• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Semidefinite programming approach for TDOA/GROA based source localization

    2015-02-10 12:25:30YanshenDuPingWeiandHuaguoZhang

    Yanshen Du,Ping Wei,and Huaguo Zhang

    Schoolof Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    Semidefinite programming approach for TDOA/GROA based source localization

    Yanshen Du*,Ping Wei,and Huaguo Zhang

    Schoolof Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    Time-differences-of-arrival(TDOA)and gain-ratios-ofarrival(GROA)measurements are used to determine the passive source location.Based on the measurement models,the constrained weighted least squares(CWLS)estimator is presented. Due to the nonconvex nature of the CWLS problem,it is difficult to obtain its globally optimal solution.However,according to the semidefinite relaxation,the CWLS problem can be relaxed as a convex semidefinite programming problem(SDP),which can be solved by using modern convex optimization algorithms.Moreover, this relaxation can be proved to be tight,i.e.,the SDP solves the relaxed CWLS problem,and this hence guarantees the good performance of the proposed method.Furthermore,this method is extended to solve the localization problem with sensor position errors.Simulation results corroborate the theoretical results and the good performance ofthe proposed method.

    gain ratios ofarrival(GROA),time difference of arrival (TDOA),localization,constrained weighted leastsquares(CWLS), semidefinite programming problem(SDP).

    1.Introduction

    The problem of passive source localization has drawn significantattention owing to its importance in many applications such as radar,sonar,wireless sensor network,and microphone arrays[1–5].In general,a number of spatially separated sensors are used to receive the emitted or reflected signal from the source in a passive localization system.Then,time-of-arrival(TOA),time-difference-ofarrival(TDOA),received-signal-strength(RSS)and angleof-arrival(AOA)measurements can be extracted from the signals received by the sensors.Based on these measurements,the source location can be estimated by solving a setof nonlinearequations.

    The TDOAbased localization[5–8]and RSS based localization[9–12]have been extensively investigated in the past few decades.However,most of the existing literature concentrates on utilizing only either TDOA information or RSS information.In fact,the TDOA and RSS measurements can be combined to provide a better performance in the localization problem.Cui et al.[13]proposed a 2-D sound source localization problem,where the TDOA and interauralleveldifference(ILD)measurements oftwo sensors are applied together.Lateron,Ho etal.[14]performed a theoreticalstudy on the passive source location problem by using both TDOA and gain-ratios-of-arrival(GROA) measurements.Here,GROA is defined as the ratio of the received signal amplitude at the reference sensor to any other sensor.Ithas been proven in[14]thatthe additional GROA information can be used to improve the accuracy oflocalization.The improvementincreases with the factor c/B,where c is the signal propagation speed and B is the signal bandwidth.Moreover,the two-step weighted least squares(WLS)method was presented in[14]to estimate the source location by using TDOA and GROA measurements.The main concept of the two-step WLS method is to obtain a set of linear equations by introducing a nuisance parameterand solve the subsequentlinear equations in the WLS sense.This method can attain the Cram′er-Rao lower bound(CRLB)at sufficiently low noise levels,but degrade rapidly at high noise levels.Furthermore,extensions of this method in the presence of sensor position errors have been reported in[15,16].In[17],Hao et al. proposed the basic Newton method and Broyden-Fletcher-Goldfarb-Shanno(BFGS)quasi-Newton method,which iteratively linearize the nonlinear WLS problem by Taylorseries expansion.The BFGS method can obtain good performance only when there is a sufficientgood initialguess, which is,however,difficultto be obtained in practice.

    Recently,the semidefinite programing relaxation(SDR) technique has been widely used to the localization problem [18–21]due to its favorable performance.In this paper,wepropose an SDR method to solve the TDOA/GROA based source localization problem.Based on the measurement models,the constrained weighted least squares(CWLS) estimator is presented.Then we implement SDR on the CWLS to obtain a convex semidefinite programming problem(SDP),which can be solved efficiently by using modern convex optimization methods such as SDPT3[22] and SeDuMi[23].Moreover,the SDR can be proved to be tight so that the SDP is guaranteed to have the same optimalvalue as the original CWLS problem.This feature guarantees the good performance of the proposed method. Furthermore,the proposed SDR method is extended to the localization case when there are errors in sensor positions. In conclusion,the main contributions of this paper include the following.

    (i)An SDR method is proposed to solve the TDOA and GROA based source localization problem by approximating the CWLS problem.

    (ii)The proposed SDR is proved to be tight,and hence guarantees the good performance.

    (iii)The proposed method is extended to the localization case in the presence of errors in sensor positions.

    The rest of the paper is organized as follows.Section 2 provides the TDOA and GROAmeasurementmodels.Section 3 presents the proposed SDR method for the localization without and with sensor position errors.Section 4 compares the localization accuracy ofthe proposed method to the two-steps WLS method as wellas CRLB,and Section 5 give the conclusions.

    NotationVectors and matrices are denoted by boldface lowercase and boldface uppercase letters,respectively.The i th componentof a vector a is written as a(i),and the i th to j th components of a vector a as a(i:j).The i th row of a matrix A is denoted by A(i,:)and the(i,j)th element of A by A(i,j).The identity matrix of order n is denoted by In.The k×1 zero column vector and the k×n zero matrix are written as 0kand Ok,n,respectively.Given a matrix A,tr(A)means the trace of A,AR0 means A is positive semidefinite and ATmeans the transpose of A.

    2.Measurement models

    We consider the scenario in 3D space where M sensors at known locations are used to locate an emitting source at position uo= [x0,yo,zo]T.The signals received at the sensors can be mathematically modeled as[14]

    where the signal s(t)and the noise ni(t)are assumed to be the zero-mean Gaussian random process and independent of one another.ti1and gi1are the time delay and attenuation of the signalreceived atsensor i with respectto those of the reference sensor 1.

    As in the related works found in literature,we assume directline-of-sightpropagation of the source signal to the sensors and there is no multipath reflection.Furthermore, we assume that the propagation is in free space so that the attenuation is proportionalto the distance between the source and the receiving sensor[14].Under these assumptions,the noise-free TDOA and GROA measurements are, respectively,given by

    where c is the signalpropagation speed,and

    is the true distance between the source and sensor i.For simplicity,we collectin(2)to formthe true TDOAvec-to form the true GROA

    Assume that we have the noise TDOA and GROA measurements denoted by t=[t21,t31,...,tM1]Tand g=[g21,g31,...,gM1]T,respectively,which can be described by the additive noise models as

    whereΔt=[Δt21,Δt31,...,ΔtM1]TandΔg= [Δg21,Δg31,...,ΔgM1]Tare the TDOA and GROA noise vectors,respectively.Furthermore,we assume that Δt andΔg follow mutual independent Gaussian distribution with zero means and covariance Qt=E[ΔtΔtT], Qg=E[ΔgΔgT],respectively.

    For simplicity,multiply t by c to form the measurement vector of range difference of arrival(RDOA)given by

    3.Source localization via semidefinite programing

    In this section,the new localization methods via SDR are presented.We first consider the case withoutsensor position errors,and then extend the method to the case with sensor position errors.

    3.1 Localization without sensor position errors

    The noise-free RDOA model(5)is equivalentto

    Squaring both sides of(7),and substituting(3)for r andyields

    For GROAmeasurements,we have the relationfrom the second equation of(2).According to(7),we get

    By collecting allthe equations in(9)and(11),we have

    According to(12)and(13),the CWLS estimator can be formulated as

    where Q=CoQαCoT.The CWLS estimator(14)is nonconvex and difficult to be solved directly.To handle this difficulty,we borrow the idea from[19]to approximately solve the CWLS problem based on the SDR technique.

    Equation(14)can be reformulated as

    By denoting Y=yyT,(15)can be equivalently written as

    The lastconstraint Y=yyTcan be decomposed into two constraints[24]:

    Only the constraint rank(Y)=1 is nonconvex,the objective function and allother constraints are convex.Thus, by dropping the rank-1 constrain,we obtain the following SDP:

    which is convex and can be solved very efficiently by using interior-pointmethods[22,23].be an optimalsolution of the problem(18). According to[25],we have

    where n=1 is the number of equality constraints in(18). Obviously,we get rankor equiva-=1.That is say,for an optimal solution of(18),the dropped rank constraint from(15)to(18)is always satisfied.This indicates that the proposed SDR is tight,i.e.,?y is justthe optimalsolution ofthe problem(15). Note that the weighting matrix Q in(14)is dependent on the true distance values thatare notknown.For the implementation purpose,we set Q to Qαand apply(18)to produce an initialestimate of u,which is then used to compute Q so thata more accurate u can be obtained by solving(18)again.

    3.2 Localization with sensor position errors

    In practice,the receiver locations may not be known exactly.We can only obtain their measurements which canwhereΔsiis the vector of position measurement errors.For simplicity,we combine all the estimations of receiver positions as theand the true position asthen the receiver location error vector isΔβ=In this study,we assumeΔβis zero-mean Gaussian distributed with the covariance matrix E[ΔβΔβT]=Qβ, and is mutually independentwith the TDOA/GROA measurementerrorsΔα.=di1?Δdi1,g oi1=gi1?Δgi1andinto(8)and(10),then applying the firstorder Taylor’s series expansion aroundand neglecting the second-order noise terms,we getAll the equations in (20)can be combined to yield the following matrix form:are,respectively,obtained byin h,G,yo,and Coin(13),andThe i th(i=1,...,M?1)row of

    Based on(21),we can obtain the following approximate CWLS estimator of uo:

    Comparing(23)with(14),we find thatthese two equations have the same form.Thus,by using the same procedure in Section 3.1,we obtain an SDP which is similar to (18) Denote the optimalsolution of(24)asing(19),we know that rankSDP(24)solves the originalCWLS problem(23).

    Note thatwe stilluse the same scheme described in Section 3.1 to obtain the weighting matrix

    3.3 Comparison with other methods

    Here,we make a comparison between the proposed SDR method with the existing two-step WLS method[14]and BFGS method[17].

    The two-step WLS method approximately solves the CWLS problem(14)by using two successive WLSs.The first WLS directly solves(14)by omitting the constraint y(4)=‖y(1:3)and the second WLS refines the solution by taking this constraint into account.This twostep procedure cannot achieve the optimal solution of the CWLS(14),particularly atthe highernoise level.

    The BFGS method solves a nonlinear WLS problem which is equivalentwith the CWLS problem(14)by iteratively localsearch.However,due to the nonconvex feature of the nonlinear WLS problem,such a technique requires carefully chosen initial guesses which are near the actual solution.Convergence is notguaranteed and one could end up with a localminimum solution.

    In the comparison,the SDP can always produce a global solution since it is a convex problem.Furthermore,as aforementioned,the proposed SDR in this paper is tight, which means that the optimal solution of the SDP is also thatofthe CWLS.In conclusion,we always obtain the optimalsolution of the original CWLS by solving the SDP.

    4.Simulation results

    This section presents a set of Monte Carlo simulations to corroborate the theoretical development and evaluate the performance of the proposed SDR algorithm by comparing with the two-step WLS methods[14,15]and CRLBs [14,16].The SDPs are solved by using the CVX toolbox [26]with the SeDuMisolver.

    An array of six sensors is chosen as the same geometry in[14],and the positions of receivers are listed in Table 1.The TDOA and GROA measurements are generated by adding the zero mean Gaussian noise to the true values. The covariance matrices of TDOA and GROAare assumed to be their CRLBs,respectively,i.e.,Qt=CRLB(t) and Qg=CRLB(g),which have been studied in[14]. We assume that the signal s(t)and noises ni(t)are zeromean Gaussian,and the noise is independent and identically distributed across different sensors,then CRLB(t) and CRLB(g)have the following forms:

    SNR is the signalto noise ratio,B is the bandwidth of the source signal and T is the observation period.In the following simulations,we assume that the signal bandwidth B and the observation period T satisfy TB/π=200 000 and the factor c/B is 100 m,where B/πis the sampling frequency in Hz;they are referred to[14].

    The performance in terms of the root meandenotes the estimated source position at ensemble k and K=5 000 is the number of ensemble runs.

    Table 1 Sensors position

    4.1 Localization performance withoutsensor position errors

    We consider two localization cases,near-field source localization and far-field source localization.

    The first simulation is concerned with near-field source localization.The true position of the source is uo= (80,80,80).Fig.1 shows the RMSEs of position estimation of the proposed method and the two-step WLS method,as wellas the CRLBs with the increase of SNR.It can be seen thatthe two-step WLS estimator departs from the CRLB at SNR about?3 dB,while the proposed SDP method is still close to the CRLB until SNR<?11 dB. This is because the two-step method inevitably introduces error during the two steps of the approach to the CWLS problem,and this approximate errortends to become larger with the increase of measurement noise.In contrast,the SDP can always find outthe optimalsolution ofthe CWLS.

    Fig.1 Comparison of localization accuracy versus SNR for nearfield source localization without sensor position errors,true position uo=(80,80,80)

    In Fig.2,the simulation results clearly demonstrate that the biases of the proposed SDP method are significantly smaller than those of the two-step WLS method over the whole SNR range.

    Next,we considerthe far-field case,where the true position ofthe source is uo=(4 000,3 800,3 400).The simulation results in terms of estimation RMSEs and biases are shown in Fig.3 and Fig.4,respectively,from which we see that the proposed estimator is superior to the two-step WLS method again.

    Fig.2 Comparison of estimation bias versus SNR for near-field source localization without sensor position errors,true position uo=(80,80,80)

    Fig.3 Comparison of localization accuracy versus SNR for farfield source localization without sensor position errors,true position uo=(4 000,3 800,3 400)

    Fig.4 Comparison of estimation bias versus SNR for far-field source localization without sensor position errors,true position uo=(4 000,3 800,3 400)

    4.2 Localization performance with sensor position errors

    Here we consider the localization problem with sensor position errors.The true positions of the sensors are the same as those in Table 1.In each Monte Carlo simulation,we assume the measurements of the sensors positions are computed by adding to the true values Gaussian noise with covariance matrix equal to Qβ={8,8,8,2,2,2,10,10,10,6,6,6,5,5,5,3,3,3}.

    As in the lastsubsection,we firstconsiderthe near-field case,where the source position is still uo=(80,80,80).=?5 dB.The simulation results in terms of the estimation RMSEs and biases are shown in Fig.5 and Fig.6,respectively.From Fig.5 we see that the two-step WLS method cannotachieve the CRLB accuracy over the whole SNRrange,while the proposed SDP method is close to CRLB when SNR is larger than?11 dB.

    Fig.5 Comparison of localization accuracy versus SNR for nearfield source localization with sensor position errors,true position uo=(80,80,80)and=?5 dB

    Fig.6 Comparison of estimation bias versus SNR for near-field source localization with sensor position errors,true position uo= (80,80,80)and=?5 dB

    Furthermore,Fig.6 shows thatthe estimation biases of the proposed SDP method are invariably lower than those of the two-step WLS method.

    Next,we considerthe far-field case,where the source is located at uo=(4 000,3 800,3 400)as the same to the previous subsection.Here,we setdB.Again,we see from Fig.7 and Fig.8 that the SDP method performs much better than the two-step WLS method in terms of both estimation RMSEs and biases.

    Fig.7 Comparison of localization accuracy versus SNR for farfield source localization with sensor position errors,true position uo=(4 000,3 800,3 400)and=0 dB

    Fig.8 Comparison of estimation bias versus SNR for far-field source localization with sensor position errors,true position uo= (4 000,3 800,3 400)and=0 dB

    5.Conclusions

    A novelmethod is proposed for TDOA and GROA based localization in this paper.Based on the TDOA and GROA measurements,the CWLS problem is presented.To handle the difficulty thatthe CWLS is nonconvex,we employ the SDR approach to relax the CWLS into an SDP problem.The proposed SDR is proved to be tight.This feature ensures that the SDP can always find the optimalsolution of the relaxed CWLS.Simulation results corroborate that the proposed SDR method significantly outperforms the two-step WLS method for the localization problem with or withoutsensor position errors.

    [1]G.C.Carter.Time delay estimation for passive sonar signal processing.IEEE Trans.on Acoustic,Speech and Signal Processing,1981,29(3):463–470.

    [2]J.C.Chen,K.Yao,R.E.Hudson.Source localization and beamforming.IEEE SignalProcessing Magazine,2002,19(2): 30–39.

    [3]C.Meesookho,U.Mitra,S.Narayanan.On energy-based acoustic source localization for sensor networks.IEEE Trans. on Signal Processing,2008,56(1):365–377.

    [4]J.Y.Shen,A.F.Molisch,J.Salmi.Accurate passive location estimation using TOA measurements.IEEE Trans.on Wireless Communication,2012,11(6):2182–2192.

    [5]P.Stoica,J.Li.Source localization from range-difference measurements.IEEE Signal Processing Magazine,2006,23(6): 63–66.

    [6]B.Friedlander.A passive localization algorithm and its accuracy analysis.IEEE Journal of Oceanic Engineering,1987, 12(1):234–245.

    [7]J.Smith,J.Abel.Closed-form least-squares source location estimation from range-difference measurements.IEEE Trans. on Acoustic,Speech and Signal Processing,1987,35(12): 1661–1669.

    [8]Y.T.Chan,K.C.Ho.A simple and efficient estimator for hyperbolic location.IEEE Trans.on Signal Processing,1994, 42(8):1905–1915.

    [9]Y.H.Hu,D.Li.Energy based collaborative source localization using acoustic micro-sensor array.IEEE Workshop on Multimedia Signal Processing,2002:371–375.

    [10]X.H.Sheng,Y.H.Hu.Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensornetworks.IEEE Trans.on SignalProcessing,2005, 53(1):44–53.

    [11]H.C.So,L.X.Lin.Linearleastsquares approach foraccurate received signalstrength based source localization.IEEE Trans. on Signal Processing,2011,59(8):4035–4040.

    [12]R.W.Ouyang,A.K.S.Wong,C.T.Lea.Received signal strength-based wireless localization via semidefinite programming:non-cooperative and cooperative schemes.IEEE Trans. on Vehicular Technology,2010,59(3):1307–1318.

    [13]W.W.Cui,Z.G.Cao,J.Q.Jian.Dual-microphone source location method in 2-D space.Proc.of the IEEE International Conference on Acoustic,Speech and Signal Processing,2006: 845–848.

    [14]K.C.Ho,M.Sun.Passive source localization using time differences of arrival and gain ratios of arrival.IEEE Trans.on Signal Processing,2008,56(2):464–477.

    [15]B.J.Hao,Z.Li,J.B.Si,et al.Passive multiple disjoint sources localization using TDOAs and GROAs in the presence ofsensor location uncertainties.Proc.of the IEEE InternationalConference on Communications,2012:47–52.

    [16]B.J.Hao,Z.Li,Y.M.Ren,et al.On the Cramer-Rao boundof multiple sources localization using RDOAs and GROAs in the presence ofsensorlocation uncertainties.Proc.ofthe IEEE Wireless Communication Network,2012:3117–3122.

    [17]B.J.Hao,Z.Li.BFGS quasi-Newton location algorithm using TDOAs and GROAs.Journal of Systems Engineering and Electronics,2013,24(3):341–348.

    [18]P.Biswas,T.C.Lian,T.C.Wang,etal.Semidefinite programming based algorithms for sensor network localization.ACM Trans.on Sensor Networking,2006,2(2):188–220.

    [19]G.Wang,Y.M.Li,N.Ansari.A semidefinite relaxation method for source localization using TDOA and FDOA measurements.IEEE Trans.on Vehicular Technology,2013,62(2): 853–862.

    [20]K.Yang,G.Wang,Z.Q.Luo.Efficient convex relaxation methods for robusttargetlocalization by a sensor network using time differences of arrivals.IEEE Trans.on Signal Processing,2009,57(7):2775–2784.

    [21]Y.S.Du,P.Wei,W.C.Li,etal.Doppler shift based target localization using semidefinite relaxation.IEICE Trans.on Fundamentals ofElectronics,Communications and Computer Sciences,2014,E97-A(1):397–400.

    [22]R.H.T¨uut¨unc¨u,K.C.Toh,M.J.Todd.Solving semidefinite quadratic-linear programs using SDPT3.Mathematical Programming,2003,95(2):189–217.

    [23]J.F.Sturm.Using SeDuMi 1.02,a Matlab toolbox for optimization over symmetric cones.Optimization Methods and Software,1999,11(1):625–653.

    [24]S.Boyd,L.Vandenberghe.Convex optimization.New York: Cambridge University Press,2004.

    [25]A.I.Barvinok.Problems of distance geometry and convex properties of quadratic maps.Discrete Computational Geometry,1995,13(1):189–202.

    [26]M.Grant,S.Boyd,Y.Ye.CVX:Matlab software for disciplined convex programming,2008.

    Biographies

    Yanshen Duwas born in 1988.He received his B.E.degree in electrical engineering from Southwest University,Chongqing,China,in 2009.He is currently working toward his Ph.D.degree in the School of Electronic Engineering,University of Electronic Science and Technology of China, Chengdu,China.His research interests include array signalprocessing and source localization.

    E-mail:duyanshen@hotmail.com

    Ping Weiwas born in 1966.He received his B.S. and M.S.degrees both in the electronic engineering from Beijing Institute of Technology in 1986 and 1989,respectively.He received his Ph.D.degree in communication and electronic system from the University of Electronic Science and Technology of China(UESTC)in 1996.He is now a professor in the Schoolof Electronic Engineering of UESTC. His research interests include spectral analysis,array signal processing, electronic surveillance,and communication signalprocessing.

    E-mail:pwei@uestc.edu.cn

    Huaguo Zhangwas born in 1979.He received his Ph.D.degree in signal and information processing from University of Electronic Science and Technology of China in 2011.Now he is an associate professor in the School of Electronic Engineering of University of Electronic Science and Technology of China.His research interests include noncooperative communication signal processing and array signal processing.

    E-mail:uestczhg@163.com

    10.1109/JSEE.2015.00075

    Manuscript received April 10,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61201282)and the Science and Technology on Communication Information Security Control Laboratory Foundation (9140C130304120C13064).

    免费看日本二区| 国产极品天堂在线| 美女大奶头视频| 亚洲欧洲日产国产| 久久午夜福利片| 国产单亲对白刺激| 亚洲成av人片在线播放无| 国产精品久久久久久久电影| 免费av毛片视频| 成人午夜高清在线视频| 欧美成人精品欧美一级黄| 久久久久久久久中文| 欧美三级亚洲精品| 亚州av有码| 在线观看午夜福利视频| 午夜精品国产一区二区电影 | www.色视频.com| 亚洲av熟女| 成年免费大片在线观看| 小蜜桃在线观看免费完整版高清| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 午夜激情福利司机影院| 国产大屁股一区二区在线视频| 久久99热6这里只有精品| 小说图片视频综合网站| 国产欧美日韩精品一区二区| 波多野结衣巨乳人妻| 熟妇人妻久久中文字幕3abv| 久久精品91蜜桃| 男女啪啪激烈高潮av片| 久久99精品国语久久久| 日韩中字成人| 只有这里有精品99| 久久久久久久久久久免费av| 国产 一区 欧美 日韩| 亚洲成人久久爱视频| 国产黄色小视频在线观看| 精品一区二区免费观看| 悠悠久久av| 久久鲁丝午夜福利片| 老女人水多毛片| 非洲黑人性xxxx精品又粗又长| 69人妻影院| 久久久久九九精品影院| 在线免费观看不下载黄p国产| 久久九九热精品免费| 精品人妻熟女av久视频| 99热精品在线国产| 男人舔奶头视频| 成年女人永久免费观看视频| 夜夜夜夜夜久久久久| 国产成人午夜福利电影在线观看| 波多野结衣高清无吗| 色综合站精品国产| 免费看av在线观看网站| 少妇高潮的动态图| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 久久精品国产亚洲av天美| 国产黄片美女视频| 亚洲自偷自拍三级| 久久人人爽人人片av| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 91在线精品国自产拍蜜月| 男人狂女人下面高潮的视频| 国产高清不卡午夜福利| 少妇被粗大猛烈的视频| 欧美一区二区亚洲| 久久精品国产99精品国产亚洲性色| 国产精品99久久久久久久久| 久久精品国产亚洲av香蕉五月| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看| 亚洲色图av天堂| 色综合亚洲欧美另类图片| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 不卡一级毛片| 青春草亚洲视频在线观看| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 少妇人妻一区二区三区视频| 性色avwww在线观看| 国产色爽女视频免费观看| 日本-黄色视频高清免费观看| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩卡通动漫| 别揉我奶头 嗯啊视频| 欧美最新免费一区二区三区| 韩国av在线不卡| 国产精品人妻久久久久久| 日日啪夜夜撸| 久久6这里有精品| 亚洲精品乱码久久久v下载方式| 在线观看66精品国产| 国产精品,欧美在线| 国内精品宾馆在线| av在线亚洲专区| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 免费av观看视频| 黄片无遮挡物在线观看| 精品久久久久久久末码| 可以在线观看毛片的网站| 日韩一本色道免费dvd| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| av福利片在线观看| 国国产精品蜜臀av免费| 特大巨黑吊av在线直播| 天堂中文最新版在线下载 | 国产又黄又爽又无遮挡在线| 久久精品91蜜桃| 色哟哟·www| 桃色一区二区三区在线观看| 欧美激情久久久久久爽电影| 国产精品人妻久久久影院| 亚洲欧美中文字幕日韩二区| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 一本久久精品| 91精品一卡2卡3卡4卡| 深夜a级毛片| 免费搜索国产男女视频| 久久久精品大字幕| 成人三级黄色视频| 久久九九热精品免费| 赤兔流量卡办理| 国产一区二区三区av在线 | 1000部很黄的大片| 69人妻影院| 精品人妻一区二区三区麻豆| 只有这里有精品99| 日本一二三区视频观看| 熟妇人妻久久中文字幕3abv| 波多野结衣高清作品| 99热6这里只有精品| 久久久久久久久久成人| 亚洲精品色激情综合| 可以在线观看的亚洲视频| 91狼人影院| 久久精品夜夜夜夜夜久久蜜豆| 男插女下体视频免费在线播放| 国产av麻豆久久久久久久| 人人妻人人澡欧美一区二区| 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 午夜精品国产一区二区电影 | 欧美成人一区二区免费高清观看| 91精品一卡2卡3卡4卡| 97人妻精品一区二区三区麻豆| 免费搜索国产男女视频| 亚洲av电影不卡..在线观看| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 免费观看的影片在线观看| 日韩大尺度精品在线看网址| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 尾随美女入室| 亚州av有码| 麻豆精品久久久久久蜜桃| 国产精品国产高清国产av| 国产精品,欧美在线| 午夜激情欧美在线| 九九在线视频观看精品| 免费看美女性在线毛片视频| 青春草视频在线免费观看| 人人妻人人澡欧美一区二区| 一本一本综合久久| 白带黄色成豆腐渣| 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 波多野结衣高清无吗| 久久韩国三级中文字幕| 亚洲欧美成人精品一区二区| 国产精品免费一区二区三区在线| 乱系列少妇在线播放| 亚洲三级黄色毛片| 国产黄片美女视频| 日韩av不卡免费在线播放| 26uuu在线亚洲综合色| 两个人视频免费观看高清| 成人无遮挡网站| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 人妻系列 视频| 日韩 亚洲 欧美在线| 亚洲人与动物交配视频| 久久人妻av系列| 人人妻人人澡人人爽人人夜夜 | 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 五月玫瑰六月丁香| 国产真实乱freesex| 欧美最黄视频在线播放免费| 我的老师免费观看完整版| 又粗又硬又长又爽又黄的视频 | av专区在线播放| 日本五十路高清| 18禁在线无遮挡免费观看视频| 精品久久久久久久人妻蜜臀av| 久久亚洲精品不卡| 免费看av在线观看网站| 国产乱人视频| 禁无遮挡网站| 亚洲色图av天堂| 欧美一区二区国产精品久久精品| 国产精品久久电影中文字幕| 日韩一本色道免费dvd| 夜夜爽天天搞| 久久久久久久久久成人| 欧美性猛交黑人性爽| 亚洲国产精品国产精品| av国产免费在线观看| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| av国产免费在线观看| 麻豆成人午夜福利视频| 中文亚洲av片在线观看爽| 激情 狠狠 欧美| 日韩欧美国产在线观看| 久久国产乱子免费精品| 美女 人体艺术 gogo| 精品无人区乱码1区二区| 日本成人三级电影网站| 欧美zozozo另类| 亚洲av中文字字幕乱码综合| 爱豆传媒免费全集在线观看| 亚洲图色成人| 国产真实伦视频高清在线观看| 美女cb高潮喷水在线观看| 日本熟妇午夜| 青春草亚洲视频在线观看| 国产高清三级在线| www.色视频.com| 国产精品一二三区在线看| 九九在线视频观看精品| 夜夜爽天天搞| 日韩,欧美,国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 一级黄色大片毛片| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 搞女人的毛片| 国产精品爽爽va在线观看网站| 国产综合懂色| 亚洲欧洲国产日韩| 极品教师在线视频| 国产三级在线视频| 亚洲国产精品成人久久小说 | 国产精品美女特级片免费视频播放器| av.在线天堂| 国产黄片视频在线免费观看| 亚洲人成网站在线观看播放| 欧美精品国产亚洲| 99久久成人亚洲精品观看| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在 | 免费观看的影片在线观看| 久久久久国产网址| 免费观看人在逋| 午夜精品一区二区三区免费看| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 成年女人看的毛片在线观看| 午夜老司机福利剧场| 内射极品少妇av片p| 精品久久国产蜜桃| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频| 特级一级黄色大片| 偷拍熟女少妇极品色| 青春草视频在线免费观看| 国产成人91sexporn| 嘟嘟电影网在线观看| 又粗又爽又猛毛片免费看| 日本欧美国产在线视频| 人体艺术视频欧美日本| 午夜福利在线观看吧| 久久久久久久久久成人| 超碰av人人做人人爽久久| 国产欧美日韩精品一区二区| 国产成人福利小说| 精品国内亚洲2022精品成人| 久久精品影院6| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 免费看日本二区| 日产精品乱码卡一卡2卡三| 99在线视频只有这里精品首页| 夫妻性生交免费视频一级片| 天天躁日日操中文字幕| 黄色日韩在线| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av涩爱 | 欧美最新免费一区二区三区| 天天躁日日操中文字幕| 婷婷精品国产亚洲av| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| 十八禁国产超污无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 久久综合国产亚洲精品| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 成人欧美大片| 一级毛片电影观看 | 亚洲最大成人中文| 日本av手机在线免费观看| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 中文字幕av在线有码专区| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 99热只有精品国产| 国内精品久久久久精免费| 久久久久久久久久黄片| 成人美女网站在线观看视频| 日韩三级伦理在线观看| 国产成人精品一,二区 | 麻豆成人av视频| 国产视频首页在线观看| 尾随美女入室| 一夜夜www| 欧美激情国产日韩精品一区| 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 亚洲无线在线观看| av在线亚洲专区| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 久久精品影院6| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验 | 成年版毛片免费区| 嫩草影院入口| 女同久久另类99精品国产91| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 好男人在线观看高清免费视频| 国产成人精品久久久久久| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区 | 亚洲精品久久久久久婷婷小说 | 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 一卡2卡三卡四卡精品乱码亚洲| 日本色播在线视频| 成熟少妇高潮喷水视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲人成网站在线观看播放| av在线天堂中文字幕| av在线亚洲专区| 一级毛片久久久久久久久女| 大香蕉久久网| 能在线免费看毛片的网站| 小说图片视频综合网站| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 久久午夜亚洲精品久久| 男的添女的下面高潮视频| 国产成人aa在线观看| 在线观看av片永久免费下载| 99热全是精品| 国产 一区精品| 国产精品伦人一区二区| 国产高清激情床上av| 国产久久久一区二区三区| 丰满的人妻完整版| 日韩视频在线欧美| 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 亚洲欧洲日产国产| av在线亚洲专区| 嫩草影院新地址| 国产探花极品一区二区| 亚洲国产精品成人综合色| 成年版毛片免费区| 男插女下体视频免费在线播放| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| av在线观看视频网站免费| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出| 日本黄色视频三级网站网址| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 成年免费大片在线观看| 男女下面进入的视频免费午夜| 日本在线视频免费播放| 亚洲av男天堂| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 伦精品一区二区三区| 岛国在线免费视频观看| 国产黄片美女视频| 99久国产av精品国产电影| ponron亚洲| 99热全是精品| 国产不卡一卡二| 中出人妻视频一区二区| 久久亚洲精品不卡| 成人美女网站在线观看视频| 国产精品爽爽va在线观看网站| 久久久久久久久久成人| 18禁在线无遮挡免费观看视频| 你懂的网址亚洲精品在线观看 | 成人一区二区视频在线观看| 我要看日韩黄色一级片| 欧美不卡视频在线免费观看| 日韩欧美精品免费久久| ponron亚洲| 桃色一区二区三区在线观看| 国内揄拍国产精品人妻在线| av在线老鸭窝| 国产视频首页在线观看| 国产精品一区二区三区四区免费观看| 日韩亚洲欧美综合| ponron亚洲| 欧美丝袜亚洲另类| 黄片wwwwww| 久久久久久久久久久丰满| 精品一区二区免费观看| 99热精品在线国产| 综合色丁香网| 黄色日韩在线| 国产真实乱freesex| 蜜臀久久99精品久久宅男| 中出人妻视频一区二区| 免费电影在线观看免费观看| a级一级毛片免费在线观看| 亚洲av一区综合| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说 | 久久婷婷人人爽人人干人人爱| 亚洲人成网站高清观看| 最近视频中文字幕2019在线8| 亚洲国产精品合色在线| 18禁裸乳无遮挡免费网站照片| 欧美精品一区二区大全| 国产69精品久久久久777片| 男女下面进入的视频免费午夜| av在线老鸭窝| 久久久精品欧美日韩精品| 国产精品一区二区三区四区免费观看| 亚洲最大成人手机在线| 只有这里有精品99| 高清在线视频一区二区三区 | 亚洲av熟女| 精品熟女少妇av免费看| 韩国av在线不卡| 男女下面进入的视频免费午夜| av在线老鸭窝| 一级二级三级毛片免费看| 人人妻人人澡人人爽人人夜夜 | a级毛片免费高清观看在线播放| 不卡视频在线观看欧美| 国产精华一区二区三区| 免费看a级黄色片| 国产久久久一区二区三区| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 成人无遮挡网站| 午夜福利高清视频| 欧美极品一区二区三区四区| 亚洲av成人av| 亚洲,欧美,日韩| 99riav亚洲国产免费| 久久精品人妻少妇| 欧美高清性xxxxhd video| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 亚洲最大成人手机在线| 国产精品无大码| 老师上课跳d突然被开到最大视频| 色哟哟·www| 久久鲁丝午夜福利片| 亚洲四区av| 中文欧美无线码| 一本精品99久久精品77| 青春草亚洲视频在线观看| av天堂中文字幕网| 三级毛片av免费| 少妇丰满av| 欧美最黄视频在线播放免费| 国产高清有码在线观看视频| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 国产精品人妻久久久影院| 亚洲性久久影院| 午夜免费激情av| 2022亚洲国产成人精品| 别揉我奶头 嗯啊视频| 国产一区二区亚洲精品在线观看| 国产精品.久久久| 国产精品久久久久久精品电影小说 | 久久久久久伊人网av| 人人妻人人看人人澡| 亚洲五月天丁香| 99久久久亚洲精品蜜臀av| 91精品国产九色| 国产精品一区二区三区四区久久| 免费看光身美女| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 国产高清三级在线| 欧美日韩乱码在线| 国内精品美女久久久久久| 中出人妻视频一区二区| 久久人人爽人人爽人人片va| www.av在线官网国产| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 成人欧美大片| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 国产亚洲av片在线观看秒播厂 | 亚洲精品日韩av片在线观看| 亚洲人成网站高清观看| 亚洲av第一区精品v没综合| 国产精品久久久久久久电影| 性欧美人与动物交配| 亚洲一级一片aⅴ在线观看| 成人永久免费在线观看视频| 国产亚洲av嫩草精品影院| 日本与韩国留学比较| 久久久a久久爽久久v久久| 免费看美女性在线毛片视频| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产99精品国产亚洲性色| 国产高清视频在线观看网站| 岛国毛片在线播放| 国产麻豆成人av免费视频| 久久精品国产亚洲av香蕉五月| 免费av观看视频| 男插女下体视频免费在线播放| 国产真实伦视频高清在线观看| 天堂网av新在线| 嫩草影院新地址| 欧美精品一区二区大全| 久久精品国产亚洲av天美| or卡值多少钱| 成年女人看的毛片在线观看| 女的被弄到高潮叫床怎么办| 欧美一区二区国产精品久久精品| 精品不卡国产一区二区三区| 性欧美人与动物交配| 国产成人精品婷婷| 国产精品国产高清国产av| 三级毛片av免费| 国产精品,欧美在线| 国产探花极品一区二区| 日韩高清综合在线| 成人毛片60女人毛片免费| 久久精品夜色国产| 日日啪夜夜撸| 又爽又黄无遮挡网站| 日韩精品有码人妻一区| 国产色爽女视频免费观看| 欧美性猛交黑人性爽| 国产精品一区二区三区四区免费观看| 午夜福利视频1000在线观看| 波多野结衣高清无吗| 亚洲不卡免费看| 色吧在线观看| 免费人成在线观看视频色| 有码 亚洲区| 国产探花极品一区二区| 69人妻影院| 久久久久国产网址| 精品久久久久久久末码| 成年女人看的毛片在线观看| 日韩 亚洲 欧美在线| 亚洲精品日韩av片在线观看| 国产乱人偷精品视频| 少妇的逼好多水| 欧美日韩国产亚洲二区| 久久韩国三级中文字幕| 亚洲欧美精品自产自拍| 一级黄片播放器| avwww免费| 午夜精品一区二区三区免费看| 青春草亚洲视频在线观看| 亚洲色图av天堂| av女优亚洲男人天堂| 日韩欧美精品v在线| 99久久成人亚洲精品观看| 有码 亚洲区| 日韩,欧美,国产一区二区三区 | 狂野欧美白嫩少妇大欣赏|