• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation characteristics of carbon monoxide and ozone over the course of the 2014 Chinese National Arctic Research Expedition

    2015-02-06 03:47:35LIBokunBIANLingenZHENGXiangdongDINGMinghuXIEZhouqing
    Advances in Polar Science 2015年3期

    LI Bokun, BIAN Lingen*, ZHENG Xiangdong, DING Minghu &XIE Zhouqing*

    1 Institute of Polar Environment, University of Science and Technology of China, Hefei 230026, China;

    2 Chinese Academy of Meteorological Sciences, Beijing 100081, China

    1 Introduction

    Carbon monoxide is a major pollutant in the atmosphere.Over-exposure to carbon monoxide can directly cause adverse health effects. It is also one of the indirect greenhouse gases in the atmosphere[1]. The carbon monoxide in the atmosphere originates via emissions arising from the combustion of fossil fuels and biomasses as well as the photochemical transformation of certain hydrocarbons (e.g.methane)[2-3]. The removal of carbon monoxide from the atmosphere relies on a reaction with a hydroxyl radical (OH)[4].Thus, by changing the concentration of hydroxyl radicals in the troposphere, natural or anthropogenic disturbances of tropospheric carbon monoxide can influence the chemical properties of the troposphere[5-6]. The lifespan of tropospheric carbon monoxide varies with latitude and season, ranging from several weeks to over one year. The lifespan is mostly determined by the tropospheric hydroxyl radical concentration[7-9].

    Ozone is also one of the pollutants in the troposphere as well as a major greenhouse gas[10-12]. The tropospheric ozone derives from both natural inputs via the stratosphere and photochemical processes involving hydrocarbons and nitrogen oxides (NOx) in the troposphere[13]. The nitrogen oxides and volatile organic matters from vehicle exhaust and industrial emission are the main precursors of ozone generated from chemical reactions in the troposphere[14]. Because of the high oxidizability of ozone, it is closely connected with many chemical processes, especially photochemical reactions with greenhouse gases[15-16].

    Continuous measurements of the concentrations of carbon monoxide and ozone in the marine boundary layer were carried out aboard the R/VXUE LONGicebreaker.The measurements may provide the latest data on the spatial variations of carbon monoxide and ozone in the marine boundary layer from mid-latitude seas to the northern highlatitude sea including the Arctic Ocean. Moreover, these data can aid in the understanding of the relationship between changes of the tropospheric ozone in the Arctic region and the climate change at mid- and high-latitudes[17].

    2 Experimental methods

    2.1 The expedition

    The R/VXUE LONGicebreaker, the R/V of the 6th Chinese National Arctic Research Expedition, departed from Shanghai harbor on July 11th 2014 and returned on September 22nd 2014. Various scientific investigations were carried out during the expedition. The course of the journey is shown in Figure 1. The cruise path covered the East China Sea, the Sea of Japan, the Sea of Okhotsk, the Bering Sea,the Chukchi Sea, the Beaufort Sea, and the Arctic Ocean.

    2.2 In-situ measurements

    The carbon monoxide measurements were performed using an internet-enabled automatic infrared carbon monoxide analyzer (model EC9830T, Ecotech Inc., Australia). The ozone measurements were performed using an internetenabled automatic ozone analyzer (model EC9810B, Ecotech Inc., Australia). The analyzers had been calibrated before departure based on the NIST standard system.

    2.3 Air mass back trajectory

    Air mass back trajectory was performed according to the transmission diffusion model of HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) developed by the Air Resources Laboratory of the United States National Oceanic and Atmospheric Administration. These calculations were carried out to identify the source of the air masses[18-19].

    3 Results and discussion

    As the analyzers were installed at the bow of R/VXUE LONGicebreaker and the engine of R/VXUE LONGicebreaker was at the stern, the measurements were not affected by the icebreaker’s emission on most occasions. However the data collected when wind was coming from the stern were removed in order to eliminate the pollution coming from the stack.

    3.1 The temporal and spatial variations of carbon monoxide

    Carbon monoxide concentration measured during the 6th Chinese National Arctic Research Expedition ranged between 47.00 and 528.52 ppbv with an average of 103.59 ±40.37 ppbv. The time series is shown in Figure 2.

    The whole cruise is divided into six sections, and the average, maximum, and minimum carbon monoxide concentration of each section is shown in Table 1.

    As shown in Table 1, the concentrations of carbon monoxide were high over the East China Sea and the Sea of Japan. The maximum (528.52 ppbv) of the expedition was observed on the northward course over the East China Sea;for the southward leg of the journey, the maximum (220.12 ppbv) was also observed over the East China Sea. Besides the East China Sea and the Sea of Japan, observations of carbon monoxide concentrations in the other sections, such as the Sea of Okhotsk, the Bering Sea, and the Arctic Ocean, were at a relatively low level. The minimum (47.00 ppbv) was observed over the Arctic Ocean.

    The concentration of carbon monoxide in the atmosphere is greatly affected by human activities. Consequently, the concentrations were much higher over the East China Sea and the Sea of Japan than other sections, such as the Sea of Okhotsk, the Bering Sea, and the Arctic Ocean. After R/VXUE LONGicebreaker left the Sea of Japan for the highlatitude seas, the concentrations sharply decreased to very low levels and were relatively stable (Figure 3).

    In order to investigate the potential influence due to the air mass, 7-day back trajectories of the respective carbon monoxide maximum observed over the northward and the southward legs of the journey were performed using the HYSPLIT model (Figure 4). As shown in Figure 4, the back trajectories imply that the air masses passed through Northeast Asia. These regions have intensive industrial activities. Industrial and vehicle exhaust emissions may have contributed greatly to the maximum observed over both the northward and the southward courses. For comparison,another back trajectory was performed (Figure 5), where the minimum was observed. The result indicates that the air mass mainly passed through the Arctic Ocean and the Northwest Pacific Ocean. This represents the marine backgroud. As a result, the concentration observed at this site was close to the average over this section.

    The diurnal variation of carbon monoxide concentration over different sections is shown in Figure 6. The amplitude of the variation was relatively low except for values collected over the East China Sea. The amplitude over the East China Sea reached up to 400 ppbv. This may be due to the relatively small number of samples and the intense anthropogenic emission. The amplitude over the Sea of Japan was as high as 60 ppbv. While this is higher than the other sections, it is far lower than over the East China Sea. If the data from the East China Sea is excluded, the amplitudes of the remaining sections were all lower than 20 ppbv. The amplitude over the Arctic Ocean was only 10 ppbv. The carbon monoxide concentrations in most sections reach their maximum around midnight. This may be the result of reduced sunlight which leads to a decrease in the photochemical reactions that remove carbon monoxide in the atmosphere. No double-peak was found over the pelagic seas as reported in a previous study of urban atmospheric carbon monoxide[20]. This discrepancy is probably due to a lack of anthropogenic emission. The departure and the return of R/VXUE LONGicebreaker were both near noontime, and the associated sampling at noon may have resulted in the maximum observation over the East China Sea.

    3.2 The temporal and spatial variations of ozone

    Ozone concentration measured during the 6th Chinese National Arctic Research Expedition ranged between 3.27 and 77.82 ppbv with an average of 29.47±10.48 ppbv. The time series is shown in Figure 7.

    The whole course is divided into six sections according to latitudes and distaces to the coasts. The average, maximum,and minimum ozone concentration of each section is shown in Table 2.

    Similar to the concentrations of carbon monoxide, the concentrations of ozone were very high over the East China Sea and the Sea of Japan (Table 2). The maximum (77.82 ppbv) of the expedition was observed on the northward course over the East China Sea. For the southward leg of the journey,the maximum (74.01 ppbv) was also observed over the East China Sea. Besides the East China Sea and the Sea of Japan,observed ozone concentrations in the other sections, such as the Sea of Okhotsk, the Bering Sea, and the Arctic Ocean,were relatively low. The minimum (3.27 ppbv) was observed over the Arctic Ocean.

    Table 2 Ozone concentration in different sections

    The concentration of ozone in the atmosphere is not directly affected by human activities, but it is affected by the carbon monoxide, precursors of ozone (e.g. nitrogen oxides), sunlight, and the oxidative ability of the atmosphere.However, the relatively high concentrations of ozone observed over the East China Sea and the Sea of Japan could still indicate the impact of intensive human activity on the concentration of ozone. The 7-day back trajectories imply that the high values were affected by continental air masses (Figure 4). There is an evident decrease in the ozone concentration with increasing latitude over the mid-latitude seas. When the R/VXUE LONGicebreaker entered high-latitude seas, there was a reduction in the rate of decrease (Figure 8).

    The diurnal variation of ozone concentration over different sections is shown in Figure 9. Similar to carbon monoxide, the amplitude of the variation was relatively low except for values over the East China Sea. The amplitude over the East China Sea reached up to 60 ppbv, which may be due to the relatively small number of samples and intensive anthropogenic emission. If the data from the East China Sea is excluded, the amplitudes of the other sections were all lower than 10 ppbv. The amplitude was only 5 ppbv over the Arctic Ocean. The ozone concentration in most sections started to decrease immediately after the sunrise and reaching their minimum around noon. The daytime ozone losses in the marine boundary layer over these sections maybe due to not only the photochemistry involving NOXcycles but also by the sunrise ozone destruction which seems to be caused by the halogen species, such as Br. The halogen species in the marine boundary layer may be released from sea-salt particles reacting with pollutants. If the Br2released from sea-salts is accumulated in the marine boundary layer in the nighttime, Br radical which destructs ozone catalytically is easily formed by the feeble solar radiation just after sunrise[12].The observed maximum over the East China Sea was at noon because that was the time the R/VXUE LONGicebreaker departed from and returned to the harbor with its high levels of anthropogenic emission.

    3.3 The correlation between carbon monoxide and ozone

    The analysis of the relationship between carbon monoxide and ozone could provide information about the source of the air masses[21-22]. Figure 10 shows the correlation between carbon monoxide and ozone.

    In most sections, such as the East China Sea, the Sea of Japan, the Sea of Okhotsk, and the Arctic Ocean, there were positive correlations between carbon monoxide and ozone(r= 0.34-0.60). This indicates that the ozone observed during the expedition likely originated from photochemical reactions of carbon monoxide[23-24]. The regression slopes for the East China Sea and the Sea of Japan are relatively lower than those of the Sea of Okhotsk and the Arctic Ocean due to the anthropogenic emissions in Northeastern Asia[25].

    However, the positive correlation was weak (r= 0.09) in the Bering Sea section. This suggests an air mass source quite distant from the surface CO emission sources. In addition,the tropopause heights are relatively low in the high latitude regions. This indicates a possible downward transport of the lowermost stratospheric ozone into the troposphere[26].

    4 Conclusion

    The concentrations of carbon monoxide and ozone in the marine boundary layer were measured aboard the R/VXUE LONGicebreaker using internet-enabled analyzers. Samples were taken during the 6th Chinese National Arctic Research Expedition from July to September 2014.

    Carbon monoxide concentration measured during the journey ranged between 47.00 and 528.52 ppbv with an average of 103.59 ± 40.37 ppbv. The concentrations over midlatitude and coastal seas were much higher than over highlatitude and pelagic seas, probably owing to anthropogenic emission. The maximum was observed over the East China Sea, and almost all the extremely high values were observed over coastal seas. The concentration over pelagic seas was much lower than over the East China Sea and the Sea of Japan, and the amplitudes of the diurnal variations were also smaller. Ozone concentration measured during the cruise ranged between 3.27 and 77.82 ppbv with an average of 29.46± 10.48 ppbv. There was a gradient of ozone concentration outside the Arctic Ocean which decreased sharply with the increasing latitude (during both the northward and the southward courses). However, no significant variation was observed over the Arctic Ocean. Similar to carbon monoxide,the diurnal variation over high-latitude seas and the Arctic Ocean was very small. The positive correlation between carbon monoxide and ozone in most sections suggests that the ozone in the marine boundary layer mainly originated from photochemical reactions involving carbon monoxide.However, the weak correlation over the Bering Sea may be affected by the input of stratospheric ozone.

    1 Daniel J S, Solomon S. On the climate forcing of carbon monoxide. J Geophys Res, 1998, 103(D11): 13249-13260

    2 Seiler W, Junge C. Carbon monoxide in the atmosphere. J Geophys Res, 1970, 75(12): 2217-2226

    3 Seiler W. The cycle of atmospheric CO. Tellus, 1974, 26(1-2): 116-135

    4 Müller J F, Stavrakou T. Inversion of CO and NOxemissions using the adjoint of the IMAGES model. Atmos Chem Phys, 2005, 5(5):1157-1186

    5 Thompson A M. The oxidizing capacity of the Earth’s atmosphere:Probable past and future changes. Science, 1992, 256(5060): 1157-1165

    6 Kanakidou M, Crutzen P J. The photochemical source of carbon monoxide: Importance, uncertainties and feedbacks. Chemos Global Change Sci, 1999, 1(1-3): 91-109

    7 Novelli P C, Masarie K A, Lang P M. Distributions and recent changes of carbon monoxide in the lower troposphere. J Geophys Res, 1998, 103(D15): 19015-19033

    8 Holloway T, Levy H I I, Kasibhatla P, et al. Global distribution of carbon monoxide. J Geophys Res, 2000, 105(D10): 12123-12147

    9 Bian L G, Tang J, Lai X, et al. Monitoring carbon monoxide during 2008-2010 at Zhongshan Station, Antarctica. Acta Sci Circum, 2014,34(2): 310-317 (in Chinese)

    10 Yurganov L N, Grechko E I, Dzhola A V. Carbon monoxide and total ozone in Arctic and Antarctic regions: seasonal variations, long-term trends and relationships. Sci Total Environ, 1995, 160-161: 831-840

    11 Yurganov L N. Seasonal cycles of carbon monoxide over the Arctic and Antarctic: total columns versus surface data. Atmos Res, 1997,44(1-2): 223-230

    12 Watanabe K, Nojiri Y, Kariya S. Measurements of ozone concentrations on a commercial vessel in the marine boundary layer over the northern North Paci fi c Ocean. J Geophys Res Atmos, 2005,110(D11): D11310

    13 Wang Y T, Bian L G, Ma Y F, et al. Surface ozone monitoring and background characteristics at Zhongshan Station over Antarctica.Chin Sci Bull, 2011, 56(10): 1011-1019

    14 Bojkov R D, Fioletov V E. Estimating the global ozone characteristics during the last 30 years. J Geophys Res, 1995, 100(D8): 16537-16551

    15 Johnson J E, Gammon R H, Larsen J, et al. Ozone in the marine boundary layer over the Pacific and Indian Oceans: Latitudinal gradients and diurnal cycles. J Geophys Res Atmos, 1990, 95(D8):11847-11856

    16 Park K, Rhee T S. Source characterization of carbon monoxide and ozone over the Northwestern Paci fi c in summer 2012. Atmos Environ,2015, 111: 151-160

    17 Zhang J K, Liu W, Han Y Y, et al. Progresses in in fluence of variations in stratospheric ozone on tropospheric climate. J Arid Meteor, 2014,32(5): 685-693 (in Chinese)

    18 Draxler R R. Evaluation of an ensemble dispersion calculation. J Appl Meteor, 2003, 42(2): 308-317

    19 Draxler R R, Hess G D. An overview of the HYSPLIT 4 modelling system for trajectories, dispersion, and deposition. Aust Meteor Mag,1998, 47: 295-308

    20 Huang X, Huang X X, Wang T J, et al. Observation and analysis of urban upper atmospheric carbon monoxide in Nanjing. China Environ Sci, 2013,33(9): 1577-1584 (in Chinese)

    21 Parrish D D, Holloway J S, Trainer M, et al. Export of North American ozone pollution to the north Atlantic Ocean. Science, 1993,259(5100): 1436-1439

    22 Harris J M, Dlugokencky E J, Oltmans S J, et al. An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods,1986-1997. J Geophys Res, 2000, 105(D13): 17267-17278

    23 Chin M, Jacob D J, Munger J W, et al. Relationship of ozone and carbon monoxide over North America. J Geophys Res, 1994, 99(D7):14565-14573

    24 Parrish D D, Trainer M, Holloway J S, et al. Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region. J Geophys Res, 1998, 103(D11): 13357-13376

    25 Ding A J, Wang T, Xue L K, et al. Transport of north China air pollution by mid latitude cyclones: Case study of aircraft measurements in summer 2007. J Geophys Res, 2009, 114(D8):D08304

    26 Lee S, Feldstein S B. Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science, 2013, 339(6119): 563-567

    a级毛片a级免费在线| 亚洲男人的天堂狠狠| 久久人人爽人人爽人人片va| 国产真实伦视频高清在线观看 | 99久久精品热视频| 亚洲最大成人中文| 最近最新中文字幕大全电影3| 国产麻豆成人av免费视频| 日韩欧美精品免费久久| 男女之事视频高清在线观看| 精品久久久久久久久亚洲 | 亚洲熟妇熟女久久| 欧美黑人欧美精品刺激| 国产真实伦视频高清在线观看 | 午夜福利视频1000在线观看| 亚洲精品久久国产高清桃花| 丰满乱子伦码专区| 2021天堂中文幕一二区在线观| 男人舔奶头视频| 亚洲色图av天堂| 国产色婷婷99| 观看免费一级毛片| 91麻豆av在线| 中国美女看黄片| 91午夜精品亚洲一区二区三区 | 成人国产一区最新在线观看| 亚洲经典国产精华液单| 免费看av在线观看网站| 啪啪无遮挡十八禁网站| 床上黄色一级片| 3wmmmm亚洲av在线观看| 亚洲成人久久性| av在线蜜桃| 婷婷精品国产亚洲av| av在线老鸭窝| 很黄的视频免费| 国产精品久久久久久av不卡| 亚洲av免费在线观看| 精华霜和精华液先用哪个| 精品一区二区三区人妻视频| 免费人成在线观看视频色| 人妻丰满熟妇av一区二区三区| 精品久久久久久成人av| 99久久精品国产国产毛片| 国产主播在线观看一区二区| 成人av一区二区三区在线看| 不卡视频在线观看欧美| 日韩大尺度精品在线看网址| 国产伦精品一区二区三区四那| 大又大粗又爽又黄少妇毛片口| 久久人妻av系列| 成人二区视频| 日本欧美国产在线视频| 久久久国产成人免费| 精品一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 国产精华一区二区三区| 国产精品久久久久久精品电影| 国产高潮美女av| 日韩人妻高清精品专区| 人人妻,人人澡人人爽秒播| avwww免费| 日韩精品有码人妻一区| 少妇被粗大猛烈的视频| .国产精品久久| 亚洲中文日韩欧美视频| 国产在线精品亚洲第一网站| 国产精品伦人一区二区| 亚洲欧美精品综合久久99| 老司机福利观看| 人妻丰满熟妇av一区二区三区| 18+在线观看网站| 亚洲最大成人中文| 两性午夜刺激爽爽歪歪视频在线观看| 91在线观看av| 中国美白少妇内射xxxbb| 赤兔流量卡办理| 日日夜夜操网爽| 国产午夜精品论理片| 九九在线视频观看精品| 亚洲专区中文字幕在线| 精品人妻偷拍中文字幕| 午夜福利在线在线| 色5月婷婷丁香| 国产aⅴ精品一区二区三区波| 男人的好看免费观看在线视频| 一个人观看的视频www高清免费观看| 亚洲av免费在线观看| 亚洲国产精品sss在线观看| 久久热精品热| 亚洲成人免费电影在线观看| 看免费成人av毛片| 欧美日本视频| 美女被艹到高潮喷水动态| 国产v大片淫在线免费观看| 好男人在线观看高清免费视频| 欧美黑人巨大hd| 国产av不卡久久| 日韩精品有码人妻一区| 免费看a级黄色片| 午夜福利高清视频| 国产精品亚洲一级av第二区| 欧美精品啪啪一区二区三区| 天堂av国产一区二区熟女人妻| 九色国产91popny在线| 欧美日韩亚洲国产一区二区在线观看| 国产麻豆成人av免费视频| 日本欧美国产在线视频| 最后的刺客免费高清国语| 欧美成人性av电影在线观看| 噜噜噜噜噜久久久久久91| 国产男人的电影天堂91| 婷婷六月久久综合丁香| 国产一区二区在线观看日韩| 国产乱人视频| 午夜福利在线观看免费完整高清在 | 波多野结衣高清作品| 色在线成人网| 国产午夜精品久久久久久一区二区三区 | 亚洲va在线va天堂va国产| 国产精品美女特级片免费视频播放器| 无人区码免费观看不卡| 亚洲人成伊人成综合网2020| 午夜久久久久精精品| 国产午夜精品论理片| 日本成人三级电影网站| 国产精品一区二区性色av| 国产精品综合久久久久久久免费| 成人高潮视频无遮挡免费网站| 亚洲欧美清纯卡通| 制服丝袜大香蕉在线| 97人妻精品一区二区三区麻豆| 午夜影院日韩av| 国产男靠女视频免费网站| 熟女电影av网| 白带黄色成豆腐渣| 色综合色国产| 亚洲午夜理论影院| 亚洲午夜理论影院| 久久久久久久久久成人| 国产伦在线观看视频一区| 波多野结衣巨乳人妻| 欧美日本视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美最新免费一区二区三区| 国产精品1区2区在线观看.| 伊人久久精品亚洲午夜| 91狼人影院| 精品久久久久久久人妻蜜臀av| 老熟妇乱子伦视频在线观看| 97超视频在线观看视频| 欧美日韩瑟瑟在线播放| 老司机深夜福利视频在线观看| 成熟少妇高潮喷水视频| 亚洲精品久久国产高清桃花| 制服丝袜大香蕉在线| 国产免费av片在线观看野外av| 欧美日本亚洲视频在线播放| 亚洲av中文av极速乱 | 亚洲中文字幕一区二区三区有码在线看| 欧美日本视频| 日本黄色片子视频| 亚洲综合色惰| 国产精品福利在线免费观看| 国产午夜福利久久久久久| 国语自产精品视频在线第100页| 亚洲久久久久久中文字幕| 韩国av在线不卡| 欧美成人a在线观看| 日本爱情动作片www.在线观看 | 国产精品一区二区性色av| 国产激情偷乱视频一区二区| 级片在线观看| 免费看av在线观看网站| 乱系列少妇在线播放| 在线观看午夜福利视频| 一夜夜www| 我要看日韩黄色一级片| 99九九线精品视频在线观看视频| 精华霜和精华液先用哪个| 美女免费视频网站| 国产主播在线观看一区二区| 国产私拍福利视频在线观看| 日本五十路高清| 日本免费一区二区三区高清不卡| 韩国av一区二区三区四区| 国产精品野战在线观看| 亚洲国产精品合色在线| 成人精品一区二区免费| 国产色爽女视频免费观看| 国产激情偷乱视频一区二区| 18+在线观看网站| 国语自产精品视频在线第100页| 国产亚洲精品av在线| 熟妇人妻久久中文字幕3abv| 一卡2卡三卡四卡精品乱码亚洲| 一级黄片播放器| 干丝袜人妻中文字幕| 国产大屁股一区二区在线视频| 久久精品综合一区二区三区| 国产黄a三级三级三级人| 国产高清激情床上av| 国产伦精品一区二区三区视频9| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线在线| 国产 一区精品| 久久久成人免费电影| 国产亚洲91精品色在线| 免费电影在线观看免费观看| 床上黄色一级片| 男女视频在线观看网站免费| 亚洲熟妇中文字幕五十中出| 精品一区二区免费观看| 日本精品一区二区三区蜜桃| 亚洲最大成人av| 日本免费a在线| 丰满人妻一区二区三区视频av| 日本色播在线视频| 国产又黄又爽又无遮挡在线| 国产成人a区在线观看| 国产午夜精品论理片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲 国产 在线| 91午夜精品亚洲一区二区三区 | av国产免费在线观看| 精品乱码久久久久久99久播| 久久久成人免费电影| 亚洲综合色惰| 乱人视频在线观看| 欧美在线一区亚洲| 在线免费十八禁| 简卡轻食公司| 国产成人av教育| 偷拍熟女少妇极品色| 观看美女的网站| or卡值多少钱| 亚洲精品粉嫩美女一区| 91麻豆精品激情在线观看国产| 国产精品国产三级国产av玫瑰| 国产成年人精品一区二区| 69人妻影院| 97超视频在线观看视频| 成年女人永久免费观看视频| 97碰自拍视频| 草草在线视频免费看| 亚洲av日韩精品久久久久久密| 丝袜美腿在线中文| 淫秽高清视频在线观看| 国产黄色小视频在线观看| 色播亚洲综合网| 久久精品国产亚洲网站| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 极品教师在线视频| aaaaa片日本免费| 欧美极品一区二区三区四区| 亚洲在线观看片| 欧美激情国产日韩精品一区| 日本黄大片高清| 国产高清视频在线播放一区| 免费av不卡在线播放| 亚洲中文字幕日韩| 熟女电影av网| 中文字幕av成人在线电影| 精品一区二区免费观看| 噜噜噜噜噜久久久久久91| 一边摸一边抽搐一进一小说| 美女高潮的动态| 最近最新中文字幕大全电影3| 中文字幕高清在线视频| 小说图片视频综合网站| 亚洲一区二区三区色噜噜| 久久精品国产清高在天天线| 色综合站精品国产| 长腿黑丝高跟| 少妇猛男粗大的猛烈进出视频 | 国产成人aa在线观看| 久久久久久大精品| 国产精品人妻久久久影院| 亚洲美女黄片视频| 男女做爰动态图高潮gif福利片| 日韩欧美三级三区| 舔av片在线| 免费人成视频x8x8入口观看| 国产亚洲av嫩草精品影院| 桃色一区二区三区在线观看| 免费看av在线观看网站| 黄色丝袜av网址大全| 不卡视频在线观看欧美| 免费av不卡在线播放| 999久久久精品免费观看国产| 国产免费一级a男人的天堂| 中文字幕av成人在线电影| 午夜福利在线在线| 日韩欧美国产一区二区入口| 又爽又黄无遮挡网站| 亚洲一级一片aⅴ在线观看| 欧美日本亚洲视频在线播放| 村上凉子中文字幕在线| 亚洲国产精品sss在线观看| 人人妻人人澡欧美一区二区| 深夜a级毛片| 久久中文看片网| 精品久久久久久久久av| 国产成人福利小说| 午夜免费成人在线视频| 美女高潮喷水抽搐中文字幕| 久久久久久久精品吃奶| 免费搜索国产男女视频| 麻豆成人午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 男女视频在线观看网站免费| 日本黄色片子视频| 91精品国产九色| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| www日本黄色视频网| 综合色av麻豆| 久久精品国产亚洲网站| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| 成人国产一区最新在线观看| 国产蜜桃级精品一区二区三区| 在线观看美女被高潮喷水网站| 免费搜索国产男女视频| 真人一进一出gif抽搐免费| 国内精品久久久久久久电影| 亚洲久久久久久中文字幕| 搡老熟女国产l中国老女人| 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 99久久无色码亚洲精品果冻| 久久久色成人| 一级av片app| 国产精品电影一区二区三区| 少妇高潮的动态图| 12—13女人毛片做爰片一| 午夜a级毛片| 一区二区三区四区激情视频 | 18禁裸乳无遮挡免费网站照片| aaaaa片日本免费| 亚洲无线观看免费| 欧美日韩黄片免| 黄色女人牲交| 69av精品久久久久久| 久久久国产成人免费| 精品久久久久久久久久免费视频| 久久久久免费精品人妻一区二区| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区免费观看 | 精品乱码久久久久久99久播| 欧美成人性av电影在线观看| 欧美成人a在线观看| 国产中年淑女户外野战色| 国产aⅴ精品一区二区三区波| 欧美日韩瑟瑟在线播放| 97碰自拍视频| АⅤ资源中文在线天堂| 中亚洲国语对白在线视频| 国产精品久久久久久久久免| 十八禁国产超污无遮挡网站| 看免费成人av毛片| 大型黄色视频在线免费观看| 99久久精品热视频| 床上黄色一级片| 丝袜美腿在线中文| 韩国av在线不卡| 成人综合一区亚洲| 国产精品98久久久久久宅男小说| 日日啪夜夜撸| 免费电影在线观看免费观看| 精品久久久久久,| 美女高潮喷水抽搐中文字幕| 亚洲av一区综合| 亚洲成a人片在线一区二区| 日韩欧美在线二视频| 一个人看视频在线观看www免费| 在线观看免费视频日本深夜| 国产不卡一卡二| 嫩草影院新地址| 欧美另类亚洲清纯唯美| 在线观看免费视频日本深夜| 久久婷婷人人爽人人干人人爱| 深夜精品福利| 久久久久国内视频| 精品久久久久久久末码| 精品久久久久久久久久免费视频| 国产女主播在线喷水免费视频网站 | 麻豆av噜噜一区二区三区| 老女人水多毛片| 国语自产精品视频在线第100页| 久久这里只有精品中国| 欧美zozozo另类| 国产亚洲欧美98| 免费一级毛片在线播放高清视频| 欧美+日韩+精品| 国产熟女欧美一区二区| 精品久久久久久,| 欧美一区二区国产精品久久精品| 国产成人av教育| 国产伦一二天堂av在线观看| 美女大奶头视频| 日日干狠狠操夜夜爽| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看| 91麻豆av在线| 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 日韩强制内射视频| 午夜激情福利司机影院| 免费黄网站久久成人精品| 久久久久国产精品人妻aⅴ院| 欧美一区二区精品小视频在线| 十八禁网站免费在线| 亚洲五月天丁香| 亚洲精品456在线播放app | 亚洲 国产 在线| 国产av不卡久久| 日本一二三区视频观看| 高清在线国产一区| 一个人看的www免费观看视频| 亚洲精品成人久久久久久| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 日本熟妇午夜| 最新中文字幕久久久久| 欧美成人a在线观看| 最近在线观看免费完整版| 一本精品99久久精品77| 永久网站在线| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 特级一级黄色大片| 又粗又爽又猛毛片免费看| 哪里可以看免费的av片| 麻豆国产av国片精品| av在线老鸭窝| 在线a可以看的网站| 国产私拍福利视频在线观看| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 身体一侧抽搐| 精品久久国产蜜桃| 欧美成人一区二区免费高清观看| 成人av在线播放网站| 99久久成人亚洲精品观看| 欧美人与善性xxx| 黄色配什么色好看| 精品国产三级普通话版| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app | 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 性插视频无遮挡在线免费观看| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| netflix在线观看网站| 黄色日韩在线| 日本黄大片高清| 成人特级av手机在线观看| 91久久精品国产一区二区成人| 国内精品久久久久精免费| 联通29元200g的流量卡| 深夜a级毛片| 深爱激情五月婷婷| 国产又黄又爽又无遮挡在线| 国产高清视频在线播放一区| 我要看日韩黄色一级片| 欧美成人免费av一区二区三区| 亚洲成人久久性| 乱人视频在线观看| 国产综合懂色| 亚洲精品在线观看二区| 日韩av在线大香蕉| 亚洲人成网站在线播| 我的老师免费观看完整版| 亚洲最大成人av| 日本三级黄在线观看| 999久久久精品免费观看国产| 我要搜黄色片| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 看黄色毛片网站| 欧美bdsm另类| 日韩亚洲欧美综合| 成人欧美大片| 国产真实伦视频高清在线观看 | 欧美色视频一区免费| 中国美白少妇内射xxxbb| avwww免费| 春色校园在线视频观看| 美女高潮的动态| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 免费观看的影片在线观看| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄 | 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 成年女人毛片免费观看观看9| 一个人看的www免费观看视频| 久久中文看片网| 国产麻豆成人av免费视频| 一级毛片久久久久久久久女| 亚洲人成伊人成综合网2020| 欧美人与善性xxx| 久久久成人免费电影| 99精品久久久久人妻精品| 久久久久久久久久成人| 久久久午夜欧美精品| 亚洲美女视频黄频| 国产精品一区www在线观看 | avwww免费| 国内精品宾馆在线| 91狼人影院| 国产精品一及| 国产中年淑女户外野战色| 国产精品国产高清国产av| 久久久久久大精品| 免费黄网站久久成人精品| 国产精品乱码一区二三区的特点| 国内少妇人妻偷人精品xxx网站| 亚洲av熟女| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 国产精品三级大全| 精品一区二区三区av网在线观看| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 蜜桃亚洲精品一区二区三区| 国产精品福利在线免费观看| 最新在线观看一区二区三区| 国产乱人视频| 国产精品久久视频播放| 不卡视频在线观看欧美| 欧美一区二区国产精品久久精品| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av在线| 三级毛片av免费| 男女啪啪激烈高潮av片| 国产精品一区www在线观看 | 狂野欧美激情性xxxx在线观看| 精品久久久久久久人妻蜜臀av| 亚洲av美国av| 男女那种视频在线观看| 国产91精品成人一区二区三区| 三级毛片av免费| 午夜福利在线观看免费完整高清在 | 成人一区二区视频在线观看| 男女啪啪激烈高潮av片| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 亚洲精品一区av在线观看| 在现免费观看毛片| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 长腿黑丝高跟| 岛国在线免费视频观看| 内地一区二区视频在线| 日本与韩国留学比较| 免费看a级黄色片| 国产精品日韩av在线免费观看| 别揉我奶头 嗯啊视频| 精品人妻视频免费看| 国产美女午夜福利| 中文资源天堂在线| 五月玫瑰六月丁香| 直男gayav资源| 美女免费视频网站| 国产精品人妻久久久影院| 久久草成人影院| 精品一区二区三区人妻视频| 长腿黑丝高跟| 日本三级黄在线观看| 亚洲国产精品sss在线观看| 在线免费十八禁| 久久香蕉精品热| 亚洲av熟女| 亚洲精华国产精华液的使用体验 | 亚洲自拍偷在线| 1024手机看黄色片| 久久久久久久久中文| 国产成年人精品一区二区| 蜜桃久久精品国产亚洲av| 一区二区三区高清视频在线| 亚洲精品久久国产高清桃花| 看免费成人av毛片| 亚洲无线在线观看| 免费观看精品视频网站| 草草在线视频免费看| 99久国产av精品| 日韩人妻高清精品专区| 春色校园在线视频观看| 成人国产综合亚洲| 91久久精品国产一区二区三区| 国产亚洲欧美98| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 不卡视频在线观看欧美| avwww免费| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 午夜福利视频1000在线观看| 99久久九九国产精品国产免费| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 我的老师免费观看完整版| 欧美成人性av电影在线观看| 欧美高清成人免费视频www|