• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observations of stratospheric ozone above Ny-?lesund in the Arctic, 2010-2011

    2015-02-06 03:47:36LUOYuhanSIFuqiLIUWenqingSUNLiguangLIUYi
    Advances in Polar Science 2015年3期

    LUO Yuhan*, SI Fuqi, LIU Wenqing, SUN Liguang & LIU Yi

    1 Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;

    2 Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China,Hefei 230026, China;

    3 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

    1 Introduction

    Ozone depletion events and their environmental effects have received substantial attention for some time. Since discovery of the ozone hole over the Antarctic in the 1980s, ozone column densities continued to decrease with fluctuation and reached a minimum during 1992-1993[1]. As anthropogenic emission of chloro fluorocarbons (CFCs) and corresponding halogen compounds have increased in the stratosphere,the Antarctic ozone hole has worsened, combined with atmospheric dynamics and photochemical processes[2].In recent years, as CFCs were gradually degrading the atmosphere and the Antarctic stratosphere warmed with the pace of global warming, the Antarctic ozone hole appeared to have a shrinking trend[3-6].

    However, some low-ozone areas and tiny ozone holes have been found in the Northern Hemisphere, e.g., over the Qinghai-Tibetan plateau during winter since 1995[7].Such phenomena have also occurred over Europe[8]. At the end of March 2011, the most severe and largest ozone losses were recorded over the Arctic, by both satellite-borne instrumentation and ground-based observation networks[9-13].During this breaking ozone depletion event, the total ozone column was as low as 220 DU) (which has been considered the ozone hole threshold for the Antarctic (1 DU= 2.668×1016molec?cm-2) in some areas. The ozone loss area reached nearly 70% of the Arctic area, which normally has the maximum column density of ozone during the aforesaid time.

    The appearance of the ozone hole and unprecedented low ozone level over the Arctic would have a direct in fluence on ultraviolet-B (UV-B) radiation at the earth surface,which is harmful to the eco-environment. Therefore, it is of great importance to determine changes in total ozone level,especially over North Hemisphere.

    Balloon-borne measurements were first made at the Arctic’s Ny-?lesund research station in 1991. The results showed that ozone depletion is related to low temperature in the stratosphere, which facilitates polar stratospheric cloud(PSC) formation over long periods[14]. Rex et al.[15]also reported that Arctic ozone will decrease by ~15 DU with a stratospheric temperature decrease of 1 K.

    The ground-based total ozone detection was mainly based on a dual (multi) wavelength technique, e.g., Dobson and Brewer spectrophotometer. From the 1980s, the differential optical absorption spectroscopy (DOAS) method has been used to derive atmospheric columns for a number of important trace species, including total ozone, nitrogen dioxide, and bromine oxide[16]. According to characteristic absorption cross sections at different wavelengths and absorption intensities, trace gases can be identified and measured[17-21]. Using this method, we reported tropospheric NO2results from 2011 and evaluated sources of ship emissions[22].

    Here, we present total ozone column densities at Ny-?lesund using ground-based passive DOAS. Daily variations of ozone column densities were retrieved and compared with satellite Ozone Monitoring Instrument (OMI) data (discussed in Section 2.6). Based on the preliminary results, we compare the ozone columns before and after the low ozone event in spring 2011 and discuss the possible reasons and regional in fluences.

    2 Experiments and data analysis

    2.1 Experimental site

    Located on the west coast of the Svalbard Islands and north end of the North Atlantic Warm Current (NAWC), Ny-?lesund has a typical Arctic oceanic climate with very low temperature at high altitude and relatively high temperature near sea level. Influenced by the NAWC, the weather changes frequently because of the character of the frigid oceanic climate. As a result, atmospheric circulation and exchange at elevation is stronger than at other locations at the same latitude, which is a unique character of the research site. This site is in an abandoned Norwegian mining area and has become an international research community with no local industry nearby.

    The instrument was established at Zeppelin Station of Ny-?lesund (78°54′26′′N(xiāo), 11°53′9′′E, 474 m a.s.l.) from 14 July to 26 August 2010 and 6 July to 16 August 2011. A schematic view of the observation location and instrument is shown in Figure 1. Given the limited solar zenith angle (SZA)range at other times of the year, we chose the two summer periods above for observation, which have comparatively longer sunshine and smaller solar zenith angles.

    2.2 Ground-based DOAS setup

    The DOAS instrument was used to obtain ozone column densities. We observed electronic transitions of the trace gas molecules (or atoms) in the ultraviolet and visible wavelength ranges. Like the other absorption spectroscopic techniques, DOAS uses characteristic absorption features of trace gas molecules along the detected light path in the open atmosphere, thereby measuring atmospheric trace gases.Zenith-scattered DOAS is mostly used to detect those gases in the stratosphere, whereas off-axis DOAS is sensitive to boundary layer species.

    The spectrometer collects zenith-scattered sunlight,which is dispersed by grating spectrographs (MAYA2000 Pro, Ocean Optics) and detected by an ILX511 linear array CCD. The incoming light is transformed by a quartz fiber (NA= 0.22) and detected by 2068 pixels (2048 in practice, with each unit 14 μm ×200 μm). The wavelength range is 290 to 420 nm. The entrance slit width is 100 μm, and spectral resolution 0.3 nm (0.6 nm for 2010). The detectors are thermally stabilized at ~10°C using a thermal controller.A computer sets the system configuration and controls the automatic measurements. Calibration measurements of dark current, offset and mercury lamp spectra were performed before the experiment.

    The telescope was pointed north, which is least affected by direct sunlight. The reason is that when looking toward the sun, in particular for higher elevation angles, the air mass factor (AMF) is significantly smaller. This factor is a result of the strong forward peak in Mie scattering, which reduces the effective light path in such geometry. Only zenith-direction measurements were used in the research.

    2.3 Data analysis

    Spectra measured with the setup described above were analyzed using the DOAS retrieval method. Ozone differential slant column density (dSCD) was retrieved for 338-348 nm. O3(202 K), NO2(293 K), O4(298 K) and ring structure are involved in the inversion algorithm. Highresolution cross sections were convoluted with the instrument slit function, determined by measuring the emission line of a mercury lamp. A fifth-order polynomial was used to eliminate broad band structures in the spectra caused by Rayleigh and Mie scattering. Furthermore, a nonlinear intensity offset was included in the fit, to account for possible instrumental stray light. A wavelength shift and stretch of the spectra was allowed for in the fit to compensate for small changes in spectral adjustment of the spectrograph. Wavelength calibration was performed using WinDOAS software[23]by fitting the reference spectrum to a high-resolution Fraunhofer spectrum.

    Taking the retrieved spectrum from 15 July 2010 as an example (Figure 2), the zenith sky spectrum at noon was used as the Fraunhofer reference spectrum (SFRS).

    Because anthropogenic ozone pollution is almost nonexistent in the study area, more than 90% of ozone is concentrated in the stratosphere. Thus, ozone vertical column density is approximately constant over a half day (am/pm).Therefore, ozone column densities can be calculated by the following equation, in whichSFRSis the intercept and vertical column density (VCD) is the slope:

    AMF is calculated by the radiative transfer SCIATRAN model[24]. Ozone VCDs were retrieved by corresponding dSCDs and AMFs. Taking data from 17 July 2010 as an example, the linear fit of ozone dSCD and AMF is shown in Figure 3. The ozone VCD is 8.116×1018molec?cm-2, with a strong linear relationship between dSCD and AMF.

    Uncertainties in the results are from uncertainties in the determination of dSCD, errors in the radiation transport model calculation, and the presence of clouds. For the first two, the error is on the order of 10% or less. For the influence of clouds, we avoided this source of error by selecting cloudfree periods using a cloud index retrieved by our system[25].

    2.4 Meteorological parameters

    Monthly-mean temperature profiles with altitude(atmospheric pressure) during the observation period at Ny-?lesund were constructed using European Center for Mediumrange Weather Forecasts (ECMWF) ERA Interim reanalysis data (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl) (Figure 4). This figure shows stratospheric temperature, and the altitude of the tropopause is clearly evident. We chose the temperature at the inversion layer near 250 mb as stratospheric temperature (Figure 5).We found that this temperature fluctuated almost every day and could change more than 20 degrees in a very short period.

    2.5 Ozonesonde

    The total ozone column and vertical profile have been recorded by the Alfred Wegener Institute using a balloonborne ozonesonde since 1992. Total column ozone in DU is calculated by integrating the ozone partial pressure pro file up to balloon-burst altitude and adding a residual amount, which is based on climatological ozone tables accounting for ozone above that altitude. Data frequency is approximately once per week, which provides profiles of temperature, pressure and ozone that can be used as input to the radiative transfer model. Ozone profiles during the observation periods are shown in Figure 6.

    Polar ozonesonde profiles provide detailed vertical measurements of ozone that can be made even during darkperiods, when satellite ozone observations are limited.Therefore, the ozonesonde data can be effective validation for ground-based DOAS results.

    2.6 Total Ozone Columns derived from OMI satellite observations

    The OMI onboard NASA’s EOS-AURA satellite measures multiple key species in stratospheric and tropospheric chemistry of the earth’s atmosphere and for climate research.It is a nadir remote sensor that measures solar radiation backscattered by the atmosphere and surface over the entire wavelength range 270-500 nm, with spectral resolution ~0.5 nm, very high spatial resolution (13 km × 24 km) and daily global coverage.

    To con firm the quality of satellite data products (http://toms.gsfc.nasa.gov), independent and well-calibrated reference measurements from ground-based DOAS systems were used as validation for the satellite data. The ozone columns reported here are also compared with OMI data (Sect. 3).

    3 Results and discussion

    3.1 Results

    Based on the above setup, valid data from Zeppelin Station were preliminarily analyzed. Ozone VCD calculated by DOAS measurement and that from OMI and ozonesonde data are shown in Figure 7. For both ground-based and satellite-borne instruments, the total ozone columns presented similar trends during the two observation periods (2010 and 2011 summer).

    From 14 July to 26 August 2010, the mean of ozone VCD by DOAS was 300.5 DU with maximum 342.0 DU and minimum 236.6 DU. From 6 July to 16 August 2011, the mean ozone VCD was 291 DU with maximum 338.5 DU and minimum 260.8 DU.

    The total ozone VCDs fluctuated with the same pattern as stratospheric temperature. This correlation can be explained as follows. When the stratosphere becomes cold, PSCs form within the circumpolar vortex. These are composed of crystals and hydrated species of nitric acid and sulfuric acid. The active halogen species (Cl and Br) can participate in a heterogeneous chemical reaction cycle on PSC surfaces, thereby depleting stratospheric ozone. This process is more effective in cold conditions[26], and can even cause loss of ozone during summer. Thus, the total ozone VCDs had a decreasing trend. While when the stratosphere warms, the ozone loss cycle terminates with the disappearance of PSCs.As a result, the total ozone level has a transient recovery. If there is a persistent decline of temperature, it would be easier to fi nd severe ozone depletion (e.g., 14 to 20 August 2010 and 7 to 10 July 2011).

    3.2 Validation

    To validate the accuracy of the ground-based DOAS observation of total ozone, satellite-borne OMI overpass data were compared with DOAS results. As shown in Figure 8,total ozone VCDs in summer 2010 and 2011 from groundbased DOAS and satellite-borne OMI observations have a linear fit. The DOAS and OMI measurements of total column ozone in 2010 and 2011 have a large correlation coefficient(R2), 0.88356 and 0.91456, respectively. This con firms that the DOAS technique is effective in measuring ozone in the Arctic region.

    Integrating the results of total ozone column from the passive DOAS and OMI shows a certain deviation, which was caused by the different observation pattern. For groundbased DOAS measurements, stratospheric ozone VCD is mainly determined from measurements at high SZA, which have the greatest in fluence on the Langley plot. For high SZA,light paths through the stratosphere become extremely long(up to several hundred kilometers). The OMI was pointed in the nadir direction, reflecting the overpass value (normally at noon, which are made at smaller SZA) of the pixel (13×24 km2). Thus, the DOAS probably has a larger footprint than the OMI observations. Thereby, for a given location,the ground-based DOAS and satellite OMI observation have different spatial and temporal accuracies for trace gas column densities. Further, on cloudy days, absorbers above cloud would be obscured from ground-based instruments. Thus, for stratospheric gases like ozone, the total columns are easily underestimated, which was another the reason why ozone VCDs by DOAS were slightly lower than those from OMI.

    The ozonesonde data also had trends similar to the DOAS results (Figure 7). However, because the ozonesonde is influenced by the wind profile, the balloon could not be located at the same latitude and longitude during the monitoring period. Therefore, the results could either overestimate (e.g., 27 July 2011) or underestimate (e.g., 13 July 2011) the true column at the observation site.

    3.3 Trends of Arctic ozone column variation

    Overpass ozone VCDs at Ny-?lesund, Arctic from 2005 to 2011 (days 60-120) are displayed in Figure 9. Averages for 2005-2010 and data of 2011 are plotted separately. The natural seasonal cycle of total ozone over the Arctic shows large values in spring, as a result of increased transport of ozone from the tropics (source region) toward the polar regions in winter. However, there was a different pattern from March to mid-April 2011 (red solid dots) in that a severe ozone loss was observed by both satellite and groundbased instruments.

    To address the hypothesis that ozone destruction somewhat depends on stratospheric temperature, Figure 10 illustrates stratospheric temperature (at the 250-mb pressure level) variation in the same period as Figure 9. We find that the total ozone columns changed synchronously with stratospheric temperature. Stratospheric temperature in 2011(red solid dots) was much colder than in other years during all of March. This temperature declined dramatically to ~200 K(-70°C), which was about the level of Antarctic PSCs.

    In the Arctic, total ozone variations are different from those observed in the Antarctic. The differences are normally attributed to atmospheric circulations and temperature variations. Unlike the Antarctic polar vortex, which isolates air inside it and has a very low temperature, dynamic atmospheric exchanges in the Arctic region are much more frequent. In particular for the Ny-?lesund area, the North Atlantic Drift brings in water vapor continuously and there is vertical exchange with the tropopause. Moreover, exchanges at high latitude between northern Eurasia and northern Canada may also generate turbulence.

    Therefore, it is assumed that significant Arctic ozone layer depletion can form in the case of a cold and stable Arctic stratosphere during winter. Stratospheric ozone depletion occurs over the polar regions when temperatures drop and PSCs form in the stratosphere. Chemical reactions that convert innocuous reservoir gases (e.g., hydrochloric acid)into active ozone-depleting gases take place on the surface of PSC particles, which can lead to rapid destruction of ozone as sunlight appears in spring. By comparing the ozone columns with stratospheric temperature, we have confirmed this assumption.

    4 Conclusions

    Ozone column densities at Ny-?lesund in the Arctic were detected based on a ground-based DOAS technique.By comparing with satellite-borne OMI overpass and ozonesonde data, it was con firmed that DOAS is a promising tool for automatically and continuously observing the total ozone column at Arctic high latitudes.

    The influence of stratospheric temperature on total column ozone was discussed. The decrease of stratospheric temperature can deplete total ozone at temperatures even higher than 220 K during summer. Trends of Arctic ozone columns from 2005 to 2011 spring (days 60-120) were illustrated and evaluated. A possible reason for the low ozone level in 2011 was also believed strongly related to low stratospheric temperature during March. The Arctic ozone depletion mechanism is still under research, and more data needed for its analysis.

    AcknowledgementsThis research was financially supported by the Natural Science Foundation of China (Grant no. 41306199) and the Dean Research Funds for CAS Hefei Institute (Grant no. YZJJ201304). We are grateful to the Chinese Antarctic and Arctic Administration and teammates of the 2010 and 2011 Chinese Arctic Yellow River Station expeditions. We kindly acknowledge the Alfred-Wegener-Institute, Norwegian Polar Institute, and in particular the Norwegian Institute for Air Research (NILU).

    1 Solomon S. Stratospheric ozone depletion: A review of concepts and history. Rev Geophys, 1999, 37(3): 275-316

    2 Rowland F S. Stratospheric ozone depletion. Phil Trans R Soc B,2006, 361(1469): 769-790

    3 Groo? J U, Brautzsch K, Pommrich R, et al. Stratospheric ozone chemistry in the Antarctic: what determines the lowest ozone values reached and their recovery? Atmos Chem Phys, 2011, 11(23): 12217-12226

    4 Bodeker G E, Shiona H, Eskes H, et al. Indicators of Antarctic ozone depletion. Atmos Chem Phys, 2005, 5(10): 2603-2615

    5 Kerr R A. First detection of ozone hole recovery claimed. Science,2011, 332(6026): 160

    6 Hu Y Y, Xia Y, Gao M, et al. Stratospheric temperature changes and ozone recovery in the 21st Century. Acta Meteorol Sin, 2009, 23(3):263-275

    7 Zou H. Seasonal variation and trends of TOMS ozone over Tibet.Geophys Res Lett, 1996, 23(9): 1029-1032

    8 Allaart M, Valks P, van der A R, et al. ozone mini-hole observed over Europe, in fluence of low stratospheric temperature on observations.Geophys Res Lett, 2000, 27(24): 4089-4092.

    9 Liu N Q, Huang F X, Wang W H. Monitoring of the 2011 Spring low ozone events in the Arctic region. Chin Sci Bull, 2011, 56(27):2893-2896, doi: 10.1007/s11434-011-4636-3 (in Chinese)

    10 Sinnhuber B M, Stiller G, Ruhnke R, et al. Arctic winter 2010/2011 at the brink of an ozone hole. Geophys Res Lett, 2011, 38(24): L24814

    11 Manney G L, Santee M L, Rex M, et al. Unprecedented Arctic ozone loss in 2011. Nature, 2011, 478(7370): 469-475

    12 Varotsos C A, Crachnell A P, Tzanis C. The exceptional ozone depletion over the Arctic in January-March 2011. Remote Sens Lett,2012, 3(4): 343-352

    13 Adams C, Strong K, Zhao X, et al. Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80°N. Geophys Res Lett, 2012, 39(5): L05806

    14 Randel W J, Wu F. Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J Climate, 1999, 12(5): 1467-1479

    15 Rex M, Salawitch R J, Von Der Gathen P, et al. Arctic ozone loss and climate change. Geophys Res Lett, 2004, 31(4): L04116

    16 Platt U. Differential optical absorption spectroscopy//Sigrist M W. Air monitoring by spectroscopic techniques. New York: Wiley and Sons.Inc, 1994: 27-84

    17 Kim Y J, Platt U. Advanced environmental monitoring. Netherlands:Springer, 2008

    18 H?nninger G, Von Friedeburg C, Platt U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos Chem Phys,2004, 4(1): 231-254

    19 Fraser A, Adams C, Drummond J R, et al. The polar environment atmospheric research laboratory UV-visible ground-based spectrometer: First measurements of O3, NO2, BrO, and OClO columns. J Quant Spectrosc Radiat Transfer, 2009, 110(12): 986-1004

    20 Frie? U, Kreher K, Johnson P V, et al. Ground-based DOAS measurements of stratospheric trace gases at two Antarctic stations during the 2002 ozone hole period. J Atmos Sci, 2005, 62(3): 765-777

    21 Wittrock F, Oetjen H, Richter A, et al. MAX-DOAS measurements of atmospheric trace gases in Ny-?lesund. Atmos Chem Phys, 2003, 3:6109-6145

    22 Luo Y H, Sun L G, Liu W Q, et al. MAX-DOAS measurements of NO2column densities and vertical distribution at Ny-Alesund, Arctic during summer. Spectrosc Spect Anal, 2012, 32(9): 2335-2340

    23 Fayt C, Van Roozendael M. WinDOAS 2.1—software user manual.Belgium: Uccle, 2001

    24 Rozanov A, Rozanov V, Burrows J P. A numerical radiative transfer model for a spherical planetary atmosphere: combined differentialintegral approach involving the Picard iterative approximation. J Quant Spectrosc Rad Transfer, 2001, 69(4): 491-512

    25 Gielen C, Van Roozendael M, Hendrik F, et al. Development of a cloud-screening method for MAX-DOAS measurements. EGU, 2013,15, 7153G

    26 Tzanis C. On the relationship between total ozone and temperature in the troposphere and the lower stratosphere. Int J Remote Sens, 2009,30(23): 6075-6084

    亚洲少妇的诱惑av| 人人妻,人人澡人人爽秒播| 亚洲专区字幕在线| 老司机在亚洲福利影院| 国产免费视频播放在线视频| 成人三级做爰电影| 少妇人妻久久综合中文| 国产成人精品久久二区二区91| 91av网站免费观看| 精品人妻在线不人妻| 黑人巨大精品欧美一区二区蜜桃| 日韩中文字幕欧美一区二区| 高清欧美精品videossex| 免费在线观看日本一区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品在线美女| 久久国产亚洲av麻豆专区| 黄色a级毛片大全视频| 丝袜人妻中文字幕| 国产成人精品在线电影| 国产精品二区激情视频| 十八禁高潮呻吟视频| 不卡av一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 这个男人来自地球电影免费观看| 少妇裸体淫交视频免费看高清 | cao死你这个sao货| 91成年电影在线观看| 高清视频免费观看一区二区| 午夜影院在线不卡| 精品人妻1区二区| 老司机在亚洲福利影院| 桃红色精品国产亚洲av| 成年人免费黄色播放视频| 欧美午夜高清在线| 久久国产精品男人的天堂亚洲| videos熟女内射| 精品亚洲成a人片在线观看| 精品人妻1区二区| av在线app专区| 老熟女久久久| 欧美日韩亚洲高清精品| 一级a爱视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 国产精品亚洲av一区麻豆| 国产极品粉嫩免费观看在线| 久久久久国内视频| 成年美女黄网站色视频大全免费| 99精国产麻豆久久婷婷| 人人妻人人爽人人添夜夜欢视频| 日韩精品免费视频一区二区三区| 日本五十路高清| 每晚都被弄得嗷嗷叫到高潮| 精品少妇一区二区三区视频日本电影| 手机成人av网站| 手机成人av网站| a级毛片黄视频| 王馨瑶露胸无遮挡在线观看| 久久综合国产亚洲精品| 各种免费的搞黄视频| 波多野结衣一区麻豆| 男女免费视频国产| 男女床上黄色一级片免费看| 久久精品aⅴ一区二区三区四区| 精品人妻一区二区三区麻豆| av线在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 午夜免费成人在线视频| 18禁观看日本| 午夜两性在线视频| 超碰成人久久| 亚洲av成人一区二区三| 久久99热这里只频精品6学生| 色综合欧美亚洲国产小说| 久9热在线精品视频| a级片在线免费高清观看视频| 老司机亚洲免费影院| 午夜免费鲁丝| 欧美另类一区| 首页视频小说图片口味搜索| 欧美日韩一级在线毛片| 日本av免费视频播放| 久久九九热精品免费| 伊人亚洲综合成人网| 天堂中文最新版在线下载| 久久人妻熟女aⅴ| 久久女婷五月综合色啪小说| 亚洲国产精品999| 国产又爽黄色视频| 亚洲国产精品999在线| 亚洲av成人不卡在线观看播放网| 日本黄大片高清| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利免费观看在线| 亚洲精品粉嫩美女一区| 亚洲国产欧洲综合997久久,| 在线免费观看的www视频| 黄片小视频在线播放| 久久中文看片网| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| av在线播放免费不卡| 男女下面进入的视频免费午夜| 神马国产精品三级电影在线观看 | 在线观看午夜福利视频| 国产成人精品无人区| 麻豆国产97在线/欧美 | 舔av片在线| 欧美一区二区国产精品久久精品 | 久久精品影院6| 91麻豆精品激情在线观看国产| 国产真人三级小视频在线观看| 成人三级黄色视频| 大型黄色视频在线免费观看| 亚洲 欧美 日韩 在线 免费| 一边摸一边做爽爽视频免费| 亚洲成av人片在线播放无| 日韩大尺度精品在线看网址| 国产av一区在线观看免费| 可以免费在线观看a视频的电影网站| 老司机午夜十八禁免费视频| av福利片在线| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 长腿黑丝高跟| 国产精品九九99| 亚洲精品美女久久久久99蜜臀| АⅤ资源中文在线天堂| 国产精品一区二区三区四区久久| 一二三四社区在线视频社区8| 免费在线观看完整版高清| 男女床上黄色一级片免费看| 久久久久久国产a免费观看| 麻豆国产97在线/欧美 | 国产真实乱freesex| 成人国语在线视频| 国产v大片淫在线免费观看| 黄色丝袜av网址大全| 久久精品国产99精品国产亚洲性色| 国内精品久久久久久久电影| 免费在线观看亚洲国产| 国产成人av教育| 很黄的视频免费| 免费在线观看亚洲国产| 欧美3d第一页| 可以免费在线观看a视频的电影网站| 99久久综合精品五月天人人| 中出人妻视频一区二区| 热99re8久久精品国产| 欧美色欧美亚洲另类二区| 一本精品99久久精品77| 一区二区三区激情视频| 在线永久观看黄色视频| 成人午夜高清在线视频| 精品欧美一区二区三区在线| 国产精品一区二区免费欧美| 精品福利观看| 日韩成人在线观看一区二区三区| 丝袜美腿诱惑在线| 国产成人影院久久av| 亚洲成人久久爱视频| 精品日产1卡2卡| 免费一级毛片在线播放高清视频| 亚洲va日本ⅴa欧美va伊人久久| 18禁观看日本| 丰满人妻一区二区三区视频av | 操出白浆在线播放| aaaaa片日本免费| 日韩欧美在线二视频| 啦啦啦韩国在线观看视频| 国产熟女xx| 少妇粗大呻吟视频| 精品国产美女av久久久久小说| av在线天堂中文字幕| 午夜精品在线福利| 日本在线视频免费播放| 亚洲专区字幕在线| 国产高清视频在线播放一区| 久久久久久久午夜电影| www.www免费av| 久久这里只有精品19| 成人一区二区视频在线观看| 妹子高潮喷水视频| 日韩欧美精品v在线| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 国产又黄又爽又无遮挡在线| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 亚洲五月婷婷丁香| 国产v大片淫在线免费观看| 亚洲av成人一区二区三| 亚洲电影在线观看av| 欧美av亚洲av综合av国产av| 亚洲无线在线观看| 好男人在线观看高清免费视频| 亚洲国产精品久久男人天堂| 一本大道久久a久久精品| 国产高清视频在线播放一区| 日韩三级视频一区二区三区| 高清毛片免费观看视频网站| 国内久久婷婷六月综合欲色啪| 国产黄片美女视频| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 怎么达到女性高潮| 男人舔女人的私密视频| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看 | 国内久久婷婷六月综合欲色啪| 国产探花在线观看一区二区| www日本在线高清视频| 日本成人三级电影网站| 日韩精品青青久久久久久| 啦啦啦免费观看视频1| 91麻豆精品激情在线观看国产| 国产三级黄色录像| 国产成人精品久久二区二区91| 欧美乱妇无乱码| 三级毛片av免费| 亚洲欧美精品综合久久99| 天堂影院成人在线观看| 亚洲成av人片在线播放无| 在线a可以看的网站| 麻豆久久精品国产亚洲av| 免费看a级黄色片| 久久天堂一区二区三区四区| 国产三级黄色录像| 精品少妇一区二区三区视频日本电影| 欧美精品啪啪一区二区三区| 亚洲国产高清在线一区二区三| 欧美一区二区精品小视频在线| 成人三级黄色视频| 丰满人妻一区二区三区视频av | 久久天躁狠狠躁夜夜2o2o| 真人一进一出gif抽搐免费| 精品一区二区三区四区五区乱码| 亚洲avbb在线观看| 国产av麻豆久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲专区国产一区二区| 好男人电影高清在线观看| 国产成人系列免费观看| 在线免费观看的www视频| 俄罗斯特黄特色一大片| 久久久久九九精品影院| 精品一区二区三区四区五区乱码| 色尼玛亚洲综合影院| 亚洲av片天天在线观看| 国产精品99久久99久久久不卡| 亚洲全国av大片| 日韩精品免费视频一区二区三区| 亚洲精品国产精品久久久不卡| 亚洲精品中文字幕一二三四区| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 91老司机精品| 亚洲最大成人中文| 三级国产精品欧美在线观看 | 国产精品综合久久久久久久免费| 色噜噜av男人的天堂激情| 床上黄色一级片| 最近最新免费中文字幕在线| 亚洲人成电影免费在线| 亚洲国产中文字幕在线视频| 久久久久久久久免费视频了| 亚洲欧美日韩东京热| 一区二区三区高清视频在线| 村上凉子中文字幕在线| 免费在线观看完整版高清| 免费看美女性在线毛片视频| 最近在线观看免费完整版| 99久久综合精品五月天人人| 日日爽夜夜爽网站| av福利片在线观看| 免费看a级黄色片| 亚洲电影在线观看av| 最好的美女福利视频网| 一区二区三区高清视频在线| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 禁无遮挡网站| 欧美另类亚洲清纯唯美| 欧美高清成人免费视频www| 久久香蕉精品热| 国产精品久久久av美女十八| 天堂√8在线中文| 亚洲黑人精品在线| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 国产成人系列免费观看| 成在线人永久免费视频| 欧美乱妇无乱码| 精品久久久久久成人av| 亚洲av成人一区二区三| 亚洲精品在线美女| 亚洲片人在线观看| 成在线人永久免费视频| 日韩有码中文字幕| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 88av欧美| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 成人高潮视频无遮挡免费网站| 97碰自拍视频| 精品久久久久久久毛片微露脸| 亚洲欧美激情综合另类| 一级毛片高清免费大全| 好男人电影高清在线观看| 日韩欧美免费精品| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区免费观看 | www.熟女人妻精品国产| 熟女电影av网| 欧美黑人欧美精品刺激| 日韩大码丰满熟妇| www.熟女人妻精品国产| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 成年女人毛片免费观看观看9| 特级一级黄色大片| 国产不卡一卡二| 精品国产乱码久久久久久男人| 免费在线观看黄色视频的| 国内精品久久久久精免费| 在线观看www视频免费| 久久婷婷人人爽人人干人人爱| 亚洲精华国产精华精| 国产激情久久老熟女| 日韩精品中文字幕看吧| 日韩成人在线观看一区二区三区| or卡值多少钱| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 免费在线观看影片大全网站| 亚洲18禁久久av| 亚洲乱码一区二区免费版| 91麻豆精品激情在线观看国产| 久久天躁狠狠躁夜夜2o2o| 99热这里只有是精品50| 999精品在线视频| 露出奶头的视频| 国产精品亚洲av一区麻豆| 国产免费男女视频| avwww免费| 精品久久久久久久末码| 国产aⅴ精品一区二区三区波| 在线a可以看的网站| 国产欧美日韩一区二区三| 91国产中文字幕| 一区二区三区国产精品乱码| 日韩欧美 国产精品| 国产午夜精品久久久久久| 亚洲人与动物交配视频| 亚洲欧美日韩高清在线视频| 久久婷婷成人综合色麻豆| 琪琪午夜伦伦电影理论片6080| 女警被强在线播放| 国产av麻豆久久久久久久| 午夜福利高清视频| 亚洲人成77777在线视频| 国内精品久久久久久久电影| 午夜日韩欧美国产| av免费在线观看网站| 亚洲激情在线av| 后天国语完整版免费观看| 中文字幕高清在线视频| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 国产成人啪精品午夜网站| 我的老师免费观看完整版| 久久久久久国产a免费观看| 女警被强在线播放| 9191精品国产免费久久| 亚洲成人久久性| 床上黄色一级片| 热99re8久久精品国产| 中文资源天堂在线| 99re在线观看精品视频| 丝袜人妻中文字幕| 久久人妻av系列| 人妻夜夜爽99麻豆av| av有码第一页| 国产日本99.免费观看| 精品高清国产在线一区| 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站 | 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 长腿黑丝高跟| 久久这里只有精品19| 国产熟女xx| 五月伊人婷婷丁香| av超薄肉色丝袜交足视频| 久久国产精品人妻蜜桃| 黄色 视频免费看| 舔av片在线| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看.| 亚洲av美国av| 欧美日韩一级在线毛片| 中文字幕av在线有码专区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 最近最新中文字幕大全电影3| 亚洲国产高清在线一区二区三| 天堂√8在线中文| 在线播放国产精品三级| 亚洲国产看品久久| 成人国语在线视频| 波多野结衣高清无吗| 精品久久久久久久末码| 老司机深夜福利视频在线观看| 麻豆国产97在线/欧美 | 欧美精品啪啪一区二区三区| 久久久国产精品麻豆| 久久久久精品国产欧美久久久| 97人妻精品一区二区三区麻豆| 国产av又大| 国产亚洲精品综合一区在线观看 | 欧美另类亚洲清纯唯美| 97碰自拍视频| 欧美在线一区亚洲| 国产成人av激情在线播放| 亚洲 国产 在线| 国产高清有码在线观看视频 | 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 国产又色又爽无遮挡免费看| 又爽又黄无遮挡网站| 日本五十路高清| 可以在线观看的亚洲视频| 日韩中文字幕欧美一区二区| 老司机靠b影院| 亚洲人成77777在线视频| 又爽又黄无遮挡网站| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 一本大道久久a久久精品| 国产三级黄色录像| 国产久久久一区二区三区| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 成人午夜高清在线视频| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 国产精品电影一区二区三区| 99热只有精品国产| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆| 国产视频内射| 好男人电影高清在线观看| 久9热在线精品视频| 国产97色在线日韩免费| 成人av一区二区三区在线看| 久久久久国内视频| 精品福利观看| 欧美成狂野欧美在线观看| www.自偷自拍.com| 亚洲精品国产一区二区精华液| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| cao死你这个sao货| 我的老师免费观看完整版| e午夜精品久久久久久久| 日本 av在线| 午夜精品一区二区三区免费看| 国产一区二区三区在线臀色熟女| 国产乱人伦免费视频| 亚洲成av人片免费观看| 亚洲美女黄片视频| 国产人伦9x9x在线观看| 91成年电影在线观看| 婷婷亚洲欧美| 久久香蕉激情| 啦啦啦免费观看视频1| 九色国产91popny在线| 久久久久久久午夜电影| 手机成人av网站| 好男人在线观看高清免费视频| 日本五十路高清| 国产久久久一区二区三区| 99在线人妻在线中文字幕| 欧美日本视频| 麻豆av在线久日| 天天躁夜夜躁狠狠躁躁| 成熟少妇高潮喷水视频| АⅤ资源中文在线天堂| 天天一区二区日本电影三级| 香蕉国产在线看| 国产野战对白在线观看| 国产又黄又爽又无遮挡在线| 听说在线观看完整版免费高清| 曰老女人黄片| 在线观看免费午夜福利视频| av在线播放免费不卡| 一级毛片女人18水好多| 51午夜福利影视在线观看| 日本成人三级电影网站| 国内精品久久久久久久电影| 在线永久观看黄色视频| 日韩欧美在线乱码| 麻豆av在线久日| 欧美+亚洲+日韩+国产| 成人三级做爰电影| 变态另类丝袜制服| 国产精品一区二区三区四区免费观看 | 高潮久久久久久久久久久不卡| 久久中文字幕人妻熟女| 全区人妻精品视频| 亚洲成a人片在线一区二区| 免费av毛片视频| 国产成人精品久久二区二区免费| 中亚洲国语对白在线视频| 伊人久久大香线蕉亚洲五| 亚洲国产中文字幕在线视频| av有码第一页| 国产精品一区二区精品视频观看| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 久久久久久久久中文| 亚洲精华国产精华精| 亚洲 国产 在线| 日本三级黄在线观看| АⅤ资源中文在线天堂| 婷婷亚洲欧美| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 日韩免费av在线播放| 久久九九热精品免费| 人妻夜夜爽99麻豆av| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出抽搐gif免费好疼| 91国产中文字幕| 妹子高潮喷水视频| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 深夜精品福利| 国产探花在线观看一区二区| 色综合站精品国产| 国产精品野战在线观看| 九九热线精品视视频播放| 丁香六月欧美| 十八禁网站免费在线| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产99久久九九免费精品| 国产精品九九99| 亚洲 欧美一区二区三区| 露出奶头的视频| 无限看片的www在线观看| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 久久久国产成人免费| av中文乱码字幕在线| 色av中文字幕| 男女做爰动态图高潮gif福利片| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 美女黄网站色视频| 高潮久久久久久久久久久不卡| 久久久水蜜桃国产精品网| 中文字幕av在线有码专区| 俄罗斯特黄特色一大片| 亚洲专区字幕在线| а√天堂www在线а√下载| 午夜激情av网站| 嫁个100分男人电影在线观看| 免费在线观看影片大全网站| 亚洲成人久久爱视频| 免费看a级黄色片| 女人被狂操c到高潮| 国内揄拍国产精品人妻在线| 欧美大码av| 黄色视频不卡| netflix在线观看网站| 18禁美女被吸乳视频| 欧美日韩精品网址| 99riav亚洲国产免费| 欧美日韩黄片免| 热99re8久久精品国产| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| av欧美777| 观看免费一级毛片| 女生性感内裤真人,穿戴方法视频| 成人欧美大片| 天天添夜夜摸| 亚洲最大成人中文| 亚洲精华国产精华精| 夜夜看夜夜爽夜夜摸| 成人av在线播放网站| av中文乱码字幕在线| 成人三级做爰电影| 免费av毛片视频| 啦啦啦观看免费观看视频高清| 亚洲av日韩精品久久久久久密| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av高清一级| 国产视频一区二区在线看|