• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phosphorus in the aerosols over oceans transported offshore from China to the Arctic Ocean: Speciation, spatial distribution,and potential sources

    2015-02-06 03:47:32SUNChenXIEZhouqingKANGHuiYUJuan
    Advances in Polar Science 2015年3期

    SUN Chen, XIE Zhouqing*, KANG Hui & YU Juan

    Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China,Hefei 230026, China

    1 Introduction

    Phosphorus (P) is an essential nutrient in terrestrial and marine ecosystems[1]. At geologic timescales, ocean ecosystems are considered to be limited by phosphorus[2].Phosphorus also influences ecosystems on significantly shorter timescales by limiting primary production and the abundance of bacteria[3-6]. Although many efforts have been devoted to the study of phosphorus cycle, studies of P in aerosols are still rare, particularly those that are related to the behavior of the P in the marine boundary layer. Unlike carbon and nitrogen, P does not have a stable gaseous phase within the Earth’s atmosphere. Most atmospheric phosphorus is in the form of aerosols[7].

    To estimate the impact of atmospheric phosphorus on the ocean ecosystem, the characteristics of aerosol phase phosphorus are needed, such as concentration range,geographical distribution, emission sources, source strength,and atmospheric transformation. In marine aerosols,phosphorus could come from five sources: mineral aerosol,anthropogenic aerosols, volcanic aerosols, primary biogenic aerosols, and sea salt aerosols[8]. Some of the different aerosol sources can be generally represented by characteristic elements which have fixed mass concentration ratios to phosphorus[9].

    Since the pioneer work in the late 1970s[7], phosphorus composition in atmospheric aerosols has still been poorly characterized[8]. There have been only a few measurements of the total phosphorus (TP) concentration over the open ocean regions. In order to fill this research gap, we collected and analyzed aerosol samples onboard the Chinese R/VXUE LONGicebreaker as it travelled over the Western and Northern Pacific Ocean as well as the Arctic Ocean(July-September 2008). The purpose of the current study is to provide the geographical distribution of TP and total inorganic phosphorus (TIP) in the East Asia Sea, Western North Pacific(WNP), and Arctic Oceans. Three tracer elements are used to estimate the relative contribution of different phosphorus sources to the TP via mathematical analysis.

    2 Methods

    2.1 Sampling

    During the R/VXUE LONGicebreaker cruise, a total of 24 valid particulate samples and 4 field blanks were collected from July to September 2008 over the Western and Northern Pacific Ocean as well as the Arctic Ocean (31.1°N-85.18°N,122.48°E-146.18°W). The sampling instrument was installed on the top of the ship which is approximately 15 m above sea level. A meteorological station on the ship supplied temperature, wind speed, and wind direction data. Total particulate aerosol samples were collected by standard glass fiber filters (Whatman EPM 2000, Maidstone, UK, 20×25 cm2). The filters were oven-dried at 350°C for 24 h before use. The flow rate was set at 1.05 m3?min-1and the total sampling time was 24 h which achieved a total sampling air volume of about 1400 m3. After sampling, the filters were packed in separate, sealed plastic bags and stored in the freezer at -24°C before further analysis.

    2.2 Chemical analysis

    When the expedition returned, samples were taken to the laboratory and each filter was cut into pieces (3 cm2) for different analyses. The separated pieces were then prepared via three methods (Figure 1). The first subsample (Sample A)was extracted overnight with 12 mL of HNO3and 4 mL of HCl and was then digested at 180°C with a microwave oven.Sample A was used for analyzing the total P and trace metals.The second subsample (Sample B) was extracted by 20 mL of 1 N HCl[10-11]and was classified as TIP. The organic P (OP)content was then calculated as the difference between TP and TIP. The third subsample (Sample C) was extracted via deionized water assisted by ultrasound. Sample C was used for the analysis of water soluble phosphorus (WSP) and ionic species.

    The molybdenum blue (MB) method was employed to determine different forms of phosphorus concentration(TP, TIP, and WSP). Details of the MB method have been described in the literature[12-13]. The detection limit of the MB method (defined as three times the standard deviation of blank measurements) was approximately 0.05 μM of phosphorus,which corresponds to approximately 0.17 ng.m-3of phosphorus when aerosols were fully sampled for 24 h. The TP concentration was high enough to analyze via inductivelycoupled plasma atomic emission spectrometry (ICP-AES). By comparing the concentrations of total phosphorus determined by the two different analytical methods, we found a linear relationship (close to 1:1) which supports the quality of our phosphorus analysis.

    3 Results and discussions

    3.1 The distributions of P during the round-trip cruise

    The geographical course of the entire cruise is shown in Figure 2. The cruise was divided into three ocean regions which are generally related to the location and hydrology state: East Asia Sea, Western North Pacific, and Arctic Ocean. Geographical distributions of TP are shown in Figure 2. The height of each bar represents aerosol-phase elemental concentration in each sampling period. The minimum concentrations of TP were measured in the Arctic Ocean, and the maximum values appeared in the East Asia Sea (Table 1). The mean values were found to be similar in the three regions. Figure 3 shows the measured concentrations of TP, TIP, OP, and WSP.

    Table 1 Concentrations of phosphorus in total suspended particles

    Table 2 lists the average concentrations of particulate TP measured in the three transects as well as several previous observations taken in the North Paci fi c region. The values obtained for atmospheric phosphorus in the Western North Pacific by this study are similar to those previously observed[14]. The measured geographical distribution of the TP concentrations in the East Asia Sea and the WNP were within the range of those simulated by a global model of atmospheric phosphorus[8]. It shows the concentration of TP is high in close vicinity to East Asia and sharply decreases away from the land. But the trends of geographical distribution of TP in our results have a large discrepancy with the model. One should keep in mind that our research was conducted in June, August,and September, while the modeled concentration represents an annual average. There is another discrepancy found in the Arctic Ocean. Although the minimum appeared in this region,the average measured concentration of TP in this area was about one order of magnitude higher than modeled. Such high concentration of TP may be an important source of nutrients for the Arctic Ocean.

    Table 2 Comparison of concentrations of TP measured during CHINARE2008 with previous data

    Obviously, TIP is the dominant species in most of the samples. The average proportion of TIP in TP over the entire course is 86.6%. The value is much higher in some samples with concentrations reaching up to 10 ng.m-3. The total average proportion of OP is 16%. The values of OP for the WNP Ocean are especially high and reached up to 20%, indicating that OP is also a significant fraction of total phosphorus.

    3.2 Backward trajectories and statistical analysis

    Air Mass Back Trajectories (AMBTs) were calculated from the National Oceanic and Atmospheric Administration(NOAA) FNL database using the Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT) model.The 15th of each month was selected to represent typical trajectories. AMBTs were performed at 10, 500, and 1000 m height levels above the ground level to represent the air flow trajectories at the surface, middle altitudes, and high altitudes, respectively.

    Figure 2 shows that the TP concentrations vary considerably. There were no geographical gradients. Values varied greatly even for samples that were collected over adjacent regions. A possible cause of this phenomenon may be due to the influence of the air mass transportation. For example, the samples numbered 16, 17, and 27 were collected in adjacent regions in the Arctic Ocean at different times. The measured concentrations of sample 16 are approximately 20 times higher than sample 17 and 27. The AMBTs of the three samples show that sample 16 was influenced by an air mass that had passed over Siberia and Alaska (Figure 4a),while sample 17 and 27 were collected at a time when winds were coming from the remote center of the Arctic Ocean(Figures 4b and 4c). The air mass from the continent may have a higher concentration of phosphorus aerosol. The AMBTs of other samples were also calculated. Results show that the winds from the mainland will increase the measured TP in aerosols, implying that the continental sources may be important contributors.

    3.3 Sources analysis of TP

    Mineral aerosols, anthropogenic aerosols, sea salt aerosols,volcanoes, and primary biogenic particles are significant sources of atmospheric aerosol. Unlike other sources,volcanoes are usually point emission sources. Thus,volcanoes should create large geographical gradients in TP which were not found in our research. With similar formation pathways[15-16], the concentration of primary biogenic aerosols(PBA) in the marine boundary layer is much lower than the sea salt aerosols[17].

    The characteristic chemical composition of different aerosols allows us to estimate the contribution of different sources to TP[18]. Fe, Zn, and Cl are selected to conduct a source apportionment analysis for TP since these elements and their ionic forms generally represent different aerosol sources (Fe: crustal, Zn: anthropogenic, and Cl: oceanic)[19-20].

    Using the concentrations of the tracers, phosphorus from the different sources can be estimated as:

    The individual terms take the form of (P/Z)xwherex= crustal, anthropogenic, or oceanic) andZ= Fe, Zn, and Cl.Thus, these terms represent the characteristic ratio of mass concentrations of phosphorus and compoundZin sourcex,which we assume to be constant for each source. The product ofZaerosoland (P/Z)xis the estimated phosphorus concentration from sourcex. There should be some additional phosphorus from other sources, however, actual estimates of the amount of TP emitted from other sources are extremely low[21]. As these tracer elements are mutually exclusive, spatially explicit TP emissions from each source were calculated using the multiple linear regressive model (Table 3). SPSS 18.0 (SPSS Inc., Chicago, IL, USA) was used to analyze the experimental results.

    By creating a multiple linear regressions model, we calculated the contributions of each source for every sample.Table 4 shows the average contributions of different sources in East Asia, the WNP, and the Arctic Ocean. The range in values presented in the results simply represents a range of contributions based on different sources. Mineral aerosols or crustal aerosols were found to be the most important source of phosphorus in aerosol. High levels of TP concentrations due to the contribution of mineral aerosols were observed even in the remote sea regions, implying that the aerosol particles containing phosphorus can be transported over long distances and thereby influence the global phosphorus cycle.

    Table 3 Multiple linear regression analysis of the concentrations of total phosphorus

    Table 4 Average contributions to total phosphorus from each sources in regressive model

    The ratio of Fe and P is different in the variation sea areas. The ratio for the WNP is higher than for the East Asia Sea but slightly lower than values from the Arctic Ocean.This ratio varies in different region could be simply due to the contribution of dust source from different regions. Bulk chemical compositions of sands and silty soils in Chinese dust sources soils have been extensively studied. Some research indicates that the (P/Fe)crustalfrom silty soils is lower than those from sandy soils[22]. In addition, the chemical compositions of anthropogenic aerosols are more complex and irregular which hinders further discussion.

    The average contributions to total phosphorus from anthropogenic aerosols in East Asia are close to 28%. This contribution reached up to 30%-50% in some samples such as sample 34 and 37. However, the contributions sharply declined to 5% or lower in the WNP and the Arctic Ocean.It is likely that being away from the Chinese and Japanese coasts, which have dense populations and industry, may lead to a decrease in anthropogenic aerosols. This effect would be particularly pronounced in remote regions like the Arctic Ocean. Different from anthropogenic aerosols, the sea salt aerosols were found to be quite stable in all three regions.

    A high proportion of phosphorus from crustal sources will lead to high levels of inorganic phosphorus, which is in agreement with our results. In addition, the measured inorganic phosphorus was higher than that calculated via regression of crustal sources of phosphorus, indicating that crustal sources are not the only source of inorganic phosphorus. The WSP, which is part of the inorganic P,agrees well with the values for the anthropogenic fraction.Significance tests show Zn and Cl have strong correlation with WSP (r= 0.337,P= 0.66 for Fe;r= 0.574,P= 0.044 for Zn;r= 0.672,P= 0.039 for Cl). The most significant influencing factor of WSP is sea salt aerosols. The soluble fraction from anthropogenic sources may be reduced by physical or chemical reactions over long distance transport.On the other hand, the accuracy of this analysis could also be affected by the low concentration of Zn and WSP in remote regions.

    An intercept of the regression model could be derived when we assumed the contribution of those sources is zero.All the intercepts for the three ocean regions are higher than the detection limit in our measurement. Therefore, there must be another appreciable source influencing the observed TP. Potheris used to refer to the unaccounted portion of the TP. Given the characteristics of atmospheric activity and the assumptions we developed before, a probable source of Pothermay be primary biogenic aerosols (PBA). The largest intercept was obtained for the Western North Pacific Ocean which corresponds with the highest proportion of OP in this region. This indicates that PBA may be an important contributor to OP.

    4 Conclusions

    Aerosols represent a signi fi cant source of nutrient elements to the marine environment. The TP concentrations observed in the Eastern China Sea, Japan Sea and WNP were similar to those previously observed[14]. However, the concentrations in the Arctic Ocean were approximately one order of magnitude higher than the simulation results from a global model of atmospheric phosphorus. Inorganic phosphorus (TIP) is the dominant species in most of samples. Measurements are significantly affected by the air mass transportation. The air mass from the continent may have a higher concentration of phosphorus aerosol. Source apportionment used the tracer species (Fe, Zn, and Cl) as representatives of crustal,anthropogenic, and seawater sources. A multiple linear regression model showed that mineral aerosols are the dominant contributor of aerosol phosphorus. However, those sources could not account for all of the TP concentrations.A possible source of the additional fraction may be primary biogenic aerosols which contribute to the organic phosphorus. The measurement of P speciation in the marine boundary provides an opportunity to better understand the global cycle of phosphorus.

    1 Huan X W, Presley B J, Velinsky D J. Distribution and sources of phosphorus in tidal river sediments in the Washington, D C, area.Environ Geol, 1997, 30(3-4): 224-230

    2 Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281(5374):200-206

    3 Hashihama F, Furuya K, Kitajima S, et al. Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Paci fi c.Geophys Res Lett, 2009, 36(3): L03610

    4 Krom M D, Herut B, Mantoura R F C. Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation. Limnol Oceanogr, 2004, 49(5):1582-1592

    5 Thingstad T F, Krom M D, Mantoura R F C, et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.Science, 2005, 309(5737): 1068-1071

    6 Wu J F, Sunda W, Boyle E A, et al. Phosphate depletion in the western North Atlantic Ocean. Science, 2000, 289(5480): 759-762

    7 Graham W F, Duce R A. Atmospheric pathways of the phosphorus cycle. Geochim Cosmochim Acta, 1979, 43(8): 1195-1208

    8 Mahowald N, Jickells T D, Baker A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates,and anthropogenic impacts. Global Biogeochem Cycles, 2008, 22(4):GB4026

    9 Mc Lennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosys, 2001, 2(4):1021

    10 Aspila K I, Agemian H, Chau A S Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments.Analyst, 1976, 101(1200): 187-197

    11 Berner R A, Rao J L. Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea.Geochim Cosmochim Acta, 1994, 58(10): 2333-2339

    12 Murphy J, Riley J P. Citation-classic-a modified single solution method for the determination of phosphate in natural waters. Curr Cont/Agr Biol Environ Sci, 1986, (12): 16-16

    13 Pai S C, Yang C C, Riley J P. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta, 1990,229: 115-120

    14 Furutani H, Meguro A, Iguchi H, et al. Geographical distribution and sources of phosphorus in atmospheric aerosol over the North Paci fi c Ocean. Geophys Res Lett, 2010, 37(3): L03805

    15 Odowd C D, Smith M H. Physicochemical properties of aerosols over the northeast Atlantic:evidence for wind-speed-related submicron seasalt aerosol production. J Geophys Res, 1993, 98(D1): 1137-1149

    16 O’Dowd C D, Smith M H, Consterdine I E, et al. Marine aerosol, seasalt, and the marine sulphur cycle: A short review. Atmos Environ,1997, 31(1): 73-80

    17 Facchini M C, O’Dowd C D. Biogenic origin of primary and secondary organic components in marine aerosol. Geochim Cosmochim Acta, 2009, 73(13): A348

    18 Mahowald N M, Artaxo P, Baker A R, et al. Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochem Cycles, 2005,19(4): GB4030

    19 Kowalczyk G S, Gordon G E, Rheingrover S W. Identification of atmospheric particulate sources in Washington, D. C. using chemicalelement balances. Environm Sci Technol, 1982, 16(2): 79-90

    20 Shevchenko V, Lisitzin A, Vinogradova A, et al. Heavy metals in aerosols over the seas of the Russian Arctic. Sci Total Environ, 2003,306(1-3): 11-25

    21 Frogner P, Gíslason S R, óskarsson N. Fertilizing potential of volcanic ash in ocean surface water. Geology, 2001, 29(6): 487-490

    22 Jeong G Y. Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J Geophys Res, 2008, 113(D2):D02208

    23 Chen H Y, Chen L D. Importance of anthropogenic inputs and continental-derived dust for the distribution and flux of water-soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. J Geophys Res, 2008, 113(D11): D11303

    24 Cohen D D, Garton D, Stelcer E, et al. Multielemental analysis and characterization of fine aerosols at several key ACE-Asia sites. J Geophys Res, 2004, 109(D19): D19S12

    老鸭窝网址在线观看| 中文字幕制服av| 久久青草综合色| 久久久久国产一级毛片高清牌| 久久精品成人免费网站| www.av在线官网国产| 80岁老熟妇乱子伦牲交| 日韩精品免费视频一区二区三区| 99热全是精品| 五月天丁香电影| 美国免费a级毛片| 亚洲 欧美一区二区三区| 精品少妇久久久久久888优播| 成人国语在线视频| 亚洲欧美成人综合另类久久久| 婷婷色麻豆天堂久久| 日本a在线网址| 色网站视频免费| 男人舔女人的私密视频| 午夜激情av网站| 99国产精品一区二区三区| 国产免费视频播放在线视频| 久久综合国产亚洲精品| 国产精品欧美亚洲77777| 色综合欧美亚洲国产小说| xxx大片免费视频| 十分钟在线观看高清视频www| e午夜精品久久久久久久| 久久久精品国产亚洲av高清涩受| 久久久亚洲精品成人影院| 久久人妻熟女aⅴ| 免费高清在线观看日韩| 女性生殖器流出的白浆| 精品人妻在线不人妻| 亚洲人成网站在线观看播放| 无遮挡黄片免费观看| 新久久久久国产一级毛片| 黄色 视频免费看| 国产精品一二三区在线看| 日韩 亚洲 欧美在线| 老司机影院成人| 久久久久视频综合| 久久中文字幕一级| 亚洲男人天堂网一区| 国产日韩欧美在线精品| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| 巨乳人妻的诱惑在线观看| 日本欧美视频一区| 男女午夜视频在线观看| 悠悠久久av| 悠悠久久av| 国产亚洲一区二区精品| 天堂俺去俺来也www色官网| 亚洲欧美中文字幕日韩二区| 狂野欧美激情性bbbbbb| 亚洲精品日本国产第一区| 老司机影院成人| 国产精品久久久久久精品电影小说| 人妻人人澡人人爽人人| 国产精品久久久久成人av| 丰满少妇做爰视频| 美国免费a级毛片| 91九色精品人成在线观看| 一本综合久久免费| 亚洲中文日韩欧美视频| 91精品伊人久久大香线蕉| 丰满少妇做爰视频| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 最近手机中文字幕大全| 欧美日韩国产mv在线观看视频| netflix在线观看网站| 精品福利观看| 99热全是精品| 久久久精品区二区三区| 国产欧美日韩一区二区三区在线| 18禁观看日本| 国产高清视频在线播放一区 | 国产高清videossex| 成年女人毛片免费观看观看9 | 99精品久久久久人妻精品| 精品一区二区三区四区五区乱码 | 人人澡人人妻人| 校园人妻丝袜中文字幕| 黄色毛片三级朝国网站| 精品卡一卡二卡四卡免费| 中文字幕精品免费在线观看视频| 五月天丁香电影| 水蜜桃什么品种好| 黄色视频在线播放观看不卡| 一二三四在线观看免费中文在| 国产亚洲一区二区精品| 飞空精品影院首页| 午夜精品国产一区二区电影| 乱人伦中国视频| 国产精品久久久av美女十八| 少妇精品久久久久久久| 国产真人三级小视频在线观看| 欧美黑人精品巨大| 亚洲,欧美精品.| 亚洲av日韩精品久久久久久密 | 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区91| 一区二区三区精品91| 制服诱惑二区| 女警被强在线播放| 日本vs欧美在线观看视频| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索 | 97在线人人人人妻| 精品人妻一区二区三区麻豆| 国产精品麻豆人妻色哟哟久久| kizo精华| 欧美老熟妇乱子伦牲交| 亚洲中文av在线| 欧美xxⅹ黑人| 国产黄色免费在线视频| 日本wwww免费看| 大码成人一级视频| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只频精品6学生| 国产成人免费无遮挡视频| 91九色精品人成在线观看| 中文乱码字字幕精品一区二区三区| 少妇 在线观看| 自线自在国产av| 伊人久久大香线蕉亚洲五| 亚洲精品成人av观看孕妇| 又黄又粗又硬又大视频| 夜夜骑夜夜射夜夜干| 97人妻天天添夜夜摸| 激情视频va一区二区三区| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 欧美精品亚洲一区二区| 日本猛色少妇xxxxx猛交久久| 成人18禁高潮啪啪吃奶动态图| 啦啦啦在线免费观看视频4| 99国产精品一区二区三区| 久久人人爽人人片av| 悠悠久久av| 成年动漫av网址| 久久久久精品人妻al黑| 精品国产一区二区三区久久久樱花| 99国产精品一区二区蜜桃av | 亚洲av国产av综合av卡| 亚洲美女黄色视频免费看| 香蕉国产在线看| 18在线观看网站| 亚洲欧洲国产日韩| 亚洲精品乱久久久久久| 久久午夜综合久久蜜桃| 丝袜美足系列| 男人爽女人下面视频在线观看| 欧美成人精品欧美一级黄| 精品亚洲乱码少妇综合久久| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 90打野战视频偷拍视频| 亚洲av日韩在线播放| 国产黄频视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人啪精品午夜网站| 精品高清国产在线一区| 国产精品人妻久久久影院| 国产一区二区 视频在线| 精品高清国产在线一区| 曰老女人黄片| 国产爽快片一区二区三区| 国产精品麻豆人妻色哟哟久久| 另类亚洲欧美激情| 久久精品人人爽人人爽视色| 51午夜福利影视在线观看| 久久99精品国语久久久| 日本wwww免费看| 熟女少妇亚洲综合色aaa.| 人人妻人人添人人爽欧美一区卜| 2021少妇久久久久久久久久久| 晚上一个人看的免费电影| 天天躁狠狠躁夜夜躁狠狠躁| 18禁国产床啪视频网站| 性高湖久久久久久久久免费观看| 性色av乱码一区二区三区2| 欧美日韩视频精品一区| 日韩中文字幕视频在线看片| av在线播放精品| 亚洲欧美一区二区三区国产| 亚洲国产成人一精品久久久| 亚洲精品中文字幕在线视频| 国产免费又黄又爽又色| 女人久久www免费人成看片| a级毛片在线看网站| 一区二区av电影网| 国产高清videossex| 夜夜骑夜夜射夜夜干| 嫩草影视91久久| 国产又色又爽无遮挡免| 免费观看人在逋| 后天国语完整版免费观看| 操美女的视频在线观看| 黑人猛操日本美女一级片| 国产免费视频播放在线视频| 热99国产精品久久久久久7| 每晚都被弄得嗷嗷叫到高潮| 精品视频人人做人人爽| 女人久久www免费人成看片| 交换朋友夫妻互换小说| 日本色播在线视频| √禁漫天堂资源中文www| 91九色精品人成在线观看| 免费在线观看影片大全网站 | 免费高清在线观看日韩| 亚洲人成电影观看| 99热国产这里只有精品6| 久久久久精品国产欧美久久久 | 一区二区三区精品91| xxx大片免费视频| 热re99久久国产66热| 晚上一个人看的免费电影| 久久天堂一区二区三区四区| 国产免费现黄频在线看| 免费人妻精品一区二区三区视频| 国产麻豆69| 青春草亚洲视频在线观看| 黄色毛片三级朝国网站| 国产精品一二三区在线看| 久久狼人影院| 欧美激情 高清一区二区三区| 黄频高清免费视频| 午夜老司机福利片| 校园人妻丝袜中文字幕| 亚洲专区国产一区二区| 男人添女人高潮全过程视频| 国产亚洲欧美在线一区二区| 免费人妻精品一区二区三区视频| svipshipincom国产片| 超碰成人久久| 国产野战对白在线观看| 亚洲九九香蕉| 精品一区二区三区四区五区乱码 | 看免费av毛片| 国产精品国产三级国产专区5o| 手机成人av网站| 欧美亚洲日本最大视频资源| 精品亚洲成国产av| 久久国产精品大桥未久av| 欧美人与性动交α欧美精品济南到| 成人三级做爰电影| 超碰成人久久| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99| 别揉我奶头~嗯~啊~动态视频 | 欧美中文综合在线视频| 亚洲成人手机| 久久精品国产a三级三级三级| 精品人妻熟女毛片av久久网站| 中国美女看黄片| 国产精品三级大全| 色婷婷久久久亚洲欧美| 日本五十路高清| 成人亚洲精品一区在线观看| 成人手机av| 18禁黄网站禁片午夜丰满| 免费女性裸体啪啪无遮挡网站| 精品人妻一区二区三区麻豆| e午夜精品久久久久久久| 亚洲人成77777在线视频| 免费看av在线观看网站| 国语对白做爰xxxⅹ性视频网站| av天堂久久9| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 午夜久久久在线观看| 男男h啪啪无遮挡| 欧美 日韩 精品 国产| 日本黄色日本黄色录像| 男人操女人黄网站| 制服人妻中文乱码| 又紧又爽又黄一区二区| 久久国产精品男人的天堂亚洲| 国产av精品麻豆| 在线观看免费午夜福利视频| 欧美大码av| 国产黄色视频一区二区在线观看| 国产真人三级小视频在线观看| 成人亚洲精品一区在线观看| 满18在线观看网站| 777米奇影视久久| 女性被躁到高潮视频| 亚洲成人免费av在线播放| 啦啦啦 在线观看视频| 一级,二级,三级黄色视频| 国产男人的电影天堂91| 又黄又粗又硬又大视频| 丁香六月天网| 国产精品av久久久久免费| 麻豆国产av国片精品| 久久综合国产亚洲精品| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 青草久久国产| 久久综合国产亚洲精品| 日韩一区二区三区影片| h视频一区二区三区| 男女边摸边吃奶| 国产精品免费大片| 人妻人人澡人人爽人人| 亚洲少妇的诱惑av| 女性生殖器流出的白浆| 日本午夜av视频| 久久 成人 亚洲| 午夜精品国产一区二区电影| 老司机影院毛片| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 国产淫语在线视频| 亚洲黑人精品在线| 久久久精品国产亚洲av高清涩受| 国精品久久久久久国模美| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 丝袜脚勾引网站| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 久久久久精品国产欧美久久久 | 亚洲av电影在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 熟女av电影| 国产成人一区二区三区免费视频网站 | 久久久亚洲精品成人影院| 日韩人妻精品一区2区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲自偷自拍图片 自拍| 人妻 亚洲 视频| 91国产中文字幕| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 久久久久视频综合| 亚洲精品一卡2卡三卡4卡5卡 | 少妇 在线观看| 老汉色av国产亚洲站长工具| 亚洲av男天堂| 亚洲专区国产一区二区| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| 热re99久久国产66热| 久久国产精品男人的天堂亚洲| 又大又爽又粗| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看 | av电影中文网址| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 精品福利永久在线观看| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产 | 日韩,欧美,国产一区二区三区| 在线av久久热| 欧美精品亚洲一区二区| 欧美人与善性xxx| 99香蕉大伊视频| 婷婷色综合www| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站 | 男男h啪啪无遮挡| 美女午夜性视频免费| 中文欧美无线码| 精品国产国语对白av| 国产淫语在线视频| 波多野结衣一区麻豆| 一本久久精品| 精品人妻在线不人妻| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 丝袜人妻中文字幕| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 成人手机av| 我要看黄色一级片免费的| 久久天堂一区二区三区四区| 国产麻豆69| 国产黄色视频一区二区在线观看| 黑丝袜美女国产一区| 婷婷丁香在线五月| 日韩一区二区三区影片| 老司机影院毛片| www.精华液| 亚洲精品国产区一区二| 欧美日韩综合久久久久久| 中文字幕最新亚洲高清| 欧美+亚洲+日韩+国产| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 老司机亚洲免费影院| 亚洲精品美女久久久久99蜜臀 | 飞空精品影院首页| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| 丁香六月天网| 欧美精品一区二区免费开放| 最近手机中文字幕大全| 免费看不卡的av| 国产成人免费观看mmmm| 婷婷色综合www| 国产在线视频一区二区| 国产成人欧美在线观看 | 久久久国产欧美日韩av| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 人妻一区二区av| 精品久久蜜臀av无| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 国产视频首页在线观看| 欧美+亚洲+日韩+国产| 免费看十八禁软件| 99九九在线精品视频| 人妻 亚洲 视频| 精品久久久久久电影网| 日韩 亚洲 欧美在线| 黄色一级大片看看| 国产精品三级大全| 韩国精品一区二区三区| 亚洲精品自拍成人| 一本久久精品| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 蜜桃国产av成人99| 伊人亚洲综合成人网| 少妇猛男粗大的猛烈进出视频| 欧美黑人精品巨大| 免费不卡黄色视频| 久久久精品区二区三区| 成年美女黄网站色视频大全免费| 啦啦啦视频在线资源免费观看| 午夜免费男女啪啪视频观看| 首页视频小说图片口味搜索 | 久久九九热精品免费| 亚洲一区中文字幕在线| 99久久人妻综合| 建设人人有责人人尽责人人享有的| 80岁老熟妇乱子伦牲交| 久久精品亚洲av国产电影网| a级毛片黄视频| 欧美日韩亚洲综合一区二区三区_| 久久久久久久精品精品| tube8黄色片| 99热国产这里只有精品6| 久久久久久免费高清国产稀缺| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 美女午夜性视频免费| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 性色av乱码一区二区三区2| 亚洲 欧美一区二区三区| 成年av动漫网址| 亚洲av电影在线进入| 免费av中文字幕在线| 水蜜桃什么品种好| 黄色视频不卡| 亚洲国产精品一区三区| 日韩电影二区| 老司机午夜十八禁免费视频| 亚洲精品成人av观看孕妇| 性色av乱码一区二区三区2| 久久青草综合色| 尾随美女入室| 国产精品 欧美亚洲| 精品国产一区二区三区四区第35| a级毛片黄视频| 久久精品人人爽人人爽视色| xxxhd国产人妻xxx| 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频 | 国产黄色视频一区二区在线观看| 成人亚洲欧美一区二区av| 中文字幕av电影在线播放| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 日韩制服骚丝袜av| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 国产一区二区 视频在线| 日韩 欧美 亚洲 中文字幕| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 十八禁人妻一区二区| 老司机在亚洲福利影院| 亚洲一码二码三码区别大吗| 婷婷色综合www| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频| 成人18禁高潮啪啪吃奶动态图| 精品人妻在线不人妻| av网站在线播放免费| 国产在线观看jvid| 成人国产av品久久久| 国产成人精品无人区| 国语对白做爰xxxⅹ性视频网站| 在线天堂中文资源库| 天堂8中文在线网| 人妻 亚洲 视频| 国产精品欧美亚洲77777| 欧美97在线视频| 日韩制服骚丝袜av| 99久久人妻综合| 18禁黄网站禁片午夜丰满| 国产爽快片一区二区三区| 观看av在线不卡| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 美女福利国产在线| 亚洲精品美女久久av网站| 多毛熟女@视频| 赤兔流量卡办理| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲 | 久久久久久免费高清国产稀缺| 嫁个100分男人电影在线观看 | 亚洲激情五月婷婷啪啪| 亚洲午夜精品一区,二区,三区| 高清黄色对白视频在线免费看| av电影中文网址| 国产熟女欧美一区二区| 夜夜骑夜夜射夜夜干| 男女之事视频高清在线观看 | 自线自在国产av| 精品一区二区三区四区五区乱码 | 亚洲av电影在线进入| 亚洲国产欧美网| 日韩熟女老妇一区二区性免费视频| 黄色a级毛片大全视频| 黄片小视频在线播放| 国产精品欧美亚洲77777| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 亚洲国产欧美在线一区| 国产又爽黄色视频| 国产亚洲欧美精品永久| 亚洲国产看品久久| 多毛熟女@视频| 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 亚洲第一av免费看| 午夜久久久在线观看| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| 精品视频人人做人人爽| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| 国产男女内射视频| 另类亚洲欧美激情| 高清av免费在线| 午夜免费观看性视频| www.熟女人妻精品国产| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 国产成人一区二区在线| 精品少妇久久久久久888优播| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 亚洲成色77777| 男男h啪啪无遮挡| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 欧美日韩黄片免| 精品国产一区二区久久| 亚洲成人免费av在线播放| 777米奇影视久久| avwww免费| 精品第一国产精品| 日韩,欧美,国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看 | 亚洲av欧美aⅴ国产| 一边摸一边做爽爽视频免费| 国产精品成人在线| 美女视频免费永久观看网站| 少妇人妻 视频| av在线老鸭窝| 2018国产大陆天天弄谢| 国产91精品成人一区二区三区 | 国产精品av久久久久免费| 一边摸一边抽搐一进一出视频| 亚洲一区二区三区欧美精品| 999精品在线视频| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 成人国产av品久久久|