• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iodine speciation in aerosol particle samples collected over the sea between offshore China and the Arctic Ocean

    2015-02-06 03:47:31KANGHuiXUSiqiYUXiaweiLIBingLIUWeiYANGHongxiaXIEZhouqing
    Advances in Polar Science 2015年3期

    KANG Hui, XU Siqi, YU Xiawei, LI Bing, LIU Wei, YANG Hongxia& XIE Zhouqing*

    1 Institute of Polar Environment, University of Science and Technology of China, Hefei 230026, China;

    2 Shenzhen Futian Environmental Monitoring Center, Shenzhen 518048, China;

    3 National Research Center for Geoanalysis, Beijing 100037, China

    1 Introduction

    Atmospheric iodine participates in a variety of photochemical reactions in the troposphere. The concentration and speciation of iodine has received much attention because of the effect of the polar hole in the ozone layer in spring[1-2]. Iodine can also be directly involved in new particle formation,release and form marine boundary layer cloud condensation nuclei, which indirectly influence the earth’s albedo and global climate[3-4]. Atmospheric iodine can have marine,continental, and anthropogenic sources[5-6], with the marine component considered the principal one[7]. The concentration of gaseous and particulate iodine in the atmosphere is very low. Because determination is difficult, there are few reports on the concentration and speciation of gaseous and particulate iodine. Because of differences in sampling points and analytical methods used, the composition and content of iodine in aerosols vary in the literature[3,8-11]. Therefore,a wide range of samples monitored over a long period will contribute to understanding of the geochemical cycles of iodine in the atmosphere. In previous reports, samples were collected mainly from the Atlantic Ocean, East Antarctica and the Indian Ocean, but results for atmospheric iodine have rarely been reported. Lai et al.[12]treated the distribution of iodine species during an Antarctic expedition route,fi nding that soluble organic iodine (SOI) was the important component of aerosols. In the Northern Hemisphere, Xu et al.[13]described iodine speciation in the marine boundary layer over the Arctic Ocean and northwestern Pacific Ocean in 2008.

    Here, we present the concentration and speciation of iodine in PM10 (particulate matter with aerodynamic diameter < 10 μm) samples collected in the marine boundary layer (MBL) over the northwestern Pacific Ocean and Arctic Ocean, aboard the Chinese R/VXUE LONGicebreaker during the Second Chinese National Arctic Research Expedition (July-September 2003, CHINARE2003) . Total iodine (TI) and total soluble iodine (TSI) were determined by inductively coupled plasma mass spectrometry (ICP-MS).Iodide and iodate (IO3-) were simultaneously determined by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). The results were compared with data obtained during the CHINARE2008 (July-September 2008).

    2 Experimental details

    2.1 Sampling

    During the Second Chinese National Arctic Research Expedition, a total of 44 valid PM10 particulate samples and 5 field blanks were collected in the MBL from July to September 2003 (Figure 1). A high-volume PM10 air sampler was placed on the uppermost deck of the ship.Particulates were collected by drawing air through a cellulose filter (Whatman 41, Maidstone, UK, 20 cm×25 cm) at flow rate ~1.0 m3?min-1, with sampling durations of 24 h or 48 h.After sampling, the filters were packed in separate plastic bags, sealed, and placed in cold storage for later analyses.

    2.2 Analyses of iodine species

    A piece (3 cm2) was cut from each sample filter and dissolved in screw-top PTFE-lined stainless steel bombs, using a 10%ammonia solution at 185°C for 15 h. The solution was then filtered quantitatively using filter paper and TI was measured using an Agilent 7500a ICP-MS (Agilent Technologies,Santa Clara, CA, USA)[14-15]. The detection limit for TI was 0.1 μg?L-1for the aqueous solution. For soluble species,aerosol filter samples (3-9 cm2) were extracted in water by ultrasonic-assisted extraction for 5 min. The extract was filtered through 0.45-mm filters and TSI was measured with the aforementioned ICP-MS. Iodide and iodate were separated and quantified using an IC-ICP-MS system. An Agilent 1100 HPLC and ICS-A23 IC column with an ICSA2G guard column (Yokogawa Analytical Systems, Tokyo)were used. The mobile phase consisted of 0.03 mol?L-1(NH4)2CO3(pH=8.0) and the flow rate was 0.8 mL?min-1.The Agilent 7500a ICP-MS was used as the detector to scan the isotope127I (Figure 2)[20].

    Iodide and iodate were successfully separated and then quantified with an external calibration curve. Detection limits were 0.012 and 0.008 mg?L-1for iodide and iodate,respectively, based on an injection volume of 1.0 mL.Standard deviations at the 0.127 mg?L-1level for iodide and iodate were 3.15% and 2.23% (n=7), respectively. For a typical air volume of 1500 m3, a 3-cm2piece of cut filter and 10-mL extract, corresponding atmospheric detection limits for TI, I-and IO3-were 0.72, 0.087 and 0.058 pmol?m-3,respectively. Insoluble iodine (ISI) was calculated as TI minus TSI (ISI = TI - TSI). SOI was calculated as TSI minus the inorganic iodine species (SOI = TSI - iodide - iodate). Total Br (TBr) and Br speciation were also determined together with TI and iodine speciation, using the same extract[14].

    2.3 Relevant data

    Air mass back trajectories were calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (reanalysis dataset) from the National Oceanic and Atmospheric Administration’s (NOAA) Air Resources Laboratory (www.arl.noaa.gov/ready.php)[22-23]. Monthly global distributions of chlorophyll were downloaded from the MODIS website, National Aeronautics and Space Administration (http://modis.gsfc.nasa.gov). Arctic sea ice distributions were downloaded from a National Snow and Ice Data Center website (http://nsidc.org/index.html).

    3 Results and discussion

    3.1 Iodine species in the Arctic Ocean

    The distribution of iodine and its species in PM10 particles within the marine boundary layer during the Second Arctic Expedition is shown in Table 1, and by a bar chart in Figure 3. Iodate was detected in only 12 of 29 samples,with a maximum 0.29 pmol?m-3. ISI was not detected in 2 samples, SOI was not detected in 1 sample, and iodide ion (I-)was detected in all samples. The concentration of TI was 19-88 pmol?m-3with average 42±15 pmol?m-3. The concentration of TSI was 4-88 pmol?m-33. The concentration of I-was 0.4-36.9 pmol?m-3. The results show that iodide was the common form in the PM10 samples of the marine boundary layer over the Arctic Ocean. The contribution of iodide to TI ranged from 1% to 93% (average 31%) and that of TSI from 6% to 100% (average 43%). The contribution of ISI to TI was 0%-87% (average 41%). SOI was detected in almost all samples. The contribution of SOI to TI was 0%-74% (average 28%) and that of TSI was 0%-94% (average 57%). The proportion of IO3-was the smallest among the iodine species,< 1%. These results indicate the main form of iodine was not identical across the various samples.

    The main source of I in the aerosols in the marine boundary layer is direct release by sea wave droplets and reaction products of gaseous substances (including I), and oxidizing substances such as ozone, which are released from marine organisms[24-25]. However, it has been reported that IO is released through melting of the front edge of ice cover and the sea ice zone in polar regions[26]. The enrichment factor (EF)of I, calculated as the ratio of I in aerosol to I in seawater, can be used to distinguish sources. Because of a lack of data on Na concentration of the samples, we used the Br concentration in calculation. According to the literature, significant depletion or enrichment of the total Br of suspended particles cannot occur relative to Br in seawater, and theEFof Br in PM10 particles is at least 0.5[27-28]. This means that < 50% of the Br in sea salt aerosol no longer exists in aerosol particles because of sedimentation or atmospheric chemical reactions.The calculation is

    AnEFof 1-10 usually indicates that the source of I is ocean or soil[29]; 100-500 indicates moderate enrichment and > 500 extreme enrichment. TheEF(TI) was 468-8810 (average 2676±2180),EF(TSI) was 370-6839 (average 2055±1698),andEF(I-) was 26-4784 (average 1069±1281). Even though a 50% depletion of Br in PM10 aerosols was used in the calculation, an extreme enrichment of I was present in most samples, indicating that direct release by sea wave droplets was not the primary source. The average concentration of TI was 42±15 pmol?m-3, and the rate of the TI concentration change in 29 samples was a mere 35%. This suggests a homogeneous distribution of iodine in PM10 particles within polar regions.

    As suggested by other works[12-13], change in sea ice will impact atmospheric iodine. Thus, we investigated this relationship. The results of typical back trajectories demonstrated that most of the air mass traversed the front edge of the ice cover or sea ice area during the prior 48 h.From Figure 4, the temperature for sample BB-20 (the highest TI in the Arctic) during collection was 8.7°C, the highest measured during the Arctic voyage. Sea ice melt is apparent in the Arctic sea ice distribution map (Figure 5). However,temperatures for BB-24 and BB-25 were -1°C and -1.7°C,respectively, and an increase of sea ice area was visible as the air mass traversed the region. Gaseous I2is produced in abundance by microalgae species, particularly diatoms.Diatoms are prominent members of microalgal blooms at the receding ice edge[14]. Ice diatoms have been shown to be a potential direct source of HOI and I2to the Arctic atmosphere[15-16]. More recently, observations suggest that the source of iodine is related to processes associated with coastal sea ice[17-19]. Arctic sea ice melt may enhance the growth of algae and thereby increase the production of iodocarbon,which is a potential source of I precursors in aerosols[30].Abundant growth of chlorophylla, indicating considerable growth of algae[30-31], has been discovered in Arctic Circle seas such as the Bering Strait (Figure 6).

    3.2 Iodine species in northwestern Pacific Ocean

    The distribution of iodine and its species in PM10 particles within the marine boundary layer over the northwestern Pacific during the Second Arctic Expedition is shown in Table 2, and by a bar chart in Figure 7. Iodate was detected in 2 of 15 samples; maximum concentration was 0.06 pmol?m-3. ISI, SOI and I-were detected in all samples with widely existing forms. Concentrations of TI, TSI, and I-were 15-73, 5-63, and 0.9-63.1 pmol?m-3,respectively. These results show that soluble iodine is a major form of iodine. I-had the largest proportion among all iodine species, accounting for 3%-86% (39%) of TI and 13%-100% (55%) of TSI. The concentration of ISI was a slightly higher than that of SOI, accounting for 6%-77% (34%) of TI. SOI constituted 0.3%-60% (26%)of TI, and 0.3%-8% (45%) of TSI. Iodate (IO3-) had the smallest proportion among all iodine species, accounting for < 0.1%. There was no apparent correlation between I-,ISI or SOI.

    Table 2 Concentrations of iodine species a in aerosols over sea areas outside the Arctic Ocean

    EFs of TI were 188-2017 with average 751±514. TheEFof TSI was 156-1299, with average 505±328, and theEFof I-was 52-1093, with average 276±261. These results reveal moderate enrichment, which indicates that a small proportion originated from sea salt. Except for the BB-44 and BB-49 samples, iodine showed little seasonal variation from July-September in the marine boundary layer of the northwestern Pacific. There was no apparent correlation across 15 samples between the amount of iodine, distribution of chlorophylla, and the various sources. These findings indicate that the influences on the species and levels of atmospheric iodine are very complex.

    3.3 Comparison with CHINARE2008 in Arctic Ocean and the literature

    There are very few reports on the concentration of iodine species in the marine boundary layer of the Arctic Ocean.Sturges et al.[25,32]reported on concentrations of iodine at three coastal locations in the Canadian Arctic and one site in central Alaska from 1979 to 1987. The maximum concentration of TI was only 32 pmol?m-3, much less than in the present study. However, TI concentration in CHINARE2008[13]was much higher than in CHINARE2003.A potential explanation may be linked to sea ice area decrease from climate warming in recent years. From Figure 8, Arctic sea ice area continuously declined from 1979 to 2008, and reached its second lowest point in the satellite record during September 2008. In polar regions, sea ice area decline increases open sea, resulting in a large area of algae growth and enhancement of air-sea exchange[33]. Algae such as ice diatoms have been proven a potential direct source of I precursors in the Arctic atmosphere[15-16]. This creates more volatile iodine substances in the atmosphere and eventually affects levels of atmospheric iodine.

    For the iodine species, some early atmospheric chemistry models of iodine suggested that iodate is the only stable such species and the dominant one in aerosols[34-35]. Ratios of iodate to iodide (IO3-/I-) were > 1.0 in most cases, with an average of 6.6 over the Arctic Ocean in CHINARE2008[13],in agreement with model results. However, TSP samples of Gilfedder et al.[11]and PM2.5 samples of Lai et al.[12]showed IO3-/I-ratios < 1.0. In the present study, these ratios were also well below 1.0. This difference suggests that atmospheric cycles of iodine are more complicated than our present understanding. This requires further investigation to improve and constrain the model.

    4 Summary

    Iodine species in the PM10 particle samples from the MBL were collected onboard the Chinese R/VXUE LONGicebreaker during CHINARE2003. The samples were measured using ICP-MS and IC-ICP-MS. ISI, I-and SOI accounted for 41%, 31% and 28% of TI over the Arctic Ocean, respectively. IO3-was detected in ~45%of the samples, with very low concentrations. There was significant negative correlation between I-and ISI, but no obvious correlation among the other iodine species. A largeEF(I) revealed extreme enrichment of I, indicating little contribution of sea wave droplets to the concentration of I in the PM10 particles. The source may be related to sea ice melt in the Arctic and explosive growth of chlorophyll in seawater.

    ISI, SOI, and I-were detected in all samples from the northwestern Pacific Ocean. ISI, SOI, and I-constituted 34%,39% and 26% of TI, respectively. IO3-was not detected in most samples. There was no apparent correlation between I-,ISI or SOI. TheEFshowed moderate enrichment of iodine.

    Compared with the literature, levels of atmospheric iodine were found to increase in response to sea ice melt in the Arctic Ocean. However, IO3-/I-ratios were < 1.0, in contrast with modeling results, indicating more complicated cycles of atmospheric iodine.

    AcknowledgementsThis research was supported by grants from the National Natural Science Foundation of China (Grant nos. 41176170 and 41025020), the Chinese Polar Environment Comprehensive Investigation& Assessment Programs (Grant no. CHINARE2011-2015) and China Polar Science and Strategic Research Fund Project, Chinese Arctic and Antarctic Adminstration (Grant no. 20140302).

    1 O’Dowd C D, Jimenez J L, Bahreini R, et al. Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417(6889):632-636

    2 Read K A, Mahajan A S, Carpenter L J, et al. Extensive halogenmediated ozone destruction over the tropical Atlantic Ocean. Nature,2008, 453(7199): 1232-1235

    3 Baker A R, Tunnicliffe C, Jickells TD. Iodine speciation and deposition fluxes from the marine atmosphere. J Geophys Res, 2001,106(D22): 28743-28749

    4 Von Glasow R, Crutzen PJ. Tropospheric halogen chemistry. Treatise on Geochem, 2003, 4: 1-67

    5 Sturges W T, Harrison R M. Bromine in marine aerosols and the origin, nature and quantity of natural atmospheric bromine. Atmos Environ, 1986, 20(7): 1485-1496

    6 Sturges W T, Harrison R M. Bromine: Lead ratios in airborne particles from urban and rural sites. Atmos Environ, 1986, 20(3): 577-588

    7 Bertine K K, Goldberg E D. Trace elements in clams, mussels, and shrimp. Limnol Oceanogr, 1972, 17(6): 877-884

    8 Wimschneider A, Heumann K G. Iodine speciation in size fractionated atmospheric particles by isotope dilution mass spectrometry. Fresen J Anal Chem, 1995, 353(2): 191-196

    9 Baker A R. Inorganic iodine speciation in tropical Atlantic aerosol.Geophys Res Lett, 2004, 31(23): L23S02

    10 Baker A R. Marine aerosol iodine chemistry: the importance of soluble organic iodine. Environ Chem, 2005, 2(4): 295-298

    11 Gilfedder B, Lai S C, Petri M, et al. Iodine speciation in rain, snow and aerosols and possible transfer of organically bound iodine species from aerosol to droplet phases. Atmos Chem Phys Discus, 2008, 8(2):7977-8008

    12 Lai S C, Hoffmann T, Xie Z Q. Iodine speciation in marine aerosols along a 30, 000 km round-trip cruise path from Shanghai, China to Prydz Bay, Antarctica. Geophys Res Lett, 2008, 35(21): L21803

    13 Xu S Q, Xie Z Q, Li B, et al. Iodine speciation in marine aerosols along a 15000-km round-trip cruise path from Shanghai, China, to the Arctic Ocean. Environ Chem, 2010, 7(5): 406-412

    14 Atkinson H M, Huang R J, Chance R, et al. Iodine emissions from the sea ice of the Weddell Sea. Atmos Chem Phys, 2012, 12(5): 11229-11244

    15 Hill V L, Manley S L. Release of reactive bromine and iodine from diatoms and its possible role in halogen transfer in polar and tropical oceans. Limnol Oceanogr, 2009, 54(3): 812-822

    16 Chance R, Weston K, Baker A R, et al. Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site. Mar Chem, 2010, 118(3-4): 171-181

    17 Assmy P, Ehn J K, Fernández-Méndez M, et al. Floating ice-algal aggregates below melting arctic sea ice. PLoS One, 2013, 8(10):e76599

    18 Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting arctic sea ice. Science, 2013, 339(6126): 1430-1432

    19 Allan J D, Williams P I, Nájera J J, et al. Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA.Atmos Chem Phys, 2015, 15(10): 5599-5609

    20 Xu S Q, Xie Z Q, Liu W, et al. Extraction and determination of total bromine, iodine, and their species in atmospheric aerosol. Chin J Anal Chem, 2010, 38(2): 219-224

    21 Ma X R, Li B, Han L R. Determination of total iodine and bromine in soil, sediment and biological samples by inductively coupled plasma mass spectrometry with dilute ammonia pressurizing decomposition.Rock Mineral Anal, 2003, 22(3): 174-178 (in Chinese)

    22 Draxler R R, Rolph G D. HYSPLIT-hybrid single particle lagrangian integrated trajectory model 2003 (NOAA Air Resources Laboratory:Silver Spring, MD). 2003. http://ready.arl.noaa.gov/HYSPLIT.php

    23 Rolph G D. Real-time environmental applications and display system(READY) 2003 (NOAA Air Resources Laboratory: Silver Spring,MD). 2003. http://www.arl.noaa.gov/ready/hysplit4.html

    24 Duce R A, Woodcock A H. Difference in chemical composition of atmospheric sea salt particles produced in the surf zone and on the open sea in Hawaii. Tellus, 1971, 23(4-5): 427-435

    25 Sturges W T, Barrie L A. Chlorine, bromine and iodine in Arctic aerosols. Atmos Environ, 1988, 22(6): 1179-1194

    26 Saiz-Lopez A, Mahajan A S, Salmon R A, et al. Boundary layer halogens in coastal Antarctica. Science, 2007, 317(5836): 348-351

    27 Sander R, Keene W C, Pszenny A A P, et al. Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys, 2003,3(5): 1301-1336

    28 Yang X, Pyle J A, Cox R A. Sea salt aerosol production and bromine release: Role of snow on sea ice. Geophys Res Lett, 2008, 35(16):L16815

    29 Poissant L, Schmit J P, Béron P. Trace inorganic elements in rainfall in the Montreal Island. Atmos Environ, 1994, 28(2): 339-346

    30 O’Dowd C D, Hoffmann T. Coastal new particle formation: A review of the current state-of-the-art. Environ Chem, 2005, 2(4): 245-255

    31 Lai S C, Williams J, Arnold S R, et al. Iodine containing species in the remote marine boundary layer: A link to oceanic phytoplankton.Geophys Res Lett, 2011, 38(20): L20801

    32 Sturges W T, Shaw G E. Halogens in aerosols in central Alaska.Atmos Environ, 1993, 27(17-18): 2969-2977

    33 Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Res Part II: Top Stud Oceanogr, 2004, 51(1-3): 117-138

    34 Mc Figgans G, Plane J M C, Allan B J, et al. A modeling study of iodine chemistry in the marine boundary layer. J Geophys Res, 2000,105(D11): 14371-14385

    35 Vogt R, Sander R, Von Glasow R, et al. Iodine chemistry and its role in Halogen activation and ozone loss in the Marine Boundary Layer:A Model Study. J Atmos Chem, 1999, 32(3): 375-395

    久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 视频在线观看一区二区三区| 香蕉丝袜av| 国产精品九九99| 国产精品免费一区二区三区在线 | 男男h啪啪无遮挡| 色视频在线一区二区三区| 久久午夜综合久久蜜桃| 欧美精品av麻豆av| √禁漫天堂资源中文www| 国产精品久久电影中文字幕 | 亚洲国产欧美一区二区综合| 最近最新中文字幕大全免费视频| 性色av乱码一区二区三区2| 日韩欧美免费精品| 国产免费福利视频在线观看| 叶爱在线成人免费视频播放| 黄频高清免费视频| 精品福利永久在线观看| 人成视频在线观看免费观看| 18禁美女被吸乳视频| 黄频高清免费视频| 欧美精品一区二区大全| 久久亚洲真实| 国产av精品麻豆| 久久中文字幕人妻熟女| 久久久国产精品麻豆| 亚洲av电影在线进入| 国内毛片毛片毛片毛片毛片| 久久中文字幕人妻熟女| 国内毛片毛片毛片毛片毛片| 香蕉丝袜av| 亚洲精华国产精华精| 国产成人影院久久av| 国产成人影院久久av| 制服诱惑二区| 免费在线观看黄色视频的| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 首页视频小说图片口味搜索| 国产单亲对白刺激| 老司机福利观看| 成人三级做爰电影| 午夜久久久在线观看| 国产片内射在线| 亚洲精品国产色婷婷电影| 国产aⅴ精品一区二区三区波| 久久影院123| 欧美大码av| 午夜免费鲁丝| 91精品国产国语对白视频| 久久精品亚洲精品国产色婷小说| 在线 av 中文字幕| 丰满饥渴人妻一区二区三| 一边摸一边做爽爽视频免费| 国产精品久久久久久精品古装| 国产精品久久久久久精品古装| 久久人人97超碰香蕉20202| 日韩欧美国产一区二区入口| tube8黄色片| 国产亚洲精品第一综合不卡| 一区福利在线观看| kizo精华| 19禁男女啪啪无遮挡网站| 老司机影院毛片| 色94色欧美一区二区| 肉色欧美久久久久久久蜜桃| 交换朋友夫妻互换小说| 免费人妻精品一区二区三区视频| 亚洲人成电影免费在线| 国产成人一区二区三区免费视频网站| 十分钟在线观看高清视频www| 欧美国产精品一级二级三级| 超碰97精品在线观看| 国产在线精品亚洲第一网站| 亚洲精品av麻豆狂野| 50天的宝宝边吃奶边哭怎么回事| 热re99久久国产66热| 又黄又粗又硬又大视频| 在线观看66精品国产| 亚洲国产成人一精品久久久| 老熟妇仑乱视频hdxx| 极品少妇高潮喷水抽搐| 久热这里只有精品99| 欧美激情 高清一区二区三区| 欧美日本中文国产一区发布| 国产有黄有色有爽视频| 久久天躁狠狠躁夜夜2o2o| 18禁黄网站禁片午夜丰满| 一本—道久久a久久精品蜜桃钙片| 国产片内射在线| 精品高清国产在线一区| 在线 av 中文字幕| 热re99久久精品国产66热6| 超碰97精品在线观看| 水蜜桃什么品种好| 丰满饥渴人妻一区二区三| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三| 露出奶头的视频| 麻豆av在线久日| 女警被强在线播放| 国产成人啪精品午夜网站| 亚洲精品久久午夜乱码| 成人永久免费在线观看视频 | 捣出白浆h1v1| 欧美日韩亚洲综合一区二区三区_| 肉色欧美久久久久久久蜜桃| 日韩人妻精品一区2区三区| 日本av免费视频播放| av福利片在线| 可以免费在线观看a视频的电影网站| 国产精品欧美亚洲77777| 中文字幕最新亚洲高清| 大片免费播放器 马上看| 亚洲一区中文字幕在线| 老熟妇仑乱视频hdxx| 国产又爽黄色视频| 国产欧美日韩精品亚洲av| 亚洲国产精品一区二区三区在线| 最近最新免费中文字幕在线| 亚洲伊人久久精品综合| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 精品国产亚洲在线| 精品亚洲成a人片在线观看| 一进一出好大好爽视频| 老司机影院毛片| 欧美日韩成人在线一区二区| tocl精华| 汤姆久久久久久久影院中文字幕| 在线观看免费午夜福利视频| 一本色道久久久久久精品综合| 国产aⅴ精品一区二区三区波| 精品卡一卡二卡四卡免费| 建设人人有责人人尽责人人享有的| 无遮挡黄片免费观看| 黄片小视频在线播放| 国产伦人伦偷精品视频| 亚洲色图 男人天堂 中文字幕| 久久久精品国产亚洲av高清涩受| 久久久久精品国产欧美久久久| 丝袜美足系列| 天堂俺去俺来也www色官网| 亚洲国产毛片av蜜桃av| 成人免费观看视频高清| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 精品国产乱子伦一区二区三区| 热99国产精品久久久久久7| 中文字幕制服av| 在线永久观看黄色视频| 国产有黄有色有爽视频| 香蕉国产在线看| 午夜成年电影在线免费观看| 色播在线永久视频| 国产精品99久久99久久久不卡| 三上悠亚av全集在线观看| 成年动漫av网址| 十八禁网站网址无遮挡| 久久精品国产亚洲av高清一级| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 国产成人免费无遮挡视频| av免费在线观看网站| 男女午夜视频在线观看| 亚洲av美国av| 久久99一区二区三区| 欧美人与性动交α欧美精品济南到| 大片电影免费在线观看免费| 亚洲色图综合在线观看| 欧美日韩av久久| 国产精品麻豆人妻色哟哟久久| 成年人免费黄色播放视频| 欧美亚洲 丝袜 人妻 在线| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 欧美午夜高清在线| 天堂中文最新版在线下载| 别揉我奶头~嗯~啊~动态视频| 高清在线国产一区| 夜夜骑夜夜射夜夜干| 亚洲国产欧美日韩在线播放| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 免费久久久久久久精品成人欧美视频| 怎么达到女性高潮| 香蕉久久夜色| 岛国在线观看网站| 悠悠久久av| 欧美 日韩 精品 国产| 丁香欧美五月| 国产免费现黄频在线看| 麻豆国产av国片精品| 高清在线国产一区| 女性被躁到高潮视频| 久久久国产欧美日韩av| 老司机影院毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久电影中文字幕 | 精品久久久久久电影网| 丰满迷人的少妇在线观看| 9热在线视频观看99| 精品亚洲成国产av| 黄色视频不卡| 日韩大码丰满熟妇| 欧美日韩一级在线毛片| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 精品高清国产在线一区| 国产精品久久久久久精品古装| 91麻豆精品激情在线观看国产 | 国产精品一区二区精品视频观看| 国产一区有黄有色的免费视频| 丝袜美腿诱惑在线| 三级毛片av免费| 久久 成人 亚洲| 激情视频va一区二区三区| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产区一区二| 国产不卡av网站在线观看| 亚洲国产欧美一区二区综合| 国产区一区二久久| 少妇猛男粗大的猛烈进出视频| 久久久久久免费高清国产稀缺| 亚洲,欧美精品.| 天天操日日干夜夜撸| 人妻久久中文字幕网| 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| av有码第一页| 精品一区二区三区四区五区乱码| 在线观看免费高清a一片| 日韩欧美国产一区二区入口| av有码第一页| 久久久精品国产亚洲av高清涩受| 91精品国产国语对白视频| 狠狠精品人妻久久久久久综合| 1024香蕉在线观看| 午夜福利在线观看吧| 一级毛片电影观看| 水蜜桃什么品种好| av欧美777| 久久99一区二区三区| 欧美一级毛片孕妇| 两性午夜刺激爽爽歪歪视频在线观看 | 国产深夜福利视频在线观看| 国产三级黄色录像| 精品熟女少妇八av免费久了| 天堂8中文在线网| 亚洲五月色婷婷综合| 久久精品国产亚洲av香蕉五月 | 日韩人妻精品一区2区三区| 久久久国产一区二区| 岛国在线观看网站| 色在线成人网| 国产伦人伦偷精品视频| 成年女人毛片免费观看观看9 | 在线播放国产精品三级| a级毛片黄视频| 久久精品aⅴ一区二区三区四区| 满18在线观看网站| 日韩中文字幕视频在线看片| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 国产主播在线观看一区二区| 国产视频一区二区在线看| 80岁老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免费看| 亚洲欧美一区二区三区黑人| av又黄又爽大尺度在线免费看| 丁香六月欧美| 中文字幕精品免费在线观看视频| 久久精品国产a三级三级三级| 岛国毛片在线播放| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| 黑人巨大精品欧美一区二区蜜桃| 五月开心婷婷网| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 欧美在线黄色| 男女边摸边吃奶| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| videosex国产| 久久人妻福利社区极品人妻图片| 亚洲成a人片在线一区二区| 欧美人与性动交α欧美软件| 午夜福利视频在线观看免费| 国产av精品麻豆| 大片电影免费在线观看免费| 国产精品98久久久久久宅男小说| 久久中文看片网| 91国产中文字幕| 免费一级毛片在线播放高清视频 | 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 成人18禁在线播放| 亚洲成人免费电影在线观看| 日本黄色日本黄色录像| 午夜老司机福利片| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 国产精品一区二区免费欧美| 999久久久国产精品视频| 精品国产乱码久久久久久男人| tocl精华| 国产成人免费无遮挡视频| 亚洲美女黄片视频| 国产成人精品无人区| svipshipincom国产片| 超碰97精品在线观看| 国产成人精品在线电影| 老司机福利观看| 丰满饥渴人妻一区二区三| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 国产精品国产高清国产av | 91麻豆精品激情在线观看国产 | 美女午夜性视频免费| 亚洲一区二区三区欧美精品| 91大片在线观看| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 国产亚洲午夜精品一区二区久久| 久久国产精品影院| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久人妻精品电影 | 日日摸夜夜添夜夜添小说| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 99热网站在线观看| 欧美精品亚洲一区二区| 捣出白浆h1v1| 日韩一卡2卡3卡4卡2021年| 黄色视频在线播放观看不卡| 捣出白浆h1v1| 女人精品久久久久毛片| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 欧美黑人精品巨大| 美女主播在线视频| 夜夜骑夜夜射夜夜干| 少妇被粗大的猛进出69影院| 国产欧美日韩一区二区精品| 热re99久久国产66热| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 欧美人与性动交α欧美软件| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 男男h啪啪无遮挡| avwww免费| 女警被强在线播放| 亚洲午夜精品一区,二区,三区| 十八禁网站免费在线| 18禁裸乳无遮挡动漫免费视频| 午夜两性在线视频| 人人妻人人澡人人爽人人夜夜| 欧美一级毛片孕妇| 热re99久久国产66热| avwww免费| 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| www.999成人在线观看| 日韩中文字幕视频在线看片| 女同久久另类99精品国产91| 亚洲精品国产精品久久久不卡| 色综合欧美亚洲国产小说| 久久婷婷成人综合色麻豆| 精品免费久久久久久久清纯 | 日日夜夜操网爽| 巨乳人妻的诱惑在线观看| 成年人黄色毛片网站| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | cao死你这个sao货| 一级毛片精品| 国产xxxxx性猛交| 最近最新免费中文字幕在线| 日韩大片免费观看网站| 在线观看66精品国产| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 精品第一国产精品| 国产真人三级小视频在线观看| 精品人妻熟女毛片av久久网站| av福利片在线| 一本大道久久a久久精品| 黄片小视频在线播放| 久久久久国产一级毛片高清牌| 一边摸一边做爽爽视频免费| 捣出白浆h1v1| 国产亚洲午夜精品一区二区久久| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 另类亚洲欧美激情| 99精品久久久久人妻精品| 久久精品亚洲熟妇少妇任你| 国产精品国产av在线观看| 69精品国产乱码久久久| 一边摸一边抽搐一进一出视频| 免费在线观看完整版高清| 在线av久久热| 丝袜在线中文字幕| 少妇裸体淫交视频免费看高清 | 午夜激情久久久久久久| 国产成人精品久久二区二区免费| 极品教师在线免费播放| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲一级av第二区| 俄罗斯特黄特色一大片| 久久青草综合色| 精品亚洲乱码少妇综合久久| 久久亚洲真实| 亚洲成人手机| 黄片小视频在线播放| 最新在线观看一区二区三区| 又紧又爽又黄一区二区| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 曰老女人黄片| 大香蕉久久网| 久久久精品94久久精品| 成人国产一区最新在线观看| 男女边摸边吃奶| 精品久久久精品久久久| 十八禁网站网址无遮挡| 夫妻午夜视频| tube8黄色片| 麻豆国产av国片精品| 精品福利观看| 午夜福利在线免费观看网站| 国产99久久九九免费精品| kizo精华| 人妻久久中文字幕网| 午夜精品国产一区二区电影| 一边摸一边抽搐一进一小说 | 五月天丁香电影| 亚洲中文av在线| 高潮久久久久久久久久久不卡| 久久久欧美国产精品| 777米奇影视久久| 老熟女久久久| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 动漫黄色视频在线观看| 久久免费观看电影| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 蜜桃在线观看..| 国产精品 欧美亚洲| 欧美av亚洲av综合av国产av| 极品人妻少妇av视频| 亚洲 国产 在线| tocl精华| 丰满饥渴人妻一区二区三| 久久精品成人免费网站| 亚洲色图av天堂| 国产福利在线免费观看视频| 搡老熟女国产l中国老女人| 视频区欧美日本亚洲| 日日摸夜夜添夜夜添小说| 日韩三级视频一区二区三区| 丰满迷人的少妇在线观看| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 国产xxxxx性猛交| 亚洲第一欧美日韩一区二区三区 | 大陆偷拍与自拍| 亚洲av片天天在线观看| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区 | 亚洲人成77777在线视频| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 精品一区二区三卡| 可以免费在线观看a视频的电影网站| 免费黄频网站在线观看国产| 一进一出抽搐动态| 悠悠久久av| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 欧美日韩视频精品一区| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 国产精品久久久久久精品电影小说| 大型av网站在线播放| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 十八禁网站免费在线| 黄片播放在线免费| 日本欧美视频一区| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| 国产1区2区3区精品| 欧美变态另类bdsm刘玥| 69精品国产乱码久久久| 激情视频va一区二区三区| 亚洲七黄色美女视频| 久久人妻av系列| 欧美激情 高清一区二区三区| 可以免费在线观看a视频的电影网站| 午夜福利影视在线免费观看| 黄色视频不卡| av一本久久久久| 另类亚洲欧美激情| 成年女人毛片免费观看观看9 | 在线av久久热| 精品亚洲成a人片在线观看| 亚洲人成电影免费在线| 757午夜福利合集在线观看| 黄色视频不卡| 夫妻午夜视频| 两个人免费观看高清视频| 午夜激情久久久久久久| 精品一区二区三卡| 免费av中文字幕在线| 丝瓜视频免费看黄片| 日韩一卡2卡3卡4卡2021年| 动漫黄色视频在线观看| av福利片在线| 韩国精品一区二区三区| 久9热在线精品视频| 三上悠亚av全集在线观看| 99riav亚洲国产免费| 亚洲国产av影院在线观看| 黄色成人免费大全| 中文欧美无线码| 12—13女人毛片做爰片一| 这个男人来自地球电影免费观看| 亚洲欧美激情在线| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 99精品欧美一区二区三区四区| 亚洲国产欧美在线一区| 国产不卡一卡二| 国产单亲对白刺激| 国产高清视频在线播放一区| 欧美精品一区二区大全| 热re99久久国产66热| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| av欧美777| 老司机午夜福利在线观看视频 | 国产成人精品在线电影| 怎么达到女性高潮| 免费看a级黄色片| 大码成人一级视频| videos熟女内射| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 激情在线观看视频在线高清 | 美女高潮喷水抽搐中文字幕| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| av天堂在线播放| 精品欧美一区二区三区在线| 一个人免费看片子| 丰满人妻熟妇乱又伦精品不卡| 一本一本久久a久久精品综合妖精| 中文字幕最新亚洲高清| 99在线人妻在线中文字幕 | 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| 亚洲成a人片在线一区二区| 久久国产精品男人的天堂亚洲| 性少妇av在线| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 制服诱惑二区| 久久久久久人人人人人| 亚洲免费av在线视频|