吳 琴,高云
(南昌大學(xué)基礎(chǔ)醫(yī)學(xué)院生理教研室,江西南昌 330006)
?
氧化苦參堿藥理作用的分子機(jī)制研究進(jìn)展
吳琴,高?云
(南昌大學(xué)基礎(chǔ)醫(yī)學(xué)院生理教研室,江西南昌330006)
摘要:氧化苦參堿是中藥苦參的主要有效單體,具有多種藥理作用。近年來(lái)國(guó)內(nèi)外有關(guān)氧化苦參堿藥理作用分子機(jī)制的研究較多,特別對(duì)其抗炎、抗纖維化和抗腫瘤的作用高度關(guān)注。這些作用主要是通過(guò)抗氧化和自由基、抗病毒、影響炎癥因子的分泌和細(xì)胞凋亡等途徑實(shí)現(xiàn)的。該文對(duì)其對(duì)肝臟、心血管、內(nèi)分泌和神經(jīng)系統(tǒng)作用的可能分子機(jī)制進(jìn)行了總結(jié)。
關(guān)鍵詞:氧化苦參堿;藥理作用;分子機(jī)制;炎癥因子;細(xì)胞凋亡;抗纖維化
氧化苦參堿(oxymatrine,OMT)是從豆科槐屬植物苦參(sophoraflavescens ait)中提取的生物堿,具有四環(huán)喹嗪啶類(lèi)結(jié)構(gòu)。研究證實(shí)氧化苦參堿具有抗炎、抗纖維化、抗增殖等多方面的藥理活性和臨床應(yīng)用。本文就其對(duì)肝臟、心血管、內(nèi)分泌和神經(jīng)系統(tǒng)作用的可能分子機(jī)制進(jìn)行了總結(jié)為其臨床用藥及進(jìn)一步開(kāi)發(fā)提供參考。
1.1抗肝臟脂肪化Shi等[1]采用高果糖飲食誘導(dǎo)大鼠脂肪肝模型研究,結(jié)果表明氧化苦參堿以劑量依賴(lài)的方式減少體重增加,降低肝重、肝指數(shù)、血脂異常以及肝臟中甘油三酯水平。氧化苦參堿明顯增加肝臟CPT1A活動(dòng),增強(qiáng)脂肪酸的β-氧化作用,減少肝臟甘油三酯蓄積,其減少肝脂質(zhì)的分子機(jī)制可能是脂肪酸β-氧化增加的結(jié)果。也有研究發(fā)現(xiàn)氧化苦參堿可抑制Srebf1表達(dá),使轉(zhuǎn)換乙酰輔酶A為丙二酰輔酶A的限速酶Acc表達(dá)降低,導(dǎo)致脂肪酸合成減少[2]。此外PPARα也是調(diào)控肝臟脂質(zhì)代謝的一個(gè)重要的轉(zhuǎn)錄因子,在脂肪酸代謝中起關(guān)鍵作用。研究表明,氧化苦參堿可能通過(guò)激活PPARα介導(dǎo)的基因轉(zhuǎn)錄來(lái)增強(qiáng)肝臟脂肪酸的β-氧化,從而降低肝臟脂肪合成[1]。
1.2抗肝臟纖維化氧化苦參堿能抑制小鼠肝星狀細(xì)胞活性和增殖作用,明顯降低成纖維細(xì)胞Ⅲ型前膠原mRNA及轉(zhuǎn)化生長(zhǎng)因子(TGF-β1)的表達(dá)[3],通過(guò)降低TIMP的表達(dá)
來(lái)有效抑制CCl4誘導(dǎo)肝組織纖維生成。近來(lái)研究表明,p38促分裂原活化蛋白激酶(MAPK)信號(hào)途徑在肝纖維化中起重要作用,Deng等[4]證實(shí)調(diào)節(jié)p38蛋白激酶信號(hào)通路可改善肝臟纖維化。也有研究證明氧化苦參堿可有效地減少實(shí)驗(yàn)性大鼠肝組織膠原蛋白的產(chǎn)生和沉積、促進(jìn)Smad蛋白7的表達(dá)、抑制Smad 3和CBP的表達(dá),調(diào)控TGFbeta-Smad纖維化信號(hào)轉(zhuǎn)導(dǎo)通路,達(dá)到抗肝臟纖維化效果[5]。同時(shí),F(xiàn)an等[6]通過(guò)體外培養(yǎng)人瘢痕疙瘩成纖維細(xì)胞發(fā)現(xiàn)氧化苦參堿減少膠原蛋白和Smad3蛋白合成,抑制Smad3蛋白磷酸化。1.3抗病毒作用氧化苦參堿具有直接抗乙型肝炎病毒和丙型肝炎病毒作用,可抑制HepG2.2.15細(xì)胞分泌HBsAg和HBeAg,抑制HCV的復(fù)制[7]。有研究報(bào)道,氧化苦參堿對(duì)乙肝病毒轉(zhuǎn)基因小鼠血清HBV DNA具有抑制作用。Gu等[8]經(jīng)分析臨床病例得出氧化苦參堿能夠清除或者抑制慢性乙型肝炎患者HBV水平,其可能機(jī)制是下調(diào)患者外周血HBV特異性CTL表面的PD-1的表達(dá),增加HBV特異性CTL水平。
2.1抗肺動(dòng)脈高壓肺動(dòng)脈高壓是一種漸進(jìn)性疾病,特點(diǎn)是肺動(dòng)脈重塑和血管阻力增加,炎癥和氧化應(yīng)激促進(jìn)其發(fā)展。研究發(fā)現(xiàn)氧化苦參堿通過(guò)抑制肺動(dòng)脈平滑肌細(xì)胞的增殖及減弱肺小動(dòng)脈收縮來(lái)緩解肺動(dòng)脈重構(gòu)。另外,已有研究表明持續(xù)性肺血管收縮導(dǎo)致血管重建和肺動(dòng)脈高壓,而氧化苦參堿可抑制缺氧或MCT誘導(dǎo)的炎癥反應(yīng)及氧化應(yīng)激,也在體外直接抑制缺氧或TGF-β誘導(dǎo)的肺動(dòng)脈平滑肌細(xì)胞增殖,從而明顯防止肺動(dòng)脈高壓的發(fā)展。HIFs由HIF-1α和HIF -1β亞基組成的炎性介質(zhì),參與了慢性缺氧和MCT誘導(dǎo)的肺動(dòng)脈高壓的發(fā)展[9-10],缺氧或MCT使HIF-1α活性增強(qiáng),而氧化苦參堿明顯抑制HIF-1α的表達(dá)。NF-κB是主要炎癥和氧化還原敏感的轉(zhuǎn)錄因子,被認(rèn)為激發(fā)炎癥反應(yīng)、調(diào)控促炎因子生成。Fan等認(rèn)為氧化苦參堿通過(guò)下調(diào)NF-κB的表達(dá)保護(hù)大腦局灶性缺血[9],氧化苦參堿明顯抑制肺組織中NF-κB活化,降低炎性細(xì)胞因子和粘附分子表達(dá),減少炎癥細(xì)胞聚集。缺氧已被認(rèn)為在ROS產(chǎn)生的一個(gè)重要因素,并且ROS還可能影響HIF活性[11-13]。此外,NF-κB家族的轉(zhuǎn)錄因子是由活性氧調(diào)節(jié)[14-15]。故限制ROS的潛在毒性可能是改善肺動(dòng)脈高壓的一個(gè)靶點(diǎn)。氧化苦參堿抑制肺動(dòng)脈平滑肌細(xì)胞中過(guò)氧化氫的產(chǎn)生。Nrf2被稱(chēng)為氧化應(yīng)激的關(guān)鍵感受器和抗氧化蛋白如SODs和HO-1的轉(zhuǎn)錄激活劑[16],在調(diào)節(jié)活性氧代謝中發(fā)揮重要作用。缺氧明顯抑制Nrf2的表達(dá)及下調(diào)抗氧化蛋白SOD1 和HO-1的水平,而氧化苦參堿明顯上調(diào)Nrf2和抗氧化蛋白SOD1、HO-1的表達(dá)??傊?,氧化苦參堿通過(guò)抗增殖、抗炎、抗氧化來(lái)防止肺動(dòng)脈高壓。
2.2抗急性心肌缺血損傷作用氧化苦參堿具有對(duì)抗急性心肌缺血損傷,改善慢性心力衰竭大鼠心肌細(xì)胞功能及血流動(dòng)力學(xué),逆轉(zhuǎn)心室重塑等明顯的心血管作用[17],Li等[18]證實(shí)苦參堿對(duì)異丙腎上腺素致大鼠急性心肌缺血損傷具有保護(hù)作用,其機(jī)制與ADMA代謝通路有關(guān),此后王洋等[19]通過(guò)ISO誘導(dǎo)大鼠慢性心力衰竭模型,發(fā)現(xiàn)氧化苦參堿減輕ISO所致慢性心力衰竭大鼠心肌組織纖維化最明顯,而對(duì)炎細(xì)胞浸潤(rùn)、心肌細(xì)胞水腫及毛細(xì)血管擴(kuò)張無(wú)明顯改善,與前期研究氧化苦參堿改善心力衰竭大鼠心室重構(gòu)和心肌損傷一致,其可能機(jī)制與增加心肌組織DDAH2的表達(dá),進(jìn)而降低血清ADMA水平有關(guān)。
眾所周知,脊髓NMDA受體促進(jìn)脊髓內(nèi)興奮性突觸傳遞,在脊髓背根神經(jīng)元和傷害性傳播的興奮中起著重要作用[20]。功能性NMDA受體,比如NR2B亞基與疼痛信號(hào)的傳遞有更為重要的相關(guān)性[21-22]。OMT通過(guò)抑制NMDA受體相關(guān)的ERK/CREB激活來(lái)鎮(zhèn)痛。轉(zhuǎn)錄因子cAMP反應(yīng)元件結(jié)合蛋白(CREB),其可通過(guò)多種細(xì)胞內(nèi)激酶響應(yīng)于生理和病理刺激的廣闊范圍被磷酸化。據(jù)報(bào)道NMDA受體激活誘導(dǎo)Ca2+內(nèi)流可觸發(fā)CREB磷酸化的早期階段,CREB的磷酸化持續(xù)階段由延遲的細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)信號(hào)介導(dǎo),對(duì)慢性疼痛的發(fā)展與維持很重要[23]。另外,ERK磷酸化谷氨酸受體,通過(guò)在背角神經(jīng)元翻譯后和CREB或ELK-1介導(dǎo)的轉(zhuǎn)錄調(diào)控來(lái)使中樞敏感化[24-26],而OMT可降低CCI模型ERK、CREB的磷酸化。由此可見(jiàn)NMDA NR2B receptor-ERK/CREB的調(diào)控也許是OMT鎮(zhèn)痛效果的靶點(diǎn)。
OMT慢性治療可緩解糖尿病大鼠相關(guān)的認(rèn)知下降,與氧化應(yīng)激、炎癥反應(yīng)和細(xì)胞凋亡級(jí)聯(lián)反應(yīng)相關(guān)。
在人類(lèi)糖尿病,慢性高血糖癥在發(fā)病率很高的進(jìn)行性癡呆中起重要作用[27]。內(nèi)皮氧化應(yīng)激已被證明會(huì)造成嚴(yán)重的血管損傷[28],而氧化損傷大鼠突觸可誘發(fā)認(rèn)知缺陷[29]。OMT可降低血糖水平,改善認(rèn)知功能,抑制氧化應(yīng)激反應(yīng),減輕炎癥反應(yīng)并抑制神經(jīng)細(xì)胞凋亡。慢性高血糖刺激,微血管和神經(jīng)組織的內(nèi)源性TNF-α生成加速,可能增加微血管通透性、血液高凝狀態(tài)及神經(jīng)元損傷,促進(jìn)糖尿病微血管病變的發(fā)展。而NF-κB可能是炎性損傷的關(guān)鍵調(diào)節(jié)劑之一[30-31],線粒體活性氧能調(diào)節(jié)腫瘤壞死因子α介導(dǎo)的NF-κB活化,并誘導(dǎo)細(xì)胞凋亡[32-33]。OMT可抑制氧化應(yīng)激和劑量依賴(lài)性地抑制NF-κB信號(hào)傳導(dǎo)。另外,研究發(fā)現(xiàn)糖尿病患者大腦皮質(zhì)和海馬Caspase-3活性明顯升高,OMT通過(guò)降低Caspase-3活性來(lái)抑制糖尿病大鼠模型中神經(jīng)元細(xì)胞細(xì)胞凋亡。
研究證明,氧化苦參堿通過(guò)提高胰島素釋放及增加胰島素敏感性來(lái)降低高果糖飲食聯(lián)合STZ誘導(dǎo)致糖尿病大鼠血糖,顯著降低糖化血紅蛋白、食物和水?dāng)z入量、非酯化脂肪酸(NEFA)、總膽固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL-C),增加血清胰島素、高密度脂蛋白(HDL-C)、胰高血糖素樣肽-1(GLP-1)、肌肉葡萄糖轉(zhuǎn)運(yùn)蛋白-4(GLUT-4)。胰腺和肝的組織學(xué)檢查提示,氧化苦參堿保護(hù)胰島結(jié)構(gòu)和防止肝臟結(jié)構(gòu)紊亂。
長(zhǎng)期高脂飲食導(dǎo)致胰島素抵抗和高胰島素血癥,代償性高胰島素血癥壓力下,胰島β細(xì)胞容易被低劑量STZ破壞[34,37],導(dǎo)致高血糖,而氧化苦參堿具有降血糖作用,推斷其潛在機(jī)制:首先,刺激胰島素釋放或再生胰島β細(xì)胞;其次,提高靶組織對(duì)胰島素的敏感性。研究表明糖尿病大鼠模型中血清胰島素水平和胰島細(xì)胞的數(shù)量和大小明顯降低,與前期報(bào)道一致[36],氧化苦參堿可明顯增加胰島數(shù)量,促進(jìn)糖尿病大鼠的胰島素分泌。GLP-1,由腸道的L細(xì)胞分泌的腸促胰島素激素,餐后被迅速釋放,刺激胰島素分泌,以葡萄糖依賴(lài)性方式抑制胰高血糖素的分泌。GLP-1已經(jīng)被作為2型糖尿病的一個(gè)新藥理學(xué)治療法[37]。氧化苦參堿可明顯增加血清GLP-1水平,這可能是其增加胰島素分泌和改善胰島β細(xì)胞受損的機(jī)制。甘油三酯和游離脂肪酸的氧化競(jìng)爭(zhēng)性抑制葡萄糖氧化,從而降低骨骼肌中葡萄糖攝入與利用。同時(shí),胰島素缺乏導(dǎo)致脂質(zhì)代謝異常,包括動(dòng)物脂質(zhì)積累[38-39],而氧化苦參堿明顯降低高甘油三酯血癥和高膽固醇血癥,其可能機(jī)制是氧化苦參堿降低甘油三酯和膽固醇的吸收和內(nèi)源性合成,同時(shí)增加外周組織的攝入。肝臟病理組織學(xué)研究發(fā)現(xiàn),氧化苦參堿降低肝細(xì)胞肥大,表明氧化苦參堿防止肝損傷[35]。GLUT-4存在于脂肪組織、骨骼肌和心肌,通過(guò)易位和激活胰島素觸發(fā)在葡萄糖穩(wěn)態(tài)中起關(guān)鍵作用[40]。高糖下,由于胰島素信號(hào)損傷,GLUT-4表達(dá)和易位減少,導(dǎo)致脂肪組織和骨骼肌中葡萄糖的消耗減少[41]。而氧化苦參堿可增加骨骼肌中GLUT-4含量,提高葡萄糖轉(zhuǎn)運(yùn),起降低血糖作用。
氧化苦參堿的各種藥理作用,并不是單一作用的結(jié)果,它具有多種作用途徑,如抗氧化應(yīng)激、減輕炎癥反應(yīng)、參與細(xì)胞凋亡級(jí)聯(lián)反應(yīng)、抗組織纖維化、抑制癌基因表達(dá)、誘導(dǎo)腫瘤細(xì)胞凋亡作用等等。目前總的來(lái)說(shuō),氧化苦參堿的藥理作用分子機(jī)制研究仍然不夠明確,有必要對(duì)此進(jìn)一步開(kāi)展深入研究,為臨床用藥提供理論參考,同時(shí)隨著分子機(jī)制研究的深入進(jìn)一步發(fā)現(xiàn)更多新的藥理功能,氧化苦參堿會(huì)有更廣闊的開(kāi)發(fā)應(yīng)用空間。
參考文獻(xiàn):
[1]Shi LJ,Shi L,Song GY,et al.Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparalpha)[J].Eur J Pharmacol,2013,714(1-3) :89-95.
[2]Wang X,Wei D,Zhou L,et al.Simple method for large-scale isolation and purification of gangliosides by non-ionic adsorption chromatography[J].Prep Biochem Biotechnol,2004,34(4) : 305-13.
[3]陳源文,李定國(guó),吳建新,等.氧化苦參堿對(duì)轉(zhuǎn)化生長(zhǎng)因子B1促肝星狀細(xì)胞活化及跨膜信號(hào)轉(zhuǎn)導(dǎo)影響[J].胃腸病學(xué)和肝病學(xué)雜志,2005,14(1) :31-5.
[3]Chen Y W,Li D G,Wu J X,et al.Effects of oxymatrine on hepatic stellate cells activation and its transmembrane signaling stimulated by TGF-β1[J].Chin J Gastro Hepa,2005,14(1) : 31-35.
[4]Deng Z Y,Li J,Jin Y,et al.Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with CCl4 induced hepatic fibrosis[J].Chin Med J (Engl),2009,122 (12) :1449-54.
[5]Wu X L,Zeng W Z,Jiang M D,et al.Effect of Oxymatrine on the TGFbeta-Smad signaling pathway in rats with CCl4-induced hepatic fibrosis[J].World J Gastroenterol,2008,14(13) :2100-5.
[6]Fan D L,Zhao WJ,Wang YX,et al.Oxymatrine inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-beta1/Smad signaling pathway[J].Int J Dermatol,2012,51(4) :463-72.
[7]Lu L G,Zeng M D,Mao Y M,et al.Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice[J].World J Gastroenterol,2004,10(8) :1176-9.
[8]Gu X B,Yang X J,Hua Z,et al.Effect of oxymatrine on specific cytotoxic T lymphocyte surface programmed death receptor-1 expression in patients with chronic hepatitis B[J].Chin Med J (Engl),2012,125(8) :1434-8.
[9]Chirala S S,Wakil S J.Structure and function of animal fatty acid synthase[J].Lipids,2004,39(11) :1045-53.
[10]Hashimoto T,F(xiàn)ujita T,Usuda N,et al.Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase.Genotype correlation with fatty liver phenotype [J].J Biol Chem,1999,274(27) :19228-36.
[11]Frid M G,Brunetti J A,Burke D L,et al.Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage[J].Am J Pathol,2006,168(2) :659-69.
[12]Fan H,Li L,Zhang X,et al.Oxymatrine downregulates TLR4,TLR2,MyD88,and NF-kappaB and protects rat brains against focal ischemia[J].Mediators Inflamm,2009,2009:704706.
[13]Ito H,Tamura M,Matsui H,et al.Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells[J].J Clin Biochem Nutr,2014,54(2) :81-5.
[14]Zorov D B,Juhaszova M,Sollott S J.Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J].Physiol Rev,2014,94(3) :909-50.
[15]Kalogeris T,Bao Y,Korthuis R J.Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning[J].Redox Biol,2014,2:702-14.
[16]Barnes P J,Karin M.Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases[J].N Engl J Med,1997,336(15) :1066-71.
[17]胡海波.氧化苦參堿對(duì)心血管疾病的藥理作用及其機(jī)制研究進(jìn)展[J].中國(guó)藥業(yè),2012,21(13) : 110.
[17]Hu H B.Research progress on pharmacological effects and mechanism of oxymatrine in cardiovascular disease[J].China Pharmaceut,2012,21(13) :110.
[18]Li X,Wang X,Guo Y,et al.Regulation of endothelial nitric oxide synthase and asymmetric dimethylarginine by matrine attenuates isoproterenol-induced acute myocardial injury in rats[J].J Pharm Pharmacol,2012,64(8) :1107-18.
[19]王洋,徐燁華,熊愛(ài)琴,等.氧化苦參堿抑制異丙腎上腺素誘導(dǎo)大鼠慢性心力衰竭及對(duì)ADMA代謝通路的影響[J].中國(guó)中藥雜志,2014,39(3) :471-6.
[19]Wang Y,Xu Y H,Xiong A Q,et al.Protective effect of oxymatrine on chronic heart failure and ADMA metabolism pathway in isoproterenol-induced chronic heart failure in rats[J].China J Chin MatMed,2014,39(3) :471-6.
[20]Nakajima S,Kitamura M.Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response [J].Free Radic Biol Med,2013,65:162-74.
[21]Jaiswal A K.Nrf2 signaling in coordinated activation of antioxidant gene expression[J].Free Radic Biol Med,2004,36(10) : 1199 -207.
[22]Gao X,Kim HK,Chung JM,Chung K.Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats[J].Pain,2005,116(1-2) : 62 -72.
[23]Wilson J A,Garry E M,Anderson H A,et al.NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists[J].Pain,2005,117 (3) :421-32.
[24]Paoletti P,Neyton J.NMDA receptor subunits: function and pharmacology[J].Curr Opin Pharmacol,2007,7(1) :39-47.
[25]Laurie DJ,Bartke I,Schoepfer R,et al.Regional,developmental and interspecies expression of the four NMDAR2 subunits,examined using monoclonal antibodies[J].Brain Res Mol Brain Res,1997,51(1-2) :23-32.
[26]Song XS,Cao J L,Xu Y B,et al.Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats[J].Acta Pharmacol Sin,2005,26 (7) :789-98.
[27]Kawasaki Y,Kohno T,Zhuang Z Y,et al.Ionotropic and metabotropic receptors,protein kinase A,protein kinase C,and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons,leading to central sensitization[J].J Neurosci,2004,24(38) : 8310 -21.
[28]Ji R R,Baba H,Brenner G J,et al.Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity[J].Nat Neurosci,1999,2(12) :1114-9.
[29]Ryan C M,Geckle M O,Orchard T J.Cognitive efficiency declines over time in adults with type 1 diabetes: effects of micro-and macrovascular complications[J].Diabetologia,2003,46 (7) : 940-8.
[30]Angeli J K,Cruz Pereira C A,de Oliveira Faria T,et al.Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2[J].Free Radic Biol Med,2013,65:838-48.
[31]Hasanein P,Shahidi S.Effects of hypericum perforatum extract on diabetes-induced learning and memory impairment in rats[J].Phytother Res,2011,25(4) :544-9.
[32]Hughes G,Murphy M P,Ledgerwood E C.Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants[J].Biochem J,2005,389(Pt 1) :83-9.
[33]Hong K,Zhang Y,Guo Y,et al.All-trans retinoic acid attenuates experimental colitis through inhibition of NF-kappaB signaling[J].Immunol Lett,2014,162(1PtA) :34-40.
[34]Davidson E P,Coppey L J,Holmes A,et al.Effect of treatment of high fat fed/low dose streptozotocin-diabetic rats with Ilepatril on vascular and neural complications[J].Eur J Pharmacol,2011,668(3) :497-506.
[35]Tahara A,Matsuyama-Yokono A,Shibasaki M.Effects of antidiabetic drugs in high-fat diet and streptozotocin-nicotinamide-induced type 2 diabetic mice[J].Eur J Pharmacol,2011,655(1-3) : 108-16.
[36]Prabhakar P K,Prasad R,Ali S,et al.Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats[J].Phytomedicine,2013,20(6) : 488-94.
[37]Jimenez A,Mari A,Casamitjana R,et al.GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes[J].Diabetes,2014,63(10) :3372-7.
[38]Moree S S,Kavishankar G B,Rajesha J.Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats[J].Phytomedicine,2013,20(3-4) :237-45.
[39]Rajalingam R,Srinivasan N,Govindarajulu P.Effects of alloxan induced diabetes on lipid profiles in renal cortex and medulla of mature albino rats[J].Indian J Exp Biol,1993,31(6) : 577-9.
[40]Charron M J,Katz E B,Olson A L.GLUT4 gene regulation and manipulation[J].J Biol Chem,1999,274(6) :3253-6.
[41]Gandhi G R,Stalin A,Balakrishna K,et al.Insulin sensitization via partial agonism of PPARgamma and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats[J].Biochim Biophys Acta,2013,1830(1) :2243-55.
◇論著◇
Research advances in molecular mechanism of pharmacological actions of oxymatrine
WU Qin,GAO Yun
(Dept of Physiology,Basic Medical College,Nanchang University,Nanchang 330006,China)
Abstract:Oxymatrine is the main effective monomer of Radix Sophorae flavescentis(Kushen),which has a variety of pharmacological actions and valuable clinical applications.Recently,there are many reports about molecular mechanisms of oxymatrine pharmacological actions,giving highly attention to the anti-inflammatory,anti-fibrosis and antineoplastic effects.These effects are achieved through resisting of oxidation and free radical,anti-virus,and affecting the secretion of inflammatory factor and apoptosis and so on.This article summarizes the reports on the molecular mechanism of the protection on liver,cardiovascular system,endocrine system and nervous system,hoping to provide theoretical basis for the practical application.
Key words:oxymatrine; pharmacologic actions; molecular mechanism; inflammatory factor; cell apoptosis; anti-fibrosis
作者簡(jiǎn)介:吳琴(1985-),女,碩士生,研究方向:生理學(xué)。E-mail: 271872335@ qq.com;高云(1973-),女,博士,教授,博士生導(dǎo)師,研究方向:生理學(xué)和神經(jīng)藥理學(xué),通訊作者,E-mail: gaoyun90 @ 163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(No 81100829,81360136) ;江西省青年科學(xué)家培養(yǎng)計(jì)劃(2010) ;江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計(jì)劃(2014)
收稿日期:2015-01-08,修回日期:2015-03-20
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-1978(2015) 06-0759-04中國(guó)圖書(shū)分類(lèi)號(hào): R-05; R282.710.5; R284.1
doi:10.3969/j.issn.1001-1978.2015.06.005