• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc

    2023-03-13 09:19:54MeiLingLu盧美玲YaoWang王瑤HeZhiZhang張鶴之HaoLinChen陳昊林
    Chinese Physics B 2023年2期
    關(guān)鍵詞:王瑤美玲

    Mei-Ling Lu(盧美玲), Yao Wang(王瑤), He-Zhi Zhang(張鶴之), Hao-Lin Chen(陳昊林),

    Tian-Yuan Cui(崔天元)1, and Xi Luo(羅熙)1,2,?

    1College of Science,University of Shanghai for Science and Technology,Shanghai,China

    2Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai,China

    Keywords: superconducting topological surface states, chiral symmetry, topological nodal superconductor,Majorana Fermi arc

    1.Introduction

    Since the discovery of topological insulators and their material realization,[1-4]research on topological band structures has become one of the major topics in condensed matter physics.Starting from the pioneering works of Thouless,[5]Haldane,[6]Kane and Mele,[7,8]the “ten-fold way”classification[9,10]of topological insulators and topological superconductors has provided an elegant example of the interplay between symmetry and gapped band systems.The non-trivial topology can be characterized either by the total Chern number(or Z2if time reversal symmetry is present)of the occupied bands,[7,8]or through the bulk-edge correspondence;namely,there are gapless topological edge modes corresponding to the non-trivial topology of the bulk band when an open boundary condition is applied.[11]

    Besides the gapped band structure, the topology of gapless bands has also been studied.Weyl semimetals are the most well-known three-dimensional example with a nontrivial gapless band structure.[12]The Weyl node is a monopole of Berry’s phase, and is protected by its non-trivial winding number around the node.From the perspective of bulk-edge correspondence,there are surface Fermi arcs connecting Weyl nodes with opposite chiralities.[13,14]The existence of a Fermi arc is related to a two-dimensional Chern number; namely,if one considers a line connecting the Weyl nodes, and for a given momentum along the line, the Hamiltonian reduces to a quasi two-dimensional gapped system which has gapless edge modes when the bulk Chern number is non-zero,and the gapless edge modes correspond to the Fermi arcs.In other words, the Weyl semimetal is an intermediate state between a topological insulator and a trivial one.[15,16]After Weyl semimetals,the topological nodal-line semimetal has also been proposed.[17]A general relation between the topological classification of gapless systems and the gapped ones has been discussed.[18]

    A systematic way of predicting topological materials(including higher-order ones)is by comparing the possible band structures allowed by the lattice symmetry with their atomic limits,which are trivial band structures.[19-21]

    Furthermore, the concept of topological states of matter not only prospers in condensed matter physics, but also appears in classical systems and beyond, such as topological Weyl magnons,[22]topological phonons,[23-25]topological photonics,[26,27]and topological non-Hermitian systems.[28,29]Within topological systems, the topological superconductor has drawn much attention.One reason is that the Majorana zero modes and Majorana edge modes in the topological superconductor have potential applications in realizing topological quantum computation.[30-33]

    One famous scenario for realizing the Majorana zero mode is that proposed by Fu and Kane, using the proximity effect between a topological insulator and an s-wave superconductor.[34]Following this track, several possible cases of Majorana zero modes have been observed[35-42].In 2018, a 2e2/hconductance was observed in InSb nanowires,which was believed to be evidence of the Majorana zero mode,[43]but this result has been supplanted by the same authors’new data.[44]

    Recently discovered iron-based superconductors, such as FeTe0.55Se0.45,[45,46](Li0.84Fe0.16)OHFeSe,[47]LiFeAs,[48]and CaKFe4As4,[49]are new promising candidates for observing Majorana zero modes and Majorana edge modes.[50]One intriguing property of the iron-based superconductor is its endurance against a large in-plane magnetic field(e.g.,more than 20 T in thin film of FeTeSe[51,52]),which is one of the motivations of this paper.

    Since the normal state of an iron-based superconductor is a topological insulator,[53,54]we will focus on the superconductivity of the topological surface state(TSS)with an external in-plane magnetic field.We find a topological nodal phase protected by chiral symmetry (with a pseudo time-reversal symmetryT2p =1),and for open boundary conditions,a Majorana Fermi arc connects these two Majorana nodes, similar to the case of Weyl semimetal.[12]The Majorana Fermi arc is also known to be a flat band Andreev bound state[55]which can influence the interface properties drastically.[56-58]The Andreev flat band states have also been considered in two dimensions with p-wave superconductivity[59]or with inhomogeneous magnetic fields,[60]and in three dimensions with momentum dependent pairings[61]or odd-parity pairing.[62]Furthermore, we reveal that the topological nodal superconductor is an intermediate state between two different chiral superconductors, which is exactly a two-dimensional superconductor analogue of a Weyl semimetal.This nodal superconducting phase is also confirmed in a three-dimensional lattice model with thin film geometry,which is possible to realize in iron-based superconductors.The localizations of the Majorana nodes can be controlled by the in-plane magnetic field,which may introduce a non-trivial topological Berry phase between them,similar to the proposal of braiding the Weyl nodes in Weyl semimetals.[63]

    This paper is organized as follows.In Subsection 2.1,we construct an effective Bogoliubov-de Gennes(BdG)Hamiltonian for the superconducting TSSs.Although the time-reversal symmetry is broken by the external in-plane magnetic field,a pseudo time-reversal symmetryTpwithT2p =1 remains.Together with the particle-hole symmetry,a chiral symmetry can be defined,which protects the topological nodal superconducting phase.There will be a Majorana Fermi arc connecting the two nodes when open boundary conduction is applied.In Subsection 2.2,we show that the topological nodal superconductor can be viewed as an intermediate state between two chiral superconductors,which provides the topological stability of the nodal superconductor.We discuss the effects of substrates in Subsection 2.3.In Subsection 2.4, we consider a three-dimensional lattice model simulating the thin film of iron-based superconductors,[54]and the nodal superconducting phase is confirmed numerically.The last section is devoted to conclusions,and we provide more details on the band structures of the effective theory in Appendix A.

    2.Results and discussion

    2.1.Superconducting TSS under an in-plane magnetic field and Majorana Fermi arc

    We start from a general effective BdG Hamiltonian describing the superconducting TSSs of a thin film of a topological insulator

    The BdG Hamiltonian(1)is time-reversal symmetric,i.e.,T h0(q)T-1=h?0(-q), withT= iσyχ0τ0K, whereKis the complex conjugation operator.The charge conjugation can also be defined byCh0(q)C-1=-h?0(-q)withC=σ0χ0τxK.Note that in the normal state,the TSSs in top and bottom surfaces have opposite helicities; therefore there is an emergent mirror symmetry of thexyplane.The superconducting TSS is believed to respect this mirror symmetry; namely, we find thatMxyh0(q)M-1xy=h0(q)withMxy=-iσzχxτ0.[66,67]From the mirror symmetryMxy,one can note that it commutes with the odd-parity pairing termΔσyχzτywhile it anti-commutes with the even-parity pairing term,say,Δeσyχ0τy;therefore the odd-parity pairing term is favored by the mirror symmetry.

    Now we consider adding an in-plane magnetic field.Because of the two-dimensional rotation symmetry, we can choose the in-plane magnetic field to be along thex-direction without loss of generality.By adding a Zeeman term toh0,the BdG Hamiltonian becomes

    whereλxis the in-plane Zeeman coupling strength.Although the time-reversal symmetry is broken by the external magnetic field, there remains a pseudo time-reversal symmetryTp=σxχxτ0K(which is the combination of time-reversal symmetryTand the mirror symmetry-iMxy) withTphx(q)T-1p =h?x(-q), andT2p =1.The particle-hole symmetry remains true with the in-plane magnetic field.Therefore the Hamiltonianhx(2)has a chiral symmetryΞhx(q)Ξ-1=-hx(q),withΞ=CTp=σxχxτx.Namely, the system belongs to BDI.[9]The BDI superconductor is also discussed in Refs.[60,68].By substituting the momentumqi →sinqiand the topping termt →t0+t1(2-cosqx-cosqy),we can construct a lattice model of the effective Hamiltonianhx(2).We plot the band structure of the lattice model in Fig.1.From the band structure, one observes that the system is a nodal superconductor(Fig.1(a)), and there is a Majorana Fermi arc connecting the two nodes when choosing open boundary conditions along they-direction(Fig.1(b)),which provides a two-dimensional superconductor analogue of a Weyl semimetal.A more detailed study on the phase diagram of the hopping termt0andt1is provided in Appendix A.

    Similar to the case of Weyl semimetal, where the Fermi arc is related to a two-dimensional Chern number,[12]one can find a non-trivial topological number of a one-dimensional system associated with the existence of Majorana Fermi arc.To be more specific, for a givenq0x(except for the Majorana nodes),the BDI Hamiltonianhx(qy,q0x)describes a quasi onedimensional system,and it is classified by Z in 1D.[9]In order to determine the characteristic topological number,we change into the basis that diagonalizes the chiral operatorΞwith the unitary transformationUΞ,

    where

    From bulk-edge correspondence, if one considers open boundary conditions along they-direction,then for a non-zeroW(q0x), there will beW(q0x) types of Majorana zero mode(s)localizing at each end of the open boundary.W(q0x)can only change in the case when the bulk gap closes.For the parameters chosen in Fig.1(a),W(qx=0)=1 andW(qx=π)=0,which is consistent with Fig.1(b),namely,the Majorana Fermi arc, which comes from the Majorana zero modes at the ends,connects two bulk Majorana nodes,and exists whenW(q0x)/=0 and disappears whenW(q0x)=0.The physics here is similar to that of a Weyl semimetal where the Fermi arc connects two Weyl points with opposite helicities.[12]

    Fig.1.The band structures of hx (2)with μ =0, Δ =λx =1,t0 =t =0.5,and t1 =1.(a)The bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=50.The two Majorana nodes are connected by

    2.2.Interpreting the nodal superconducting phase as an intermediate phase between two chiral superconductors

    Since Weyl semimetal can be viewed as an intermediate phase between a topological insulator and a trivial one,[16]one may ask whether the nodal superconducting phase could be interpreted as an intermediate state between two topological distinct phases.The answer is yes, which also provides the topological origin of the stability of the nodal superconducting phase.

    In order to show this scenario,we add a spin-triplet intersurface pairing term into the Hamiltonianhx(2),

    whereΔtis the spin-triplet pairing strength.This term preserves the mirror symmetryMxy, and breaks both the timereversal symmetryTand the pseudo oneTp; therefore, the chiral symmetry is broken byΔt.The spin-triplet pairing can arise from the Coulomb interaction,and has played an important role in topological superconductivity, such as CuxBi2Se3in 3D[69,70]and bilayer Rashba systems in 2D.[64]

    When there are no external magnetic fields, the band spectra nearΓpoint are

    whereα=±.The topological phase boundary can be determined by the band touching at theΓpoint;[67]namely, the phase boundaries are given by

    which are two circles centered at±Δwith radiustfor fixedΔandtin theΔt-μplane; see Fig.2.In addition, within each circle,there is a topological chiral superconducting phase with a non-zero Chern number.These topological non-trivial phase are protected by the mirror symmetryMxy, and because{Mxy,C}= 0, the topological phase is classified by Z⊕Z.[66,67]More interestingly,whent&gt;Δ,these two circles intersect.Although the total Chern-number is zero in the intersection,it remains non-trivial because of the mirror symmetry and the Z⊕Z classification.In particular, whenΔt=0, the two circles coincide, and because the system is time reversal symmetric, it is classified by Z2.[9]In addition, there will be topological helical edge states when the parameters are within the circles.

    Fig.2.(a)and(b)Topological phase diagrams of h(7)in the Δt-μ plane and Δt-λx plane with Δ =1,t=0.5,(a)λx=0,and(b)μ =0. N stands for the bulk Chern number.Along the Δt =0 line within the two circles is the topological nodal superconducting phase,as confirmed numerically in Fig.1(b),which is an intermediate state between two chiral superconductors.

    Now we add in the external in-plane magnetic field.Without loss of generality,we chooseμ=0 for simplicity(the effect ofμis shown in Fig.2(a)).Then the band spectra become

    The topological phase boundary is determined as before.We plot the phase diagram in Fig.2 (see Appendix A for more details).From Fig.2(a) one notes that there are two distinct topological non-trivial regions with opposite Chern numbers when the external magnetic field is absent.Furthermore, the non-zero Chern numberNindicates that time-reversal symmetry is broken when the spin-triplet pairing termΔtexists.By turning on the external in-plane magnetic fieldλx,the two topological non-trivial regions are connected without gap closing at theΓpoint (see Fig.2(b)).From the phase diagram Fig.2(b) we have two observations.One is that the topological chiral superconducting phase is protected by the mirror symmetryMxysince the in-plane magnetic fieldλxbreaks it and causes phase transition.The other one is that because of the phase transition between these two topological non-trivial phases, the bulk gap should be closed at a momentum away from theΓpoint; in particular, the gapless phase transition occurs whenΔt=0 and the nodal superconducting phase is protected by the chiral symmetry (see Fig.1).These results are also confirmed by the numerical calculations of the lattice model, which are presented in Appendix A.To sum up,in this section,we show that the nodal superconducting phase can be viewed as an intermediate phase between two different topological non-trivial phases;therefore the nodal structure is topologically stable and protected by the chiral symmetry.

    2.3.Effects of substrate

    The superconducting TSSs could be realized in the thin films of the iron-based superconductors through the molecular beam epitaxy method[71]or exfoliation;[72]in either method,the substrate will always be present.Then we shall consider if the topological nodal superconducting phase was stable in the presence of substrate.

    Fig.3.The topological phase diagram of hsub (11)in the ν-λx plane withμ =0, Δ =1, and t =0.5.The red shaded area is the topological nodal superconducting phase which remains stable when the substrate exists.

    A uniform substrate can be treated as a difference of chemical potential of the two surfaces;therefore we consider a termνσ0χzτzto simulate the effect of the substrate.By adding this term into the Hamiltonianhx(2),it becomes

    The substrate breaks mirror symmetryMxy,but preserves chiral symmetry.We plot the phase diagram in theν-λxplane in Fig.3 with the phase boundary determined by the gap closing at theΓpoint of the above Hamiltonian.From the phase diagram,we see that the topological nodal phase is stable against the substrate.

    2.4.Three-dimensional lattice model

    In order to confirm the existence of the topological nodal superconducting phase and the Majorana Fermi arcs,here we construct a three-dimensional lattice model to mimic a thin film of topological insulator with superconductivity.For the normal state of an iron-based superconductor, we consider a four-band lattice model with two orbital degrees of freedom(pzand dx2-y2),[53,54]and the magnetic field is applied alongxdirection with Zeeman couplingλx,

    whereσiandρiare Pauli matrices acting on spin and the orbital.vis the hopping constant which we set to unity,M(q)=M0-M1(cosqx+cosqy)-M2cosqz,withMibeing constants that control the topological phase of the normal state when the magnetic field is absent.For example,we chooseM0=-8.5,M1=-3,andM2=3,such that the normal state is a topological insulator with a band inversion atZ,and there will be one TSS on each open surface along thez-direction.[53,54]The low energy effective theory of the model Hamiltonianh3D0 (12)can also describe thek·ptheory near theΓpoint of a normal state of CuxBi2Se3where the orbital degrees of freedom come from the conduction and valence bands atΓpoint.[69]

    For the superconducting part, we introduce an interorbital spin-singlet pairing term ?Δ=Δ0iσyρxwhich is inversion-odd.The reason is that,in the effective theory(1)for the superconducting TSS, the pairing term is odd under mirror symmetryMxywhich is a remnant of the three-dimensional inversion symmetry.Then the BdG Hamiltonian reads

    which is possible to be realized in the iron-based superconductors.[54,69,73]For a thin film geometry, we consider four layers along thez-direction and add an on-site energy differenceVin the top and bottom layers to simulate the effects of substrates.[54]We plot the topological band structure in Fig.4.The bulk spectra is a nodal superconductor (Fig.5(a)) and the Majorana Fermi arc exists when we choose an open boundary alongy,which is also stable against substrate potential (Fig.5(b)).The behavior of the thin film of the three-dimensional lattice model is consistent with the effective theory of the superconducting TSSs discussed in Subsection 2.1.The rich structures of the lattice model, e.g.,the emergence ofΔandΔt,will be presented in future works.

    Fig.4.The BdG band spectra of the three-dimensional lattice model h3DBdG (12) with four layers along the z-direction. M0 =-8.5, M1 =-3,M2 =3, Δ0 =1.5, V =0.5 and λx =0.5.(a) Bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=30.There is a Majorana Fermi arc connecting the Majorana nodes.

    3.Conclusion

    In summary, we study the superconducting TSSs under an external in-plane magnetic field.Due to a pseudo timereversal symmetry,the system belongs to BDI.There exists a topological nodal superconducting phase with Majorana Fermi arcs connecting the Majorana nodes,and it is an intermediate state between two different topological chiral superconductors, which fulfills a two-dimensional superconducting analogue of Weyl semimetals.This topological nodal superconducting phase is stable against substrates, and can be realized in a three-dimensional lattice model for the thin films of an iron-based superconductor[54]as well as a topological superconductor CuxBi2Se3,[69]which can endure large in-plane magnetic field.The Majorana nodes can be controlled through external in-plane magnetic field, which may introduce a nontrivial topological Berry phase between them.[63]

    Appendix A: More results on two-dimensional lattice model

    The effective BdG Hamiltonian we consider for the superconducting TSSs with an external in-plane magnetic field reads

    We plot the phase diagram in Fig.A1(a),and study the properties of different phases by numerics under open boundary conditions in Figs.A1(b)-A1(f).We fixt1=0.4 and varyt0.In Fig.A1(b),t0lies in the white regime of Fig.A1(a),which is a trivial gapped superconducting phase.In Fig.A1(c),t0lies in the pink regime,which is a topological nodal superconductor with a Majorana Fermi arc connecting the Majorana nodes.In Fig.A1(d),t0lies at the phase boundary between pink and blue regimes, where the Majorana Fermi arc remains and the bands touch atΓandX.In Fig.A1(e),t0lies in the blue regime,which shows the Majorana nodes atXevolve towardsΓand the ones atΓmove towardsX.In Fig.A1(f),t0lies in the orange regime,and the band gap has touched again atX.

    Furthermore,we plot the phase diagram inΔt-λxplane in Fig.A2(a).We also choose five typical points in Fig.A2(a)and plot their band structures(Figs.A2(b)-A2(f)).Away fromΔt=0 line, there are chiral Majorana edge modes, and their chiralities change side ifΔthas an opposite sign.In addition,alongΔt=0,the chiral Majorana edge modes evolve into the Majorana Fermi arcs that connect the Majorana nodes.

    Fig.A1.(a)The topological phase diagram of the nodal superconducting phase in t1-t0 plane withμ =0,Δ =λx=1,and Δt =0.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction, and we fix t1 =0.4.(b)t0 =2.2, in the white regime of(a).(c)t0 =1.6 in the pink regime.(d)t0=1.2,at the phase boundary.(e)t0=0.8,in the blue regime.(f)t0=0.4,in the orange regime.

    Fig.A2.(a)The topological phase diagram in the Δt-λx plane with t0 =t =0.5,t1 =1, μ =0 and Δ =1.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction.(b)Δt =1.2,λx=0,(c)Δt =0.2,λx=1,(d)Δt =0,λx=1,(e)Δt =-0.2,λx=1,(f)Δt =-1.2,λx=0.The red(blue)curve stands for the edge mode localizing at the left(right)edge.The chiralities of the chiral Majorana edge modes in(b)and(c)are opposite to those in(e)and(f),which is consistent with the bulk Chern number N in(a).

    Acknowledgments

    We thank Yue Yu and Ziqiang Wang for helpful discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.11804223(MLL,YW,HZZ,HLC,TYC,XL),11474061(XL),and 12174067(XL)).

    猜你喜歡
    王瑤美玲
    長(zhǎng)大以后做什么
    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability
    發(fā)現(xiàn)腦垂體瘤壓迫視神經(jīng)一例
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation?
    “王瑤式”說法
    愛你(2017年10期)2017-04-14 11:21:51
    春天的早晨
    王瑤怎樣當(dāng)北大教授
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    黄片播放在线免费| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 黄片无遮挡物在线观看| 国产成人91sexporn| 日韩中文字幕视频在线看片| 毛片一级片免费看久久久久| 99热这里只有是精品在线观看| 久久婷婷青草| 亚洲精品视频女| 一级毛片 在线播放| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 久久久精品免费免费高清| 国产成人精品久久久久久| 日日撸夜夜添| av不卡在线播放| 高清在线视频一区二区三区| 久久久久国产网址| 日韩精品有码人妻一区| 久久午夜福利片| 国产爽快片一区二区三区| 免费在线观看完整版高清| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图| 国产黄色视频一区二区在线观看| 欧美97在线视频| 人体艺术视频欧美日本| 99热网站在线观看| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 精品熟女少妇av免费看| 有码 亚洲区| 国产老妇伦熟女老妇高清| 久久久a久久爽久久v久久| 色网站视频免费| 日韩不卡一区二区三区视频在线| 免费观看性生交大片5| 国产亚洲一区二区精品| 国产欧美亚洲国产| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 老女人水多毛片| 欧美最新免费一区二区三区| 精品久久久久久电影网| av不卡在线播放| 在线观看一区二区三区激情| a级毛片在线看网站| 国国产精品蜜臀av免费| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 国产黄频视频在线观看| 国产免费视频播放在线视频| 国产色爽女视频免费观看| 人体艺术视频欧美日本| 国产激情久久老熟女| 国产成人aa在线观看| 美女中出高潮动态图| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 五月天丁香电影| 国产淫语在线视频| 美女大奶头黄色视频| 午夜久久久在线观看| 国产精品一区www在线观看| 亚洲国产看品久久| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 久久久久久人人人人人| 大陆偷拍与自拍| 一级毛片 在线播放| 中文字幕精品免费在线观看视频 | 这个男人来自地球电影免费观看 | 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 免费少妇av软件| 天天操日日干夜夜撸| 日韩av免费高清视频| 曰老女人黄片| 伦精品一区二区三区| 亚洲天堂av无毛| 黄色毛片三级朝国网站| 国产日韩欧美亚洲二区| a级毛片在线看网站| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 色网站视频免费| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 精品国产国语对白av| 国产色爽女视频免费观看| 制服丝袜香蕉在线| 成人漫画全彩无遮挡| 欧美成人午夜精品| 黄色配什么色好看| 少妇的丰满在线观看| 老司机影院成人| 久久婷婷青草| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 亚洲图色成人| 伊人亚洲综合成人网| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 插逼视频在线观看| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 看十八女毛片水多多多| 国产亚洲欧美精品永久| 亚洲av综合色区一区| 国产精品.久久久| 亚洲伊人久久精品综合| 女性被躁到高潮视频| 一区二区日韩欧美中文字幕 | 免费日韩欧美在线观看| 色5月婷婷丁香| 欧美人与性动交α欧美精品济南到 | 国产精品无大码| 国精品久久久久久国模美| 老熟女久久久| 国产成人精品无人区| 激情五月婷婷亚洲| 国产深夜福利视频在线观看| 22中文网久久字幕| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 国产xxxxx性猛交| 婷婷色麻豆天堂久久| 国产片内射在线| 国产精品久久久久久精品古装| 免费大片黄手机在线观看| 亚洲欧洲国产日韩| 亚洲人与动物交配视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 超碰97精品在线观看| 国产免费现黄频在线看| 精品久久蜜臀av无| 在现免费观看毛片| 精品少妇黑人巨大在线播放| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 日韩中文字幕视频在线看片| 晚上一个人看的免费电影| 国产av码专区亚洲av| 2018国产大陆天天弄谢| 久久精品久久久久久久性| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| 色网站视频免费| 一级a做视频免费观看| 少妇熟女欧美另类| 熟女电影av网| 两个人看的免费小视频| 午夜福利视频在线观看免费| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 亚洲精品色激情综合| 久久久久国产精品人妻一区二区| 久久久久久久久久人人人人人人| 伦理电影免费视频| 中文字幕亚洲精品专区| 母亲3免费完整高清在线观看 | 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 亚洲国产av新网站| 青春草国产在线视频| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站| 亚洲情色 制服丝袜| 韩国精品一区二区三区 | 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 午夜福利视频精品| 成年女人在线观看亚洲视频| 亚洲av成人精品一二三区| a级毛片黄视频| 亚洲国产日韩一区二区| 各种免费的搞黄视频| 青春草国产在线视频| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 制服丝袜香蕉在线| 91精品伊人久久大香线蕉| 男女无遮挡免费网站观看| 午夜av观看不卡| 国产在视频线精品| 黄色一级大片看看| 成人影院久久| 精品一区二区三卡| 精品一区二区三区四区五区乱码 | 亚洲欧美一区二区三区黑人 | 欧美 日韩 精品 国产| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 午夜福利乱码中文字幕| 日韩大片免费观看网站| 女的被弄到高潮叫床怎么办| 汤姆久久久久久久影院中文字幕| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 啦啦啦视频在线资源免费观看| 成人综合一区亚洲| 亚洲伊人久久精品综合| 18禁动态无遮挡网站| 男女免费视频国产| 丝袜美足系列| 久久久久久久久久成人| 国国产精品蜜臀av免费| 国产日韩欧美在线精品| 久久精品久久久久久噜噜老黄| a级毛片黄视频| 亚洲中文av在线| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 两性夫妻黄色片 | 国产精品一区二区在线观看99| 欧美另类一区| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 丝袜美足系列| 午夜福利,免费看| 日韩中文字幕视频在线看片| 国产乱人偷精品视频| 最新的欧美精品一区二区| 亚洲欧美清纯卡通| videosex国产| 亚洲精品久久午夜乱码| 久久婷婷青草| 精品午夜福利在线看| 999精品在线视频| 国产福利在线免费观看视频| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区 | 在线观看美女被高潮喷水网站| 久久国产精品男人的天堂亚洲 | 久久国产精品男人的天堂亚洲 | 免费人成在线观看视频色| 久久精品国产自在天天线| 少妇 在线观看| 日本免费在线观看一区| 久久午夜福利片| 欧美人与善性xxx| 少妇的逼好多水| 黑人巨大精品欧美一区二区蜜桃 | 97在线人人人人妻| 久久精品国产自在天天线| 亚洲精品第二区| 免费观看在线日韩| 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 久久影院123| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 99国产综合亚洲精品| 久久久久久久精品精品| kizo精华| av一本久久久久| 精品亚洲成a人片在线观看| 国产精品一国产av| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| 美女内射精品一级片tv| 欧美+日韩+精品| 亚洲成国产人片在线观看| 狠狠精品人妻久久久久久综合| 亚洲激情五月婷婷啪啪| 欧美精品亚洲一区二区| 免费观看在线日韩| 婷婷色综合www| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 日韩一区二区视频免费看| av免费在线看不卡| 欧美日韩亚洲高清精品| 日本av免费视频播放| 免费黄色在线免费观看| 亚洲精品视频女| www日本在线高清视频| 久久女婷五月综合色啪小说| 一二三四中文在线观看免费高清| 久久av网站| √禁漫天堂资源中文www| 日本91视频免费播放| 日韩不卡一区二区三区视频在线| 中文字幕免费在线视频6| 久久99精品国语久久久| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 婷婷色综合www| av有码第一页| 久久久国产一区二区| 最近2019中文字幕mv第一页| 精品国产国语对白av| videos熟女内射| 国产福利在线免费观看视频| av天堂久久9| 久久久久久久大尺度免费视频| 亚洲人成77777在线视频| 精品久久蜜臀av无| 亚洲五月色婷婷综合| 看免费成人av毛片| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 色94色欧美一区二区| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 亚洲国产精品一区三区| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 国产综合精华液| tube8黄色片| av播播在线观看一区| 精品久久久精品久久久| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 久久久国产欧美日韩av| 国产精品人妻久久久影院| 国产亚洲av片在线观看秒播厂| 少妇人妻 视频| 午夜精品国产一区二区电影| 一区二区av电影网| 熟妇人妻不卡中文字幕| 亚洲av成人精品一二三区| 中文字幕制服av| 一区在线观看完整版| 国产精品久久久久久精品古装| 只有这里有精品99| 婷婷成人精品国产| 观看av在线不卡| 成人二区视频| 五月伊人婷婷丁香| 丝瓜视频免费看黄片| 视频区图区小说| 三上悠亚av全集在线观看| av福利片在线| 亚洲伊人色综图| 精品一区二区免费观看| 涩涩av久久男人的天堂| 亚洲成国产人片在线观看| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 午夜福利乱码中文字幕| 色哟哟·www| 久热这里只有精品99| 一级片'在线观看视频| 夜夜爽夜夜爽视频| 夫妻午夜视频| 尾随美女入室| 久久97久久精品| 日本黄色日本黄色录像| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 婷婷色综合www| 精品熟女少妇av免费看| 9热在线视频观看99| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 永久免费av网站大全| 国产精品久久久久久精品电影小说| 国产成人精品无人区| 黄色视频在线播放观看不卡| 超色免费av| 热re99久久精品国产66热6| 国产精品一国产av| 自线自在国产av| 亚洲国产av新网站| 亚洲欧美色中文字幕在线| 精品午夜福利在线看| 青春草视频在线免费观看| 九色成人免费人妻av| 成年女人在线观看亚洲视频| 久久影院123| 91精品三级在线观看| 国产av国产精品国产| 性高湖久久久久久久久免费观看| 日韩欧美精品免费久久| 满18在线观看网站| 韩国av在线不卡| 亚洲美女黄色视频免费看| 国产精品久久久久久久久免| 日本wwww免费看| 乱码一卡2卡4卡精品| 亚洲国产精品专区欧美| 成人综合一区亚洲| 国产高清国产精品国产三级| 国产精品久久久av美女十八| 成人国产麻豆网| 蜜桃国产av成人99| 一区二区三区精品91| www日本在线高清视频| 国产av码专区亚洲av| 99九九在线精品视频| av有码第一页| 高清不卡的av网站| 尾随美女入室| 国产亚洲最大av| 久久久久久久亚洲中文字幕| www.色视频.com| 九九爱精品视频在线观看| 中文欧美无线码| 久久久精品区二区三区| 亚洲精品日韩在线中文字幕| 我要看黄色一级片免费的| 亚洲成人av在线免费| 国产免费视频播放在线视频| 91精品三级在线观看| 制服人妻中文乱码| 午夜影院在线不卡| 一级毛片 在线播放| 晚上一个人看的免费电影| 91国产中文字幕| 久久人人爽人人片av| 中文天堂在线官网| www日本在线高清视频| 国产一区二区激情短视频 | 夫妻午夜视频| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 亚洲高清免费不卡视频| 欧美激情极品国产一区二区三区 | 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久大尺度免费视频| 精品福利永久在线观看| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| 亚洲精品色激情综合| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| av网站免费在线观看视频| 99久久精品国产国产毛片| 国产精品一区二区在线观看99| 美女xxoo啪啪120秒动态图| videos熟女内射| 99热国产这里只有精品6| 天堂俺去俺来也www色官网| 午夜福利网站1000一区二区三区| 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看 | 亚洲丝袜综合中文字幕| 99热网站在线观看| 久久久久久久大尺度免费视频| 69精品国产乱码久久久| 国产精品人妻久久久影院| 伊人久久国产一区二区| 哪个播放器可以免费观看大片| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 9热在线视频观看99| 在线看a的网站| 国产在视频线精品| 香蕉丝袜av| 99久久精品国产国产毛片| 国产有黄有色有爽视频| 亚洲综合精品二区| 亚洲av电影在线进入| 久久 成人 亚洲| 伦理电影大哥的女人| 久久97久久精品| 99国产精品免费福利视频| 在线观看免费日韩欧美大片| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| av片东京热男人的天堂| av线在线观看网站| 免费在线观看黄色视频的| 国产乱来视频区| 边亲边吃奶的免费视频| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 精品久久久精品久久久| 黑丝袜美女国产一区| 热re99久久国产66热| 亚洲中文av在线| 久久韩国三级中文字幕| 九草在线视频观看| 国产成人免费无遮挡视频| 伦理电影大哥的女人| 91精品国产国语对白视频| 国产一区二区激情短视频 | 一区二区三区精品91| 欧美成人午夜精品| 免费人妻精品一区二区三区视频| a级毛色黄片| 久久99精品国语久久久| 妹子高潮喷水视频| 少妇被粗大猛烈的视频| av线在线观看网站| 日韩三级伦理在线观看| 国产淫语在线视频| 国产精品免费大片| 午夜免费男女啪啪视频观看| 国产日韩一区二区三区精品不卡| 亚洲高清免费不卡视频| 亚洲国产精品999| 国产日韩一区二区三区精品不卡| 尾随美女入室| 精品第一国产精品| 久久久久精品人妻al黑| 91精品国产国语对白视频| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 国产精品欧美亚洲77777| 国产淫语在线视频| 中国三级夫妇交换| 91成人精品电影| 精品午夜福利在线看| 精品视频人人做人人爽| 多毛熟女@视频| 熟女av电影| av国产精品久久久久影院| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 亚洲国产精品一区二区三区在线| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 国产 一区精品| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 久久久精品94久久精品| 宅男免费午夜| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区 | 80岁老熟妇乱子伦牲交| 黄片播放在线免费| 黄色配什么色好看| 一级毛片我不卡| 午夜日本视频在线| 极品少妇高潮喷水抽搐| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费| 飞空精品影院首页| 夫妻午夜视频| 人体艺术视频欧美日本| 成人二区视频| 日本猛色少妇xxxxx猛交久久| 色94色欧美一区二区| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看| 99re6热这里在线精品视频| 亚洲精品日本国产第一区| 又大又黄又爽视频免费| 亚洲精华国产精华液的使用体验| 欧美人与性动交α欧美软件 | 在线观看一区二区三区激情| 国产av国产精品国产| 日韩av不卡免费在线播放| 国产日韩欧美亚洲二区| 日本av手机在线免费观看| av网站免费在线观看视频| 亚洲国产精品国产精品| 在线观看美女被高潮喷水网站| 国产成人精品无人区| 黑人巨大精品欧美一区二区蜜桃 | 大陆偷拍与自拍| 亚洲精品中文字幕在线视频| 国产男女内射视频| 亚洲成人av在线免费| 超碰97精品在线观看| 午夜久久久在线观看| 大陆偷拍与自拍| 美女视频免费永久观看网站| 夫妻午夜视频| 香蕉丝袜av| 在线亚洲精品国产二区图片欧美| 国产片内射在线| 午夜福利在线观看免费完整高清在| 纯流量卡能插随身wifi吗| 国产片内射在线| 欧美xxⅹ黑人| 欧美成人午夜免费资源| 亚洲情色 制服丝袜| 边亲边吃奶的免费视频| av黄色大香蕉| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠久久av| 精品人妻一区二区三区麻豆| 日本爱情动作片www.在线观看| 22中文网久久字幕| 午夜福利视频在线观看免费| 中文字幕av电影在线播放| 日产精品乱码卡一卡2卡三| 亚洲欧美色中文字幕在线| 热re99久久国产66热| 国产精品一国产av| 少妇被粗大的猛进出69影院 | 女人久久www免费人成看片| 天堂俺去俺来也www色官网|