址在线观看| 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 亚洲国产成人一精品久久久| a级片在线免费高清观看视频| 人成视频在线观看免费观看| 中国三级夫妇交换| av电影中文网址| av在线app专区| 成人亚洲精品一区在线观看| 麻豆精品久久久久久蜜桃| 在线观看免费视频网站a站| 永久免费av网站大全| av片东京热男人的天堂| 亚洲色图综合在线观看| 久久人人97超碰香蕉20202| 大香蕉久久网| 国产麻豆69| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 日韩视频在线欧美| 一区二区三区精品91| 久久久久久人妻| 午夜免费鲁丝| 久久韩国三级中文字幕| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 国产精品久久久av美女十八| 老汉色∧v一级毛片| kizo精华| 亚洲av欧美aⅴ国产| 波多野结衣一区麻豆| 黑人猛操日本美女一级片| av女优亚洲男人天堂| 青春草视频在线免费观看| 久久女婷五月综合色啪小说| 久久这里只有精品19| 久久韩国三级中文字幕| www.自偷自拍.com| 欧美日韩一区二区视频在线观看视频在线| 桃花免费在线播放| 大片免费播放器 马上看| 日日啪夜夜爽| 51午夜福利影视在线观看| 最近最新中文字幕免费大全7| 亚洲人成网站在线观看播放| 亚洲国产日韩一区二区| 一区二区av电影网| 婷婷色综合www| 亚洲精品久久成人aⅴ小说| 大香蕉久久网| 少妇人妻久久综合中文| 国产av国产精品国产| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 精品国产乱码久久久久久小说| 天堂8中文在线网| 成年av动漫网址| 日本黄色日本黄色录像| 香蕉国产在线看| 青青草视频在线视频观看| 精品国产超薄肉色丝袜足j| 精品少妇黑人巨大在线播放| 亚洲精品,欧美精品| 欧美精品av麻豆av| 黄色视频在线播放观看不卡| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| 久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 午夜福利在线免费观看网站| 一本色道久久久久久精品综合| 久久精品国产综合久久久| 国产成人系列免费观看| 精品国产露脸久久av麻豆| 在线观看三级黄色| 又黄又粗又硬又大视频| 精品国产一区二区三区四区第35| 成人毛片60女人毛片免费| 色综合欧美亚洲国产小说| 亚洲欧美中文字幕日韩二区| 久久婷婷青草| 最新的欧美精品一区二区| 制服人妻中文乱码| 亚洲精品在线美女| 在线天堂中文资源库| 最近最新中文字幕免费大全7| 亚洲精品在线美女| 中文天堂在线官网| 丰满乱子伦码专区| 国产片特级美女逼逼视频| 男女午夜视频在线观看| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 久久99一区二区三区| 久久久久人妻精品一区果冻| 亚洲精品国产区一区二| videosex国产| 一级片'在线观看视频| 97人妻天天添夜夜摸| 午夜免费观看性视频| 麻豆av在线久日| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 少妇被粗大猛烈的视频| 欧美国产精品va在线观看不卡| 亚洲精华国产精华液的使用体验| 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| av线在线观看网站| 麻豆av在线久日| 99久国产av精品国产电影| 高清视频免费观看一区二区| 黄片无遮挡物在线观看| 国产精品欧美亚洲77777| 韩国高清视频一区二区三区| 国产欧美亚洲国产| 日韩中文字幕视频在线看片| 亚洲熟女毛片儿| 美女脱内裤让男人舔精品视频| 中国三级夫妇交换| 婷婷色av中文字幕| 久久久久久久久久久久大奶| 国产精品 欧美亚洲| 久久久久国产精品人妻一区二区| 精品人妻在线不人妻| 亚洲精品自拍成人| 伦理电影免费视频| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 男女边摸边吃奶| 一本大道久久a久久精品| 国产日韩欧美亚洲二区| av有码第一页| 色综合欧美亚洲国产小说| 亚洲综合精品二区| 日本91视频免费播放| 波野结衣二区三区在线| 男人操女人黄网站| 高清不卡的av网站| 亚洲美女搞黄在线观看| 99国产综合亚洲精品| av网站在线播放免费| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 中文字幕人妻丝袜制服| 国产女主播在线喷水免费视频网站| 免费久久久久久久精品成人欧美视频| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 久久久精品94久久精品| 日韩一区二区三区影片| 交换朋友夫妻互换小说| 婷婷成人精品国产| 久久久久视频综合| 午夜福利,免费看| 国产成人a∨麻豆精品| 51午夜福利影视在线观看| 麻豆精品久久久久久蜜桃| 日本一区二区免费在线视频| 午夜影院在线不卡| 成人18禁高潮啪啪吃奶动态图| 丰满迷人的少妇在线观看| 国产精品.久久久| 日本欧美国产在线视频| 久久99精品国语久久久| 老熟女久久久| 国产激情久久老熟女| 亚洲,欧美,日韩| av电影中文网址| 免费观看人在逋| 久热爱精品视频在线9| 99香蕉大伊视频| 国产成人系列免费观看| 天堂8中文在线网| 精品国产乱码久久久久久男人| 狂野欧美激情性bbbbbb| 久久久久久免费高清国产稀缺| 99热网站在线观看| 国产精品久久久人人做人人爽| 日日爽夜夜爽网站| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 国产精品秋霞免费鲁丝片| 日韩精品免费视频一区二区三区| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 久久久精品区二区三区| 日日撸夜夜添| a级片在线免费高清观看视频| 嫩草影院入口| 亚洲精品日韩在线中文字幕| av线在线观看网站| 国产视频首页在线观看| 大陆偷拍与自拍| 日韩一区二区三区影片| 色吧在线观看| 欧美激情 高清一区二区三区| 精品国产国语对白av| 国产黄色免费在线视频| 日日啪夜夜爽| 国产一区二区 视频在线| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| avwww免费| 成年美女黄网站色视频大全免费| 国产精品免费大片| 天天影视国产精品| 国产精品秋霞免费鲁丝片| 久久精品久久久久久久性| 亚洲av电影在线进入| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 久久精品国产亚洲av高清一级| 国精品久久久久久国模美| 亚洲国产看品久久| 桃花免费在线播放| 女的被弄到高潮叫床怎么办| 亚洲精品自拍成人| 国产在视频线精品| 久久亚洲国产成人精品v| 午夜老司机福利片| 一二三四在线观看免费中文在| 欧美日韩综合久久久久久| 久久久久久久久免费视频了| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 国产在线视频一区二区| 国产成人啪精品午夜网站| 国产淫语在线视频| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 我的亚洲天堂| 女性生殖器流出的白浆| 高清欧美精品videossex| 欧美在线一区亚洲| 丰满饥渴人妻一区二区三| 高清在线视频一区二区三区| 日韩大片免费观看网站| 亚洲成人手机| 伊人亚洲综合成人网| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 三上悠亚av全集在线观看| 国产男人的电影天堂91| 蜜桃在线观看..| 国产免费视频播放在线视频| 国产免费福利视频在线观看| 久久人人爽人人片av| 成人黄色视频免费在线看| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 无遮挡黄片免费观看| 七月丁香在线播放| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜制服| 精品少妇一区二区三区视频日本电影 | 久久鲁丝午夜福利片| 人妻人人澡人人爽人人| 麻豆av在线久日| 18禁动态无遮挡网站| 国产男女内射视频| 高清视频免费观看一区二区| 欧美日韩国产mv在线观看视频| 久久久久久久久久久久大奶|