劉雪蘭 許發(fā)芝 (安徽農業(yè)大學安徽省人獸共患病重點實驗室,合肥 230036)
恒定鏈(Invariant chain,Ii)屬于Ⅱ型跨膜糖蛋白,在MHCⅡ類分子與抗原肽復合物的裝配過程中發(fā)揮重要作用。在內質網中,Ii 在calnexin 輔助下形成三聚體,然后與MHCⅡ類分子的α 和β 鏈形成九聚體,占據Ⅱ類分子的抗原肽結合槽,阻止內源性抗原肽的結合,與MHCⅡ類分子聚合后將其靶向定位到內體中。此外,Ii 還能與MHCⅠ類分子結合,輔助MHCⅠ類分子進行抗原的交叉呈遞[1]。早在1993 年,Saito 等[2]就發(fā)現Ii 不同程度地表達在人腎細胞癌(renal cell cancer,RCC)中而不表達在正常腎小管細胞中。除此之外,Ii 還高表達在胃癌、胰腺癌、淋巴白細胞病等腫瘤細胞表面[3-5]。Ii 在腫瘤細胞中的高表達現象表明,除了輔助MHC Ⅱ和MHCⅠ類分子呈遞抗原外,Ii 與腫瘤細胞免疫逃逸有關。本文就Ii 在腫瘤細胞中高表達對腫瘤免疫的影響及其對禽類腫瘤免疫逃逸研究的提示進行綜述。
在幽門螺旋桿菌誘發(fā)的胃癌組織中,Ii 表達的上調與胃癌細胞的增殖、腫瘤大小和腫瘤血管生成有關[6]。Jun 等[7]發(fā)現表達Ii 的非小細胞肺癌(non-small cell lung cancer,NSCLC)細胞具有較高的體外侵襲性和體內的轉移性。具有較高神經侵襲能力的胰腺癌細胞系CaPan1 和CaPan2,Ii 的轉錄水平和蛋白表達水平都明顯提高[4]。同樣現象也出現在乳腺癌、慢性淋巴白血病等癌細胞中,預示Ii與腫瘤細胞免疫逃逸有關[8,9]。
保護性T 細胞免疫建立在抗原被有效呈遞的基礎上。在正常細胞中,作為MHCⅡ類分子的重要伴侶,Ii 在抗原遞呈過程中發(fā)揮著重要作用。此外,研究結果表明,以Ii 為免疫載體,連接腫瘤、病毒等抗原肽的嵌合體疫苗能夠增強機體的T 淋巴細胞參與的免疫,有效增強機體的抗腫瘤、抗病毒效應[10-13]。
然而,Ii 在多種腫瘤細胞表面的高表達很顯然對腫瘤免疫并非發(fā)揮有效的輔助作用。腫瘤抗原是在細胞內產生的內源性抗原,Ii 在腫瘤細胞表面表達不僅沒有起到輔助MHCⅠ和MHCⅡ類分子對腫瘤抗原進行遞呈,相反,Ii 過表達通過抑制宿主免疫達到逃避細胞毒性T 細胞的攻擊,而當去除Ii 時則可以提高腫瘤抗原的遞呈[14-16]。
目前,Ii 輔助腫瘤抗原逃逸的機制雖然尚未明確,但是相關研究可以部分揭示其潛在的機制。Rangel 等[17]報道了在卵巢癌等癌細胞中,細胞膜上Ii 大量表達時,HLA-DR(MHCⅡ類分子)沒有發(fā)揮增強腫瘤免疫原性的正常效應,而是在細胞中表達HLA-DR α 鏈并減少HLA-DR β 鏈的表達(盡管可以檢測到β 鏈的轉錄水平),由此導致了腫瘤細胞表達了比例較高的尚未成熟的HLA-DR,即使同時應用了MHCⅡ類分子反式激活因子CIITA 也難以激活抗腫瘤免疫[18]。這種抑制效應,Thompson等[19]在乳腺癌細胞系HLA-DR-MCF10 中得到了驗證。當共轉染MHCⅡ和CD80 而不轉染Ii 時,腫瘤抗原疫苗能夠激活CD4+Th1 淋巴細胞[20]。Ke等[15]通過siRNA 干擾Ii 表達,結果發(fā)現DCs 的抗癌能力明顯提高,腫瘤增長受到抑制。Ii 在腫瘤細胞中過表達與MHCⅡ類分子關系并不近,相反Ii 表達水平變化時常伴隨著MHCⅠ類分子表達的異常變化。一些腫瘤表面常常出現MHCⅠ不表達或表達水平很低[21,22],但是Jiang 等[23]通過免疫組化實驗觀察了人結腸癌和正常結腸的上皮細胞中Ii 與MHCⅡ類分子的表達,結果發(fā)現在前者中隨著癌變程度從低到高,伴隨著Ii 表達直線上升,而MHCⅡ類分子沒有明顯變化,使用該方法在正常細胞中沒有檢測到Ii 和MHCⅡ類分子的顯著表達。在成熟的DC 中,當胞內MHCⅡ類分子表達量明顯下降時,Ii 含量仍然很高[24]。相反,Liu 等[25]分析了多種癌細胞中Ii 分子的表達,發(fā)現了Ii 表達的上調并伴隨著MHCⅠ類分子表達水平的升高,在癌癥病人血清中含有較高水平的MHC Ⅰ類分子[26]。Ke等[15]通過siRNA 干擾Ii 表達后發(fā)現DCs 抗癌能力的明顯提高,通過流式細胞技術分析后得到除CD4+T 淋巴細胞(主要識別MHC Ⅱ-抗原肽復合物)升高以外,CD8+T 淋巴細胞(主要識別MHCⅠ-抗原肽復合物)被激活的比例也明顯升高。此外,研究結果證實,Ii 能夠輔助MHCⅠ類分子在細胞表面的表達,即使在Ii△20(缺少內體定位序列的Ii 突變體)中,也不影響I 類分子的遷移[27]。Van 等[28]也發(fā)現如果Ii 被沉默則導致細胞表面MHCⅠ類分子表達的降低。
由此表明,Ii 輔助腫瘤免疫逃逸可能并非僅通過調控MHCⅡ類分子,很可能通過某種機制與細胞中MHC Ⅰ類分子相互作用,參與了腫瘤的免疫耐受。
近年來圍繞Ii 的相關研究進一步揭示其經典的輔助抗原遞呈功能,Ii 還能作為信號分子的研究結果受到了關注。Ii 作為結合巨噬細胞遷移抑制因子(MIF)和幽門螺旋桿菌(Helicobacter pylori,H.pylori)的受體[29,30],激活NF-κB 因子,誘導了促炎因子IL-8 的釋放,而長期慢性炎癥可能導致腫瘤的發(fā)生。此外,MIF 與Ii 結合后能夠影響TLR 受體參與的免疫通路。已經證實,在被敲除MIF 基因的小鼠體內,直腸癌組織中檢測不到TLR4 的表達,而在敲除該基因的小鼠體內可以檢測到TLR4[31]。在卵巢癌中,TLR4 已經被證實能夠促進腫瘤生長[32]。除TLR4 外,腫瘤微環(huán)境中TLR9 信號也促進了腫瘤放療后的復發(fā)[33]。在小鼠Lewis 肺癌(LCC)中,可以檢測到TLR 1~6 和TLR9 等組成性表達,在受到淋巴細胞刺激后,TLR4 會明顯增高,可能參與了腫瘤逃逸[34]。部分TLR 受體參與的免疫通路與MHCⅠ類分子和MHCⅡ類分子均有關[35,36]。而腫瘤細胞中Ii 高表達是否與TLR 等受體有關尚不清楚,有待于進一步研究。
腫瘤細胞Ii 的異常表達促使人們加深對Ii 功能的認識。腫瘤細胞表面的Ii 與腫瘤細胞質中的Ii發(fā)揮著不同的生物效應。盡管人們已經發(fā)現,表達在腫瘤細胞表面的Ii 并非像在正常細胞的胞漿中那樣輔助抗原遞呈而是起到相反的作用,從而揭示了Ii 與腫瘤細胞免疫逃逸有關,但是其調控機制還尚未明晰,還有許多問題有待探討。為什么除去Ii后可以提高腫瘤細胞的抗原遞呈能力或患瘤動物的免疫應答,而Ii 作為載體與腫瘤抗原肽連接卻可以提高免疫應答?腫瘤細胞膜表面Ii 究竟通過何種機制抑制了胞內MHC 分子對腫瘤抗原的遞呈,從而輔助了腫瘤抗原的免疫逃逸,這些均需進一步研究。隨著免疫信號分子和免疫調控網絡的深入研究,相信能夠揭示Ii 與腫瘤免疫逃逸的相關機制。
[1]Basha G,Omilusik K,Chavez-Steenbock A,et al.A CD74-dependent MHC class I endolysosomal cross-presentation pathway[J].Nat Immunol,2012,13(3):237-245.
[2]Saito T,Tomita Y,Kimura M,et al.Expression of HLA class II antigen-associated invariant chain on renal cell cancer[J].Nihon Hinyokika Gakkai zasshi,1993,84(6):1036-1040.
[3]Tamori Y,Tan XD,Nakagawa K,et al.Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma[J].Oncol Rep,2005,14(4):873-877.
[4]Koide N,Yamada T,Shibata R,et al.Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain(CD74)as a possible molecule involved in perineural invasion in pancreatic cancer[J].Clin Res,2006,12 (8):2419-2426.
[5]Van Luijn MM,Westers TM,Chamuleau MED,et al.Class II-associated invariant chain peptide expression represents a novel parameter for flow cytometric detection of acute promyelocytic leukemia[J].Am J Pathol,2011,179(5):2157-2161.
[6]Keates S,Keates AC,Nath S,et al.Transactivation of the epidermal growth factor receptor by cag+Helicobacter pylori induces upregulation of the early growth response gene Egr-1 in gastric epithelial cells[J].Gut,2005,54(10):1363-1369.
[7]Jun Hyun Jung,Johnson Hannah,Bronson Roderick T.The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation[J].Cancer Res,2012,72(15),3764-3774.
[8]Greenwood C,Metodieva G,Al-Janabi K.Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer[J].J Proteomics,2012,75(10):3031-3040.
[9]Shachar I,Haran M.The secret second life of an innocent chaperone:the story of CD74 and B cell/chronic lymphocytic leukemia cell survival[J].Leukemia & Lymphoma,2011,52 (8):1446-1454.
[10]Gupta P,Goldenberg DM,Rossi EA,et al.Dual-targeting immunotherapy of lymphoma:potent cytotoxicity of anti-CD20/CD74 bispecific antibodies in mantle cell and other lymphomas[J].Blood,2012,119(16):3767-3778.
[11]Alinari L,Christian B,Baiocchi RA.Novel targeted therapies for mantle cell lymphoma[J].Oncotarget,2012,3(2):203-211.
[12]Xu M,Lu X,Sposato M,et al.Ii-Key/HPV16 E7 hybrid peptide immunotherapy for HPV16+cancers[J].Vaccine,2009,27(34):4641-4647.
[13]Zinckgraf JW,Sposato M,Zielinski V,et al.Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination[J].Vaccine,2009,27 (39):5393-5401.
[14]Chornoguz O,Gapeev A,O'Neill MC,et al.Major histocom-patibility complex class II+invariant chain negative breast cancer cells present unique peptides that activate tumor-specific T cells from breast cancer patients[J].Mol Cell Proteomics,2012,11(11):1457-1467.
[15]Ke S,Chen XH,Zhu ZG,et al.Silencing invariant chains of dendritic cells enhances anti-tumor immunity using small-interfering RNA[J].Chin Med J(Engl),2010,123(22):3193-3199.
[16]Van Luijn MM,van den Ancker W,Chamuleau MED,et al.Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4 (+)T cells[J].Cancer Res,2011,71 (7):2507-2517.
[17]Rangel LB,Agarwal R,Sherman-Baust CA,et al.Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers[J].Cancer Biol Ther,2004,3(10):1021-1027.
[18]Rickard S,Ono SJ.Invariant chain(+)N2a neuroblastoma cells stably expressing the class II MHC transactivator CIITA fail to stimulate anti-tumor immunity[J].Exp Mol Pathol,2008,85(3):147-154.
[19]Thompson JA,Srivastava MK,Bosch JJ.The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4(+)T lymphocytes[J].Cancer Immunol Immun,2008,57(3):389-398.
[20]Ilkovitch D,Ostrand-Rosenberg S.MHC class II and CD80 tumor cell-based vaccines are potent activators of type 1 CD4(+)T lymphocytes provided they do not coexpress invariant chain[J].Cancer Immunol Immun,2004,53(6):525-532.
[21]Hasmim M,Badoual C,Vielh P,et al.Expression of EPHRINA1,SCINDERIN and MHC class Imolecules in head and neck cancers and relationship with the prognostic value of intratumoral CD8(+)T cells[J].BMC Cancer,2013,13:592.
[22]Baba T,Shiota H,Kuroda K,et al.Clinical significance of human leukocyte antigen loss and melanoma-associated antigen 4 expression in smokers of non-small cell lung cancer patients[J].Int J Clin Oncol,2013,18(6):997-1004.
[23]Jiang Z,Xu M,Savas L,et al.Invariant chain expression in colon neoplasms[J].Virchows Arch,1999,435(1):32-36.
[24]Landsverk Ole JB,Ottesen Anett H,Berg-Larsen Axel,et al.Differential regulation of MHC II and invariant chain expression during maturation of monocyte-derived dendritic cells[J].J Leukoc Biol,2012,91(5):729-737.
[25]Liu XD,Wang XJ,Capek HL,et al.Effect of invariant chain on major histocompatibility complex class I molecule expression and stability on human breast tumor cell lines[J].Cancer Immunol Immun,2009,58(5):729-736.
[26]Zhao J,Guo Y,Yan Z,et al.Soluble MHC I and soluble MIC molecules:potential therapeutic targets for cancer[J].Int Rev Immunol,2011,30(1):35-43.
[27]Reber AJ,Turnquist HR,Thomas HJ,et al.Expression of invariant chain can cause an allele-dependent increase in the surface expression of MHC class I molecules[J].Immunogenetics,2002,54(2):74-81.
[28]Van Luijn MM,van de Loosdrecht AA,Lampen MH,et al.Promiscuous binding of invariant chain-derived CLIP peptide to distinct HLA-I molecules revealed in leukemic cells[J].PLoS One,2012,7(4):e34649.
[29]Langham R,Kretzler M,Nair V.The MIF receptor CD74 in diabetic podocyte injury[J].J Am Soc Nephrol,2009,20(2):353-362.
[30]Beswick EJ,Pinchuk IV,Minch K,et al.The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production[J].Infect Immun,2006,74:1148-1155
[31]Ohkawara T,Takeda H,Miyashita K,et al.Regulation of Tolllike receptor 4 expression in mouse colon by macrophage migration inhibitory factor[J].Histochem Cell Biol,2006,125:575-582.
[32]Kelly MG,Alvero AB,Chen R,et al.TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer[J].Cancer Res,2006,66(7):3859-3868.
[33]Gao C,Kozlowska A,Nechaev S.TLR9 signaling in the tumor microenvironment initiates cancer recurrence after radiotherapy[J].Cancer Research,2013,73(24):7211-7221.
[34]Li C,Li HX,Jiang K.TLR4 signaling pathway in mouse Lewis lung cancercells promotes the expression of TGF-beta 1 and IL-10 and tumor cells migration[J].Bio-med Mater Eng,2014,24(1):869-875.
[35]Xu S,Liu X,Bao Y,et al.constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway[J].Nat Immunol,2012,13(6):551-559.
[36]Liu X,Zhan Z,Li D,et al.Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk[J].Nat Immunol,2011,12(5):416-424.