• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High pressure equation of state for molten CaCO3from frst principles simulations

    2015-02-07 09:08:51?
    Acta Geochimica 2015年1期
    關(guān)鍵詞:晚課補(bǔ)差升學(xué)率

    ?

    ORIGINAL ARTICLE

    High pressure equation of state for molten CaCO3from frst principles simulations

    Zhigang Zhang?Zairong Liu

    Carbonate melts are important active metasomatic agents and effcient transport agents;their thermodynamic properties at high temperatures and pressures are therefore of considerable interest for various geochemical applications.However,due to the extreme challenges in relevant experiments,current knowledge of even the density of carbonate melts is limited.In this study,we provide high quality volumetric data of CaCO3-melt from frst principles at high temperatures and pressures(up to 3,500 K and 60 GPa).The accuracy of these data is demonstrated through comprehensive comparison with available experimental data and a thorough discussion of the predictability of the re-scaling method proposed in this study.Based on the simulations,an equation of state has been established that is critical to relevant highly disputed questions such as the decomposition and solidifcation boundaries of CaCO3melts,the latter of which is briefy discussed in this study with a newly derived ab initio melting curve to high pressures.

    Carbonates·Melts·CaCO3·First principles· Equation of state

    1 Introduction

    Carbonate melts play important roles in various geochemical processes on the surface and in the interior of Earth(Jones et al.2013).With remarkable features,such as low density and high mobility,carbonate melts are wellknown as active metasomatic agents in the mantle(Green and Wallace 1988).They are also recognized to be effcient transport agents of volatiles and rare earth elements due to the high solubility of these components in carbonate melts (Yang et al.2003).In addition,carbonate melts are thought to be related to low seismic velocity and high electrical conductivity in the asthenosphere(Gaillard et al.2008; Gudfnnsson and Presnall 2005)and to be responsible for the formation of‘‘super-deep’’diamonds(Litvin et al. 2014).Furthermore,shock-induced devolatilization of carbonate melts in Earth’s early history dramatically alter the evolution of the atmosphere and may be the main cause for the Cretaceous–Tertiary extinction(O’Keefe and Ahrens 1989).

    Despite the ubiquity and importance of carbonate melts, it is surprising to fnd that people actually know little about their properties at high temperatures and pressures,conditions under which carbonate melts often reside.Most experiments are concentrated around ambient pressure and mainly on alkali carbonate melts,owing to their role as electrolyte materials for fuel cells.Current measurements of carbonate melts are limited to 1,800 K and 5.5 GPa and signifcant discrepancies exist among different research groups,owing to the extreme challenges faced in these experiments(Dobson et al.1996;Liu and Lange 2003).

    Calcium-bearing carbonate melts are one of the main components of mantle-derived and highly evolved carbonatite melts(Church and Jones 1995).Nevertheless,as shown in Fig.1,even the phase and stability boundaries of CaCO3-melt remain poorly constrained.There is no consensus on exactly what temperature and pressure CaCO3liquid decomposes and what the products of its decomposition are in extreme conditions(Bobrovsky et al.1976; Litvin et al.2014;Martinez et al.1995).Nor is thereconsensus about the onset of melting of CaCO3solids and whether or not it is congruent(Kerley 1989;Spivak et al. 2011).Related with these,there is no consensus as to the precise boundary of crystalline phases and whether or not meta-stable polymorphs would be stabilized at high temperatures(Merlini et al.2012;Oganov et al.2006;Ono et al.2005,2007).

    Fig.1 Phase diagram of CaCO3-system.Points at low temperatures and pressures are determined by Irving and Wyllie(1973)and Huang and Wyllie(1976),respectively,for calcite–aragonite transition and melting

    Uncertainty about CaCO3melts and their minerals, some of which are marked in Fig.1,can be ascribed to the complexity of the structure and bonding of carbonates at high pressures(Oganov et al.2013).Different from silicate melts,which are characterized by polymerization and network formation,carbonate melts consist of metal cations and carbonateanions with no defnite association(Jones et al.2013).The C–O bonds are more polarized and readily introduce more energetic local minimums by rotating theanions.This feature of carbonate melts calls for theoretical approaches from frst principles; experimental measurements are extremely diffcult and thermodynamic models with empirical parameters do not generate reliable predictions in regions far beyond the regression regime.For CaCO3-melts,as shown in Fig.1, the calculations by Bobrovsky et al.(1976),Kerley(1989), and Martinez et al.(1995)are thus prone to signifcant error at high pressures and temperatures.

    Recently it has become our continuous endeavor to uncover the properties and roles of carbonatite melts in the mantle through frst principles simulations based on predictive quantum mechanical theories.In this study,as an important step,we explore the pressure–volume–temperature(PVT)properties of CaCO3-melts.Closely related to fundamental thermodynamic properties such as free energy and chemical potential,PVT properties are the key to solving the above-mentioned questions.In contrast to the growing database of PVT data for fuids and silicate melts (Zhang and Duan 2005),high pressure PVT data of CaCO3melts are still extremely scarce.As a matter of fact,current knowledge of CaCO3melts is not remarkably better than that generated by studies carried out decades ago(Dobson et al.1996;Genge et al.1995;Liu and Lange 2003).With a generalized re-scaling method to correct the systematic errors in the simulation results(Zhang et al.2013),we present an accurate equation of state(EOS)and,for the frst time,extend the PVT data of CaCO3-melts to at least 3,500 K and 60 GPa,rectifying the high pressure melting curve based on this EOS and that of the coexisting aragonite.Finally,we briefy discuss the implications of the results of this study.

    2 Theory

    2.1 Computational details

    First principles simulations were carried out with Vienna ab initio simulation package(Kresse and Furthmuller 1996)using the projector-augmented-wave method(Kresse and Joubert 1999).We focused on the local density approximation(LDA)in most simulations and will show below that the results in this study will be essentially independent from the choices of exchange–correlation functional.Limited simulations with the PBE form of generalized gradient approximation(GGA;Perdew et al. 1996)have been performed for the purpose of comparison. The core radii are 2.3 atomic units(a.u.)for calcium(with a neon core),1.5 a.u.for carbon(with a helium core),and 1.52 a.u.for oxygen(with a helium core).

    We computed the thermodynamic and dynamical properties of molten CaCO3with extensive molecular dynamics (MD)simulations.At each time step(1 fs interval),the electronic structure was calculated at the Brillouin zone center with an energy cutoff of 500 eV and iteration convergence criterion of 10-6eV.The thermal equilibrium between ions and electrons is assumed via the Mermin functional(1965).MD trajectories were propagated in the NVT ensemble with the Nose′thermostat(1984)for 7 ps, with the frst 3 ps discarded as pre-equilibrium.Uncertainties in directly simulated quantities are determined using appropriate non-Gaussian statistics via the blocking method(Flyvbjerg and Petersen 1989).The primary cell is cubic with 160 atoms(32 formula units).The initial confgurations were prepared through melting the 2×2×2 aragonite supercells by increasing the temperature and homogeneously straining the cell to a cubic shape.Simulation results for most properties were found to be unchanged within statistical uncertainties in larger systems (240 atoms)and durations twice as long.

    We have not applied the quantum corrections for high temperature MD simulation results since the temperatures (>900 K)are much higher than the Debye temperature (<500 K for aragonite)and quantum effects should be negligibly small(Kerley 1989).On the other hand,in order to have accurate comparisons with experimental measurements at ambient conditions for crystals,as described in the next section,we counted the effects of zero-point vibrations by computing the phonon frequencies through the small displacement method with the aid of Phonopy(Togo et al.2008).In these calculations,we relaxed the ionic structures with high precision(energy cutoff increased to 1,000 eV,iteration convergence criterion decreased to 10-8eV)and dense k-point mesh (5×3×4 and 6×5×6 for aragonite and post-aragonite,respectively). We used a 2×2×2 supercell in calculating the force constant matrix by confrming its convergence for thermodynamic properties.Non-analytical-term corrections have been applied for longitudinal-transverse optical phonon frequency splitting in the limit of small wave-vector (Wang et al.2010).

    2.2 Systematic errors and corrections

    Practical density functional theory(DFT)calculations rely on an approximation to the exchange–correlation functional.The two most widely used approximations:LDA and GGA,yield different predictions for quantities such as EOS.The main idea of a posteriori corrections to LDA and GGA is based on the observations that the correction to the energy should depend only on volume(van de Walle and Ceder 1999).A constant shift in pressure,named as the constant-shifting method hereafter,actually assumes the simplest possible volume-dependent form of correction to energy,i.e.,linear with volume.Although popular for its simplicity,this method has been found to be insuffcient to bring LDA and GGA predictions into agreement over a wide range of pressure.As discussed in Zhang et al.(2013), the alternative re-scaling method,achieved by counting the volumetric dependence of corrections in pressure,shows its superiority with high accuracy over the constant-shifting method.

    A thermodynamic self-consistent derivation for the rescaling method can be found in Zhang et al.(2013).We only briefy summarize here the formula involved in this study.In the mean time,by noticing that the corrections should be equivalent for the same stoichiometric system,as also argued by van de Walle and Ceder(1999),we further slightly generalize this method for situations beyond single phase.

    The fundamental relation of the re-scaling method lies in the correction to the Helmholtz free energy:

    where subscript 0 refers to properties at zero pressure and an arbitrary reference temperature,K is the isothermal bulk modulus,andisthedisplacementofbasefreeenergyforthesakeof re-scaling and can be neglected since relative(rather than absolute)free energy is concerned.Free energies with subscript ref represent those of a reference phase.When the reference temperature is selected as athermal(static)and focusingonasinglephase,Eq.(1)isexactlythatproposedin Zhang et al.(2013).The re-arrangement and slight generalization of Eq.(1)make it convenient to correct results for phases with few or even no experimental data since we can choose an alternative more familiar phase with the same stoichiometry as the reference phase.We will show in the next section that this generalization for CaCO3-systems, though more or less empirical,is satisfactory for rendering DFT predictions independent of the form of the exchange–correlation functional and for agreeing with existing experimental measurements.

    From the thermodynamic identitywe fnd from Eq.(1)

    The constant-shifting method has also been applied to limited results to compare its performance with the abovementioned re-scaling method.The correction to pressure reads

    The choices of parameters in these formulas are described in the caption of Fig.4 in the next section.

    3 Results and discussions

    3.1 Structure

    Finite sized MD simulations explore the phase space with constrained time and space scales.This somewhat hinders a quick downhill convergence to the global minimum,corresponding to the most stable phase,but on the other hand facilitates sampling meta-stable phase space and extends important information smoothly beyond the stable phases.When the energy barriers between local minima are appropriate,phase transitions or chemical reactions can be observed in the MD trajectories.As for the simulation of CaCO3-melts,we should ensure that in our sampling,(1) the melt has not crystallized at suffciently low temperatures,and(2)thehas not completely decomposed into separate ions at suffciently high temperatures.By inspecting the radial distribution function and the mean square displacement,we fnd the super-cooled CaCO3-melt can be well sampled even deep within the solid phase regime(at least to 1,500 K and 50 GPa).The monitoring of decomposition is more ambiguous since the structure of CaCO3-melt varies continuously over the temperatures and pressures.A frst order inspection can be derived from the density of states,which is defned as the Fourier transformation of the velocity auto-correlation function(Allen and Tildesley 1987).As shown in Fig.2,the crystalline phase of CaCO3(aragonite here)shows clear features in the high frequency region(>500 cm-1),which corresponds to that of normal modes of the carbonate group(Ni and Keppler 2013).The melting of the solid greatly destroys these features as revealed by the noticeable fattened spectra of super-cooled melt at the same temperature and volume. Increasing the temperature further blurs the characteristic peaks of frequency and at the temperature of 4,000–5,000 K it becomes essentially featureless.Therefore in the following discussions,we have not included the results at 4,000–5,000 K in order to eliminate any possible negative infuence on the accuracy of EOS proposed in this study.We noticed that this approximate choice of temperature upper limit is consistent with a recent experiment, which demonstrates congruent melting of CaCO3at 3,500 K and 10–22 GPa(Spivak et al.2011).

    Fig.2 Density of states(through Fourier transformation of velocity auto-correlation functions)of CaCO3-melts at various temperatures with a volume of 32.15 cm3/mol.Shaded area represents the characteristic high frequency regime of carbonate anion.Aragonite at 1,500 K is included for comparison

    It is interesting to inspect more closely the equilibrated melt structure over varying temperatures and pressures.As shown in Fig.3,we fnd signifcant effects on the local coordination environment from compressions,especially for Ca–O coordination.Over the pressures involved in this study,the structure varies continuously from calcite-like to post-aragonite-like,with Ca–O coordination increased from~6.7 to~10.3.This is inconsistent with that of the early classical simulations with force feld by Genge et al. (1995),which fnds a consistent similarity to calcite and may imply inaccuracy of their force feld at high pressures. Variations of C–O coordination over pressure reveal subtle effects of compression on the carbonate groups.In Fig.3a, we fnd the averaged C–O coordination number is generally equal to or slightly smaller than 3 except at extremehigh pressures.As shown in Fig.3b,although the threefold C–O coordination dominates throughout the compression, the lower-than-threefold coordination(twofold or even onefold coordination at the lowest pressures inspected) always appears with 5–20%.This feature is consistent with that proposed by Williams and Knittle(2003),who argued from their Raman spectroscopy that at least two anionic bonding environments exist in carbonate liquids with one carbonate-like bonding and the other singlebonded C–O units.At high pressures,the fourfold coordination gradually increases and the liquid structure is much more densely packed than solid phases,which only demonstratetetrahedral structures in the pyroxene-type phase with a pressure over 130 GPa(Oganov et al.2006).

    Fig.3 a Ca–O and C–O coordination number at 1500,2000,and 3000 K.The Ca–O coordination number of the crystalline phases with their approximate range of stability is shown for comparison. b Distribution of C–O coordination environments in CaCO3melts at 1,500 K(open symbols)and 2,500 K(solid symbols).Numbers denote the coordinated number of oxygen atoms around carbon

    3.2 Corrections to the systematic DFT errors

    We choose aragonite at 300 K as the reference phase and temperature for our re-scaling and also constant-shifting corrections,since we can fnd much more experimental data to show the accuracy of our corrections.Results for post-aragonite are included for comparison and to confrm our generalization of the re-scaling method proposed in this study for situations beyond the reference phase.

    As shown in Fig.4a,the predictions of LDA and GGA deviate from the experimental pressure by 3–7 GPa.LDA underestimates while GGA overestimates the pressures by similar amounts,which is in contrast to the comparisons for silicates,for which experimental pressures are much closer to LDA predictions(Zhang et al.2013).The constantshifting method is obviously inadequate to correct the deviations:even at modest pressure,the shifted GGA is larger than that of LDA by over 5 GPa.

    In the inset plot of Fig.4a and in Fig.4b,we show the accuracies of the re-scaling method generalized in this study toahightemperatureandadifferentphase,respectively.The corrections are unexpectedly extremely successful,with an almost exact match between re-scaled LDA and GGA predictions and perfect agreement with the available experimental data.The re-scaling method is demonstrated to be superior to the constant-shifting method with its high accuracy and independence of exchange–correlation functional, which isthe major uncertainty inDFTsimulations.Allthese comparisons convince us that we can also accurately predict PVT properties of CaCO3-melt with a similar approach,as discussed in the following section.

    3.3 EOS for CaCO3-melt

    After the re-scaling correction to the simulated results of melts,we established the EOS for CaCO3-melt with the Mie–Gruneisen equation:

    Fig.4 High accuracy of the re-scaling method proposed in this study as revealed by comparison with experiments,and the predictions with the constant-shifting method for aragonite and post-aragonite.The parameters forthe re-scaling are:and(from those reported by Ono et al.2005 for aragonite); GPa;For constant-pressure shifting,

    where PCis the reference isotherm at T0=1,500 K that can be accurately reproduced with a third-order Eulerian fnite strain equation(known as Birch–Murnaghan equation),γ is the Gruneisen parameter which we simplify to be linear with V by γ=γa+γb*(V-V0)/40.1873,and CVis the isochoric heat capacity.

    The parameters for this EOS are determined from linear least-square ftting and listed in Table 1.As shown in Fig.5,the equation reproduces all the simulation resultsquite well,including PVT properties(errors within 1 GPa) and energetic properties(errors within 1%).

    Table 1 Parameters for the equation of state(Eq.(4))for molten CaCO3and aragonite at high temperatures and pressures

    Fig.5 Equation of state for CaCO3melts.The simulated and corrected pressures and enthalpies(inset)at 1,500,2,500,and 3,500 K are shown as circles with uncertainties smaller than the size of the symbols.The lines are Mie–Gruneisen equation of state (Eq.(4))ftted to the simulation results with parameters listed in Table 1

    In Fig.6,we show the predictability of this EOS by comparing it with experimental measurements.Although we can only fnd very limited experimental data about calcium-bearing carbonate melts relevant to this study (>1,500 K),some in-depth analyses may provide important information to assess the accuracy of this study.First,as argued by Liu and Lange(2003),carbonate components mix ideally,i.e.,the volumes of carbonate liquids vary linearly with respect to the end-members.Secondly, although some systematic deviations exist between the measured densities of K2Ca(CO3)2melt by Liu and Lange (2003)and those by Dobson et al.(1996)at lower temperatures,we fnd they reach agreement at 1,750 K with a density of~1.82 g/cm3.Then with the well-determined density of K2CO3melt at 1,750 K(1.67 g/cm3),we get the extrapolated density of CaCO3melt to be 2.15 g/cm3at ambient pressure and 1,750 K,which agrees with the prediction of our EOS in this study.In contrast,the predictions by classical MD simulations of Genge et al.(1995) systematically underestimate the densities overthe pressures.

    Fig.6 Density and isothermal compressibility of CaCO3-melts at 1,750 K from different studies.Blue lines and open squares are those simulated by Genge et al.(1995)with empirical force feld. Experimental measurement of K2Ca(CO3)2melt by Dobson et al. (1996)is shown a with purple star at the bottom-left corner of the plot.Assuming ideal mixing and utilizing density of K2CO3determined by Liu and Lange(2003)at the same temperature and pressure,we get the density of CaCO3melt indicated by the flled purple circle.In the inset plot,we include the compressibility of K2CO3-melt determined by Liu et al.(2007),and those of anorthite (CaAl2Si2O8)and diopside(CaMgSi2O6)melts measured by Rigden et al.(1989)for comparisons

    In the inset plot of Fig.6,we computed the isothermal compressibility[defned as β=1/KT=-(dV/dP)T/V]of CaCO3melt at 1,750 K.The results from this study are slightly smaller than those calculated by Genge et al. (1995).At low pressures,similar to K2CO3(Liu et al. 2007),CaCO3melt can be more signifcantly compressed as compared with typical silicate melts such as anorthite (CaAl2Si2O8)and diopside(CaMgSi2O6)melts(Rigden et al.1989).With the increase of pressure to 10 GPa,the compressibility of carbonate melts rapidly decreases and all these melts interestingly show a similar magnitude of compressibility around 0.015 GPa-1.

    3.4 Applications and implications

    視高考如生命的北方人,早在那個(gè)年月里就變態(tài)地迫切追求升學(xué)率了。我初中時(shí)便有晚課,分兩個(gè)班,一個(gè)叫補(bǔ)差,一個(gè)叫培優(yōu),月考分?jǐn)?shù)排名靠前去培優(yōu),靠后則去補(bǔ)差。我和朋友的功課都屬于中不溜陣營(yíng),上下隨便一波動(dòng)就波動(dòng)去了隔壁班,兩人一會(huì)兒培優(yōu)一會(huì)兒補(bǔ)差,好不熱鬧。

    The accurate EOS determined in this study has important applications related to calcium-bearing carbonatite melts. We only briefy introduce one as follows for the onset of melting CaCO3solids.For this purpose,we also calculated the EOS of CaCO3–aragonite with the same approach mentioned above.The parameters of the aragonite arelisted in Table 1.We can predict the melting curve of CaCO3by integrating the Clausius–Clapeyron equation:

    Before the integration,we selected a converged experimental melting point at about 1,968 K and 5.5 GPa(Huang and Wyllie 1976;Suito et al.2001).It should be noted that this point lies beyond calcite phase as revealed in Fig.1 and mentioned by Irving and Wyllie(1973)and I-vanov and Deutsch(2002).From this fxed point and Eq.(4),we produced the melting curve of CaCO3over wide pressures in Fig.7,which is the frst curve from frst principles,as far as we know.Compared with the early prediction by Kerley(1989),which has often been cited as the only melting curve before this study,we believe our results should be much more accurate for the reasons discussed above.

    Based on the new derived melting curve,almost the whole bulk mantle falls into the solid regime of the CaCO3phase diagram,which implies that the calcium-dominant carbonate systems would not be melted over the entire mantle.To fuel the CaCO3minerals,extremely high heat fow is needed,which is often unlikely according to analysis of the global records(Pollack et al.1993).The other possibility,which is more reasonable,would be eutectic melting through mixing with other components that have much lower melting temperatures.K2CO3,as an example, would be a good candidate to achieve the melting of CaCO3.Again,assumingidealmixing ofthetwo components,since the fusion curve of K2CO3approaches the geotherm(Liu et al.2007),we expect the carbonatite melts in the mantle should contain more alkali-bearing components than CaCO3.

    Fig.7 Melting curve predicted in this study and those by experimental measurements(Huang and Wyllie 1976;Suito et al.2001)and by thermodynamic model of Kerley(1989).Melting data of K2CO3by Liu et al.(2007)and Klement and Cohen(1975)are shown on the left-bottom of the diagram.Temperature profle over the mantle is picked from Ono(2008).In the inset plot,we compare the density of the coexisting solid and liquid densities and the density of diamond at 2,603 K(Suzuki et al.1998)is included for comparison

    On the other hand,as shown in Fig.7,it is possible that the melting curve of CaCO3meets with the geotherm at two points.In addition,as revealed in the inset plot of Fig.7,we fnd the densities of CaCO3phases(liquid or solid)become even larger than that of diamond and the density contrast between the coexisting solid and liquid reduces signifcantly with increasing pressure.Oganov et al.(2008),by comparing the enthalpy change of relevant reactions,proposed that CaCO3becomes more prevalent in the lowermost part of the mantle.Combining all these factors,the most interesting speculation here is that we may fnd almost pure CaCO3-melt at the base of the mantle.Of course,we should be aware that the unexplored phases(e.g.,post-aragonite and pyroxene-type phase,as shown in Fig.1)may(or may not)remarkably change the plausible extrapolation of the melting curve at high pressures(>40 GPa).

    4 Conclusions

    In this study,we present PVT properties of CaCO3-melt at high temperatures and pressures(up to 3,500 K and 60 GPa)through extensive frst principles simulations.To improve the accuracy and reliability of our predictions as much as possible,we carefully inspect the structures of melts to ensure proper sampling of the MD trajectories and comprehensively correct the systematic errors in the simulation results.Based on these efforts,we propose a high quality EOS for CaCO3-melt at high pressures.From this equation,along with that of CaCO3–aragonite,a melting curve has been obtained by integrating the Clausius–Clapeyron equation from frst principles for the frst time and plausibly implies the existence of CaCO3-melt at the base of the mantle.

    AcknowledgmentsWe acknowledge the funds from the key programs(#90914010 and#41020134003)granted by National Natural Science Foundation of China.All the simulations were carried out on the computational facilities in the Computer Simulation Lab of IGGCAS.

    Allen MP,Tildesley DJ(1987)Computer simulation of liquids. Clarendon Press,Oxford

    Church AA,Jones AP(1995)Silicate–carbonate immiscibility at Oldoinyo-Lengai.J Petrol 36:869–889

    Dobson DP,Jones AP,Rabe R,Sekine T,Kurita K,Taniguchi T, Kondo T,Kato T,Shimomura O,Urakawa S(1996)In-situ measurement of viscosity and density of carbonate melts at high pressure.Earth Planet Sci Lett 143:207–215

    Flyvbjerg H,Petersen HG(1989)Error-estimates on averages of correlated data.J Chem Phys 91:461–466

    Gaillard F,Malki M,Iacono-Marziano G,Pichavant M,Scaillet B (2008)Carbonatite melts and electrical conductivity in the asthenosphere.Science 322:1363–1365

    Genge MJ,Price GD,Jones AP(1995)Molecular-dynamics simulations of CaCO3melts to mantle pressures and temperatures—implications for carbonatite magmas.Earth Planet Sci Lett 131:225–238

    Green DH,Wallace ME(1988)Mantle metasomatism by ephemeral carbonatite melts.Nature 336:459–462

    Gudfnnsson GH,Presnall DC(2005)Continuous gradations among primary carbonatitic,kimberlitic,melilititic,basaltic,picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa.J Petrol 46:1645–1659

    Huang W-L,Wyllie PJ(1976)Melting relationships in the systems CaO–CO2and MgO–CO2to 33 kilobars.Geochim Cosmochim Acta 40:129–132

    Irving AJ,Wyllie PJ(1973)Melting relationships in CaO–CO2and MgO–CO2to 36 kilobars with comments on CO2in the mantle. Earth Planet Sci Lett 20:220–225

    Ivanov BA,Deutsch A(2002)The phase diagram of CaCO(3)in relation to shock compression and decomposition.Phys Earth Planet Inter 129:131–143

    Jones AP,Genge M,Carmody L(2013)Carbonate melts and carbonatites.Carbon Earth 75:289–322

    Kerley GI(1989)Equations of state for calcite minerals.I.Theoretical model for dry calcium carbonate.High Press Res 2:29–47

    Klement W,Cohen LH(1975)Solid–solid and solid–liquid transitions in K2CO3,Na2CO3and Li2CO3—investigations to greater than-5 kbar by differential thermal-analysis—thermodynamics and structuralcorrelations.Ber Bunsenges Phys Chem 79:327–334

    Kresse G,Furthmuller J(1996)Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Kresse G,Joubert D(1999)From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B 59:1758–1775

    Litvin Y,Spivak A,Solopova N,Dubrovinsky L(2014)On origin of lower-mantle diamonds and their primary inclusions.Phys Earth Planet Inter 228:176–185

    Liu Q,Lange RA(2003)New density measurements on carbonate liquids and the partial molar volume of the CaCO3component. Contrib Mineral Petrol 146:370–381

    Liu Q,Tenner TJ,Lange RA(2007)Do carbonate liquids become denser than silicate liquids at pressure?Constraints from the fusion curve of K2CO3to 3.2 GPa.Contrib Mineral Petrol 153:55–66

    Martinez I,Deutsch A,Scharer U,Ildefonse P,Guyot F,Agrinier P (1995)Shock recovery experiments on dolomite and thermodynamical calculations of impact-induced decarbonation.J Geophys Res Solid Earth 100:15465–15476

    Merlini M,Hanfand M,Crichton WA(2012)CaCO3-III and CaCO3-VI,high-pressure polymorphs of calcite:possible host structures for carbon in the Earth’s mantle.Earth Planet Sci Lett 333:265–271

    Mermin ND(1965)Thermal properties of inhomogeneous electron gas.Phys Rev 137:1441

    Ni HW,Keppler H(2013)Carbon in silicate melts.Rev Mineral Geochem 75:251–287

    Nose′S(1984)A molecular-dynamics method for simulations in the canonical ensemble.Mol Phys 52:255–268

    O’Keefe JD,Ahrens TJ(1989)Impact production of CO2by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth.Nature 338:247–249

    Oganov AR,Glass CW,Ono S(2006)High-pressure phases of CaCO3:crystal structure prediction and experiment.Earth Planet Sci Lett 241:95–103

    Oganov AR,Ono S,Ma YM,Glass CW,Garcia A(2008)Novel highpressure structures of MgCO3,CaCO3and CO2and their role in Earth’s lower mantle.Earth Planet Sci Lett 273:38–47

    Oganov AR,Hemley RJ,Hazen RM,Jones AP(2013)Structure, bonding,and mineralogy of carbon at extreme conditions. Carbon Earth 75:47–77

    Ono S(2008)Experimental constraints on the temperature profle in the lower mantle.Phys Earth Planet Inter 170:267–273

    Ono S,Kikegawa T,Ohishi Y,Tsuchiya J(2005)Post-aragonite phase transformation in CaCO3at 40 GPa.Am Mineral 90:667–671

    Ono S,Kikegawa T,Ohishi Y(2007)High-pressure transition of CaCO3.Am Mineral 92:1246–1249

    Perdew JP,Burke K,Ernzerhof M(1996)Generalized gradient approximation made simple.Phys Rev Lett 77:3865–3868

    Pollack HN,Hurter SJ,Johnson JR(1993)Heat fow from the Earth’s interior:analysisofthe globaldata set.Rev Geophys 31:267–280

    Rigden SM,Ahrens TJ,Stolper EM(1989)High-pressure equation of state of molten anorthite and diopside.J Geophys Res Solid Earth 94:9508–9522

    Spivak AV,Dubrovinskii LS,Litvin YA(2011)Congruent melting of calcium carbonate in a static experiment at 3500 K and 10–22 GPa:its role in the genesis of ultradeep diamonds.Dokl Earth Sci 439:1171–1174

    Suito K,Namba J,Horikawa T,Taniguchi Y,Sakurai N,Kobayashi M,Onodera A,Shimomura O,Kikegawa T(2001)Phase relations of CaCO3at high pressure and high temperature.Am Mineral 86:997–1002

    Suzuki A,Ohtani E,Kato T(1998)Density and thermal expansion of a peridotite melt at high pressure.Phys Earth Planet Inter 107:53–61

    Togo A,Oba F,Tanaka I(2008)First-principles calculations of the ferroelastic transition between rutile-type and CaCl(2)-type SiO(2)at high pressures.Phys Rev B 78:134106

    van de Walle A,Ceder G(1999)Correcting overbinding in localdensity-approximation calculations.Phys Rev B 59:14992–15001

    Wang Y,Wang JJ,Wang WY,Mei ZG,Shang SL,Chen LQ,Liu ZK (2010)A mixed-space approach to frst-principles calculations of phonon frequencies for polar materials.J Phys Condens Matter 22:202201

    Williams Q,Knittle E(2003)Structural complexity in carbonatite liquid at high pressures.Geophys Res Lett 30:1022.doi:10.1029/ 2001GL013876

    Yang XM,Yang XY,Zheng YF,Le Bas M(2003)A rare earth element-rich carbonatite dyke at Bayan Obo,Inner Mongolia, North China.Mineral Petrol 78:93–110

    Zhang ZG,Duan ZH(2005)Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation.Phys Earth Planet Inter 149:335–354

    Zhang ZG,Stixrude L,Brodholt J(2013)Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth.Earth Planet Sci Lett 379:1–12

    Received:5 January 2015/Revised:12 January 2015/Accepted:12 January 2015/Published online:31 January 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    Z.Zhang(?)·Z.Liu

    Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029,China

    e-mail:zgzhang@mail.iggcas.ac.cn

    猜你喜歡
    晚課補(bǔ)差升學(xué)率
    電的重要性
    梵 音
    文苑(2019年8期)2019-11-21 00:11:56
    基于“補(bǔ)差”理念的海綿城市策略研究
    老禪院
    梵音
    基于ARIMA模型對(duì)我國(guó)升學(xué)率的研究
    財(cái)訊(2018年6期)2018-05-14 08:55:50
    高中生物教學(xué)中補(bǔ)差的分析與探討
    考試周刊(2017年82期)2018-01-30 08:53:17
    讓英語(yǔ)學(xué)習(xí)轉(zhuǎn)“補(bǔ)差”為“不留差”
    竣工結(jié)算中工料機(jī)補(bǔ)差相關(guān)問(wèn)題的探討
    實(shí)現(xiàn)升學(xué)率與素質(zhì)教育的辯證統(tǒng)一
    国产av码专区亚洲av| 亚洲欧美成人精品一区二区| 天堂中文最新版在线下载| 免费观看a级毛片全部| 精品久久国产蜜桃| 国产黄色视频一区二区在线观看| 国产乱人偷精品视频| 人妻一区二区av| 日韩av不卡免费在线播放| 亚洲伊人久久精品综合| 国产淫语在线视频| 亚洲图色成人| 丰满迷人的少妇在线观看| 国产一区亚洲一区在线观看| 亚洲内射少妇av| 一级a做视频免费观看| 99久久精品热视频| 亚洲真实伦在线观看| 国产爱豆传媒在线观看| 亚洲精品视频女| 亚洲精品乱码久久久久久按摩| 只有这里有精品99| 深夜a级毛片| 亚洲天堂av无毛| 成人黄色视频免费在线看| 国产伦精品一区二区三区视频9| 五月伊人婷婷丁香| 久久久久人妻精品一区果冻| 最近的中文字幕免费完整| 精品视频人人做人人爽| 午夜日本视频在线| 国产精品女同一区二区软件| 嘟嘟电影网在线观看| 一级毛片aaaaaa免费看小| 80岁老熟妇乱子伦牲交| 在线观看免费日韩欧美大片 | 日韩人妻高清精品专区| 久久久久人妻精品一区果冻| 国产精品伦人一区二区| 99热这里只有是精品50| 交换朋友夫妻互换小说| 舔av片在线| 在线免费观看不下载黄p国产| 大又大粗又爽又黄少妇毛片口| 国产黄片美女视频| 99久久中文字幕三级久久日本| 嫩草影院入口| 在线观看人妻少妇| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 有码 亚洲区| 18禁裸乳无遮挡免费网站照片| 一本久久精品| 少妇熟女欧美另类| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| 制服丝袜香蕉在线| 日韩精品有码人妻一区| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 一级黄片播放器| 老熟女久久久| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人 | 尤物成人国产欧美一区二区三区| 人妻一区二区av| 日韩人妻高清精品专区| 一本—道久久a久久精品蜜桃钙片| 国产综合精华液| 午夜老司机福利剧场| 国产一级毛片在线| 国产精品不卡视频一区二区| 亚洲色图av天堂| 你懂的网址亚洲精品在线观看| 国产精品国产三级专区第一集| 一本色道久久久久久精品综合| 伦理电影免费视频| 最近手机中文字幕大全| 国产精品久久久久久精品古装| 久久婷婷青草| 人人妻人人爽人人添夜夜欢视频 | 久久精品熟女亚洲av麻豆精品| 免费av不卡在线播放| 欧美日韩精品成人综合77777| 亚洲欧洲日产国产| 免费观看的影片在线观看| 下体分泌物呈黄色| 国产91av在线免费观看| 精品人妻一区二区三区麻豆| 国产色爽女视频免费观看| 成年女人在线观看亚洲视频| 一个人看的www免费观看视频| 边亲边吃奶的免费视频| 视频区图区小说| 久久久久人妻精品一区果冻| 最近2019中文字幕mv第一页| 亚洲图色成人| 赤兔流量卡办理| 日日摸夜夜添夜夜添av毛片| 久久久欧美国产精品| 精品国产一区二区三区久久久樱花 | 久久人人爽人人片av| 91aial.com中文字幕在线观看| 亚洲精品,欧美精品| 日本wwww免费看| 精品少妇久久久久久888优播| 国产黄色视频一区二区在线观看| 一个人免费看片子| 精华霜和精华液先用哪个| 日本猛色少妇xxxxx猛交久久| 亚洲综合精品二区| 2021少妇久久久久久久久久久| 中文字幕亚洲精品专区| 国产精品国产av在线观看| 成人午夜精彩视频在线观看| 国产毛片在线视频| 美女脱内裤让男人舔精品视频| 亚洲精品视频女| 日韩制服骚丝袜av| 97在线视频观看| 亚洲av电影在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产精品嫩草影院av在线观看| 晚上一个人看的免费电影| 日韩成人伦理影院| 永久免费av网站大全| 国产黄色免费在线视频| 日本色播在线视频| 3wmmmm亚洲av在线观看| 91aial.com中文字幕在线观看| 久久ye,这里只有精品| 91在线精品国自产拍蜜月| 欧美精品亚洲一区二区| 国产欧美日韩一区二区三区在线 | 我的老师免费观看完整版| 亚洲精品亚洲一区二区| 十分钟在线观看高清视频www | 永久免费av网站大全| 欧美精品一区二区免费开放| 亚洲国产av新网站| 亚洲av电影在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 性色av一级| 另类亚洲欧美激情| 女人久久www免费人成看片| 男人爽女人下面视频在线观看| 少妇 在线观看| 久热久热在线精品观看| 亚洲国产精品国产精品| 男女无遮挡免费网站观看| 不卡视频在线观看欧美| 欧美日韩综合久久久久久| 日韩av在线免费看完整版不卡| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 亚洲精品一区蜜桃| 日日啪夜夜撸| 最后的刺客免费高清国语| 一级毛片aaaaaa免费看小| 国产一区二区三区av在线| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 欧美日韩精品成人综合77777| 最近手机中文字幕大全| 一个人看视频在线观看www免费| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影小说 | 你懂的网址亚洲精品在线观看| 男女国产视频网站| 久久久久久久大尺度免费视频| 美女脱内裤让男人舔精品视频| 欧美另类一区| 在线亚洲精品国产二区图片欧美 | 色综合色国产| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 国内精品宾馆在线| 伊人久久精品亚洲午夜| 亚洲国产欧美人成| 97在线人人人人妻| 国产真实伦视频高清在线观看| 成人无遮挡网站| 秋霞伦理黄片| 久久精品久久久久久噜噜老黄| 丰满乱子伦码专区| 97在线人人人人妻| av播播在线观看一区| 欧美成人一区二区免费高清观看| 国产高清三级在线| 亚洲电影在线观看av| 欧美另类一区| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 少妇丰满av| 色婷婷久久久亚洲欧美| 看十八女毛片水多多多| 久久久久人妻精品一区果冻| 高清在线视频一区二区三区| 国产一区二区三区av在线| 亚洲综合精品二区| 欧美日本视频| 久久久久久伊人网av| 韩国av在线不卡| 国产av精品麻豆| 伦理电影免费视频| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 亚洲va在线va天堂va国产| 97超碰精品成人国产| 国产精品秋霞免费鲁丝片| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂 | 一级毛片电影观看| 最近最新中文字幕大全电影3| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| 亚洲精华国产精华液的使用体验| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 夜夜看夜夜爽夜夜摸| 偷拍熟女少妇极品色| 精品亚洲成a人片在线观看 | 丝袜喷水一区| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 国产熟女欧美一区二区| 高清不卡的av网站| 在线观看国产h片| av在线app专区| 在线观看av片永久免费下载| 舔av片在线| 韩国av在线不卡| 日日摸夜夜添夜夜添av毛片| 国产熟女欧美一区二区| 99热网站在线观看| av国产久精品久网站免费入址| 老熟女久久久| 国产av精品麻豆| 日韩三级伦理在线观看| 18禁裸乳无遮挡免费网站照片| 97在线人人人人妻| 少妇人妻一区二区三区视频| 亚洲欧美日韩另类电影网站 | 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 精品人妻视频免费看| 成年人午夜在线观看视频| 亚洲中文av在线| 国产成人免费观看mmmm| 免费久久久久久久精品成人欧美视频 | 草草在线视频免费看| 欧美性感艳星| 如何舔出高潮| 国产成人freesex在线| 26uuu在线亚洲综合色| a级毛片免费高清观看在线播放| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 国产精品欧美亚洲77777| 亚洲四区av| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 欧美高清成人免费视频www| av国产免费在线观看| 男男h啪啪无遮挡| 一个人免费看片子| 天堂中文最新版在线下载| 有码 亚洲区| 性色av一级| 国产黄片美女视频| 国产精品人妻久久久影院| 国产片特级美女逼逼视频| 国产又色又爽无遮挡免| 亚洲美女黄色视频免费看| 啦啦啦视频在线资源免费观看| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 久久人人爽人人爽人人片va| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| 日本av免费视频播放| av卡一久久| 老师上课跳d突然被开到最大视频| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 色吧在线观看| 女性被躁到高潮视频| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 最后的刺客免费高清国语| 亚洲精品一二三| 亚洲怡红院男人天堂| 国模一区二区三区四区视频| 超碰97精品在线观看| 亚洲中文av在线| 色婷婷av一区二区三区视频| 少妇猛男粗大的猛烈进出视频| 老师上课跳d突然被开到最大视频| 22中文网久久字幕| 一边亲一边摸免费视频| 久久99热6这里只有精品| 99久久精品一区二区三区| 亚洲av中文av极速乱| 久久97久久精品| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 免费少妇av软件| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 亚洲精品国产av蜜桃| 深夜a级毛片| 国产乱来视频区| 男女边摸边吃奶| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 免费观看在线日韩| 中文字幕精品免费在线观看视频 | 能在线免费看毛片的网站| 国产在线免费精品| 少妇猛男粗大的猛烈进出视频| 在线精品无人区一区二区三 | 久久久久久久久久人人人人人人| 久久97久久精品| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 99热这里只有是精品50| 色综合色国产| 日本与韩国留学比较| av卡一久久| 观看免费一级毛片| 男女啪啪激烈高潮av片| 亚洲色图综合在线观看| 免费少妇av软件| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 中文资源天堂在线| av免费在线看不卡| 秋霞在线观看毛片| 只有这里有精品99| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 亚洲av免费高清在线观看| 高清午夜精品一区二区三区| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线| 夜夜骑夜夜射夜夜干| 人人妻人人澡人人爽人人夜夜| 女人十人毛片免费观看3o分钟| 久久鲁丝午夜福利片| 观看美女的网站| 中国美白少妇内射xxxbb| 日韩av免费高清视频| 99热这里只有是精品50| 日韩av免费高清视频| 成年女人在线观看亚洲视频| 精品久久国产蜜桃| 欧美老熟妇乱子伦牲交| 偷拍熟女少妇极品色| 成人美女网站在线观看视频| 久久久午夜欧美精品| 一级a做视频免费观看| 久久久久久久久久成人| 精华霜和精华液先用哪个| 亚洲婷婷狠狠爱综合网| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 精品久久久久久久末码| 一级爰片在线观看| 亚洲精品自拍成人| 一级毛片我不卡| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 亚洲三级黄色毛片| av免费观看日本| 99久国产av精品国产电影| 欧美激情极品国产一区二区三区 | 久久久久性生活片| 国产av码专区亚洲av| 国产高清国产精品国产三级 | 日日撸夜夜添| 亚洲成人一二三区av| 国产在线免费精品| 高清av免费在线| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 美女国产视频在线观看| 国产精品一二三区在线看| av在线蜜桃| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| 丰满乱子伦码专区| 国产日韩欧美在线精品| 草草在线视频免费看| 国产一级毛片在线| 男女边摸边吃奶| 亚洲国产最新在线播放| 国产精品.久久久| 一区二区三区四区激情视频| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美人成| 久久韩国三级中文字幕| av在线app专区| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| 六月丁香七月| 日韩国内少妇激情av| 噜噜噜噜噜久久久久久91| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 97在线人人人人妻| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 日韩强制内射视频| 国产色婷婷99| 日本vs欧美在线观看视频 | 国产v大片淫在线免费观看| 国产黄色免费在线视频| 2021少妇久久久久久久久久久| 久久久久久久久久久免费av| 偷拍熟女少妇极品色| 少妇的逼水好多| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 国产极品天堂在线| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 亚洲国产精品一区三区| 欧美国产精品一级二级三级 | 熟妇人妻不卡中文字幕| 免费高清在线观看视频在线观看| 深爱激情五月婷婷| 人妻 亚洲 视频| 国产男人的电影天堂91| 国产爽快片一区二区三区| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 18+在线观看网站| 97在线视频观看| 精品一区二区三卡| 国产精品国产三级国产av玫瑰| 熟妇人妻不卡中文字幕| 中文字幕av成人在线电影| 最近手机中文字幕大全| 五月开心婷婷网| 日本av手机在线免费观看| 久久久久久久久久成人| 免费不卡的大黄色大毛片视频在线观看| videos熟女内射| av免费在线看不卡| 直男gayav资源| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| av国产久精品久网站免费入址| .国产精品久久| 久久青草综合色| 在线精品无人区一区二区三 | 午夜免费观看性视频| 丰满乱子伦码专区| a级一级毛片免费在线观看| 日韩强制内射视频| 午夜视频国产福利| a级毛片免费高清观看在线播放| 午夜视频国产福利| av一本久久久久| 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 国产精品国产av在线观看| 色哟哟·www| 精品视频人人做人人爽| 中文精品一卡2卡3卡4更新| av专区在线播放| 国产精品欧美亚洲77777| 国产高清三级在线| 99久久中文字幕三级久久日本| 国产91av在线免费观看| 国产 一区精品| 成年人午夜在线观看视频| 久久热精品热| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 免费看光身美女| 视频中文字幕在线观看| 成人高潮视频无遮挡免费网站| 久久6这里有精品| 日日摸夜夜添夜夜添av毛片| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 欧美zozozo另类| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 亚洲自偷自拍三级| 青春草视频在线免费观看| 免费久久久久久久精品成人欧美视频 | 91久久精品电影网| 春色校园在线视频观看| 黄色日韩在线| 欧美成人一区二区免费高清观看| 高清午夜精品一区二区三区| 久久国内精品自在自线图片| 永久免费av网站大全| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 国产真实伦视频高清在线观看| 久久久久久久国产电影| 亚洲av男天堂| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 人妻制服诱惑在线中文字幕| 18禁裸乳无遮挡免费网站照片| 国产高潮美女av| 免费黄色在线免费观看| 日本与韩国留学比较| 久久久久久久国产电影| 在线观看一区二区三区| 亚洲图色成人| 一级片'在线观看视频| 人妻 亚洲 视频| 中国国产av一级| 国产成人一区二区在线| 精品少妇久久久久久888优播| 国产在线免费精品| 卡戴珊不雅视频在线播放| 亚洲电影在线观看av| 下体分泌物呈黄色| 久久99精品国语久久久| 精品99又大又爽又粗少妇毛片| 精品久久久久久电影网| 亚洲av在线观看美女高潮| 2018国产大陆天天弄谢| 国产午夜精品一二区理论片| 免费观看性生交大片5| 最近中文字幕2019免费版| 亚洲欧美中文字幕日韩二区| 国产亚洲5aaaaa淫片| 成年免费大片在线观看| 婷婷色综合大香蕉| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 国产色爽女视频免费观看| 国产精品欧美亚洲77777| 国产欧美日韩精品一区二区| 久久人人爽av亚洲精品天堂 | 久久久久网色| 亚洲真实伦在线观看| 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 久久这里有精品视频免费| 丰满迷人的少妇在线观看| 大香蕉久久网| 精品一区二区三区视频在线| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 永久网站在线| 色视频www国产| 菩萨蛮人人尽说江南好唐韦庄| 日韩电影二区| 综合色丁香网| 在线天堂最新版资源| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区免费开放| 亚洲国产精品国产精品| 精品久久国产蜜桃| 在线精品无人区一区二区三 | h日本视频在线播放| 中文乱码字字幕精品一区二区三区| 亚洲欧美精品专区久久| 久久精品国产亚洲av天美| 亚洲国产欧美人成| www.av在线官网国产| 婷婷色综合www| 亚洲av中文av极速乱| 国产精品蜜桃在线观看| 亚洲自偷自拍三级| 国产精品不卡视频一区二区| 国产成人a∨麻豆精品| 欧美精品一区二区大全| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片 | 成人18禁高潮啪啪吃奶动态图 |