金 賀,王 蓉,2,3,4
(1.首都醫(yī)科大學(xué)宣武醫(yī)院中心實驗室,2.北京市老年醫(yī)療研究中心,3.北京腦重大疾病研究院,4.神經(jīng)變性病教育部重點實驗室,北京 100053)
阿爾茨海默病(Alzheimer’s disease,AD)又稱老年性癡呆,是一種最常見的中樞神經(jīng)系統(tǒng)退行性疾病。該病起病隱匿,呈漸進(jìn)性發(fā)展,患者主要表現(xiàn)為記憶力下降、認(rèn)知能力減退,最終導(dǎo)致生活自理能力完全喪失[1]。隨著社會人口老齡化的進(jìn)展,AD已嚴(yán)重威脅人類健康,龐大的患者群體給家庭和社會帶來了沉重的精神和經(jīng)濟(jì)負(fù)擔(dān)。但該病的發(fā)病機(jī)制目前尚未明確。尸檢研究證實β淀粉樣肽(β-amyloid peptide,Aβ)沉積形成的老年斑(senile plaque,SP)和神經(jīng)元纖維纏結(jié)(nerve fiber tangles,NFT)是AD的兩大病理特征,并且已經(jīng)被列入AD的診斷標(biāo)準(zhǔn)[2,3]。由于寡聚態(tài)的Aβ具有神經(jīng)毒性,可引發(fā)復(fù)雜的級聯(lián)反應(yīng),最終導(dǎo)致神經(jīng)元死亡和疾病的發(fā)生[4],其產(chǎn)生過多或清除障礙在AD的發(fā)生發(fā)展過程中扮演重要角色。而自噬作為細(xì)胞內(nèi)清除異常折疊蛋白質(zhì)、受損細(xì)胞器和其他有害物質(zhì)的主要途徑,對β淀粉樣肽產(chǎn)生和清除的平衡具有重要作用[5]。筆者擬就目前AD中有關(guān)自噬與β淀粉樣肽關(guān)系的研究進(jìn)展做一綜述。
泛素-蛋白酶體系統(tǒng)和自噬溶酶體系統(tǒng)是真核細(xì)胞降解和循環(huán)利用細(xì)胞內(nèi)物質(zhì)的兩種主要途徑,泛素-蛋白酶系統(tǒng)主要降解短半衰期蛋白質(zhì),而自噬主要降解長半衰期蛋白質(zhì)和細(xì)胞器[6]。因此自噬是維持細(xì)胞正常周期的必要程序。根據(jù)底物進(jìn)入到溶酶體腔途徑的不同,哺乳動物自噬可分為三類:大自噬 (macroautophagy)、小自噬(microautophagy)和分子伴侶介導(dǎo)的自噬(chaperone-mediated autophagy)[7]。由于大自噬是自噬的主要途徑,本文所述及的自噬均指大自噬。自噬途徑起始于細(xì)胞內(nèi)形成雙層膜結(jié)構(gòu)的自噬泡,自噬泡包裹細(xì)胞內(nèi)受損細(xì)胞器和聚集的蛋白質(zhì),并逐漸延長、融合,形成自噬小體,自噬小體進(jìn)一步與溶酶體融合形成自噬溶酶體,溶酶體內(nèi)水解酶降解加工底物以維持細(xì)胞內(nèi)代謝平衡[6]。自噬過程受30多種自噬相關(guān)基因(autophagy-related gene,Atg)以及其他分子的調(diào)控,分為啟動、延長、融合、降解四個步驟。在自噬的啟動和延長階段主要受哺乳動物雷帕霉素靶蛋白(mTOR)途徑以及PI3KIII型途徑的調(diào)節(jié);自噬體與溶酶體融合的過程受LC3、beclin-1、LAMP1和2及早老素1等的調(diào)控;而溶酶體內(nèi)多種蛋白水解酶則參與自噬降解過程。由于大量研究表明異常聚集的蛋白質(zhì)可以導(dǎo)致細(xì)胞器損害、突觸功能障礙和神經(jīng)元退化,因此自噬作為清除細(xì)胞外異常聚集蛋白質(zhì)的主要途徑,其在中樞神經(jīng)系統(tǒng)退行性疾病的發(fā)生發(fā)展中具有重要作用[8]。
AD是一種以漸進(jìn)性癡呆為特征性臨床表現(xiàn)的中樞神經(jīng)系統(tǒng)退行性疾病,病理改變主要有腦萎縮,細(xì)胞外Aβ形成的老年斑沉積和細(xì)胞內(nèi)tau蛋白磷酸化形成的神經(jīng)元纖維纏結(jié)。近年來很多學(xué)者認(rèn)為,作為老年斑主要成分的Aβ可能是AD的原發(fā)性病理因子[9]。在正常情況下Aβ的產(chǎn)生和降解保持平衡。大量證據(jù)表明無論是AD模型還是AD患者,自噬功能異常均與Aβ的產(chǎn)生、清除及其誘導(dǎo)的神經(jīng)毒性密切相關(guān)。Aβ沉積之前,PS1/APP小鼠神經(jīng)細(xì)胞內(nèi)就已發(fā)現(xiàn)大量自噬小體的存在,8周齡小鼠神經(jīng)細(xì)胞自噬囊泡數(shù)目較正常小鼠高5倍,而9月齡小鼠則至少高23倍[10,11]。而且自噬相關(guān)標(biāo)志物Atg5、Atg12和LC3與AD的老年斑沉積和神經(jīng)原纖維纏結(jié)等病理改變相關(guān)[12]。對AD相關(guān)基因的研究也表明PS-1、GSK-3β可通過干擾溶酶體酸化和自噬降解過程而介導(dǎo)AD的發(fā)生[13,14],而早發(fā)型AD相關(guān)基因APP突變及過表達(dá)ApoE4均可導(dǎo)致自噬溶酶體功能損害[15],提示自噬溶酶體途徑參與AD的發(fā)生發(fā)展。
多項研究業(yè)已證實,以自噬途徑為靶點進(jìn)行干預(yù)是改善AD病理表現(xiàn)行之有效的方法。例如雷帕霉素、Dimebon等可通過抑制mTOR活性激活自噬從而改善AD動物模型的病理和行為學(xué)表現(xiàn)[16,17]。亮氨酸缺乏可引起引起SH-SY5Y細(xì)胞發(fā)生自噬,并且Aβ隨之減少[18]。牛蒡子提取物牛蒡子甘元既可通過促進(jìn)自噬而增加Aβ清除又可減少Aβ生成[19]。并且條件性去除小鼠中樞神經(jīng)系統(tǒng)的自噬相關(guān)蛋白(ATGs)可導(dǎo)致其自噬功能喪失并伴隨泛素化蛋白的聚集和神經(jīng)退行性病變的發(fā)生[20,21]。ATG5基因敲除或beclin1和Ulk1基因沉默細(xì)胞Aβ和βCTF水平顯著升高[22]。但自噬在AD發(fā)生發(fā)展中的具體作用機(jī)制目前尚不清楚,所以探討自噬與Aβ產(chǎn)生和清除之間的關(guān)系具有重要意義。
大量證據(jù)表明正常情況下自噬可以通過清除Aβ,對神經(jīng)系統(tǒng)起到保護(hù)作用。α7型煙堿樣乙酰膽堿受體(α7nAChR)是一種含半胱氨酸環(huán)的配體門控離子通道受體,對Ca2+具有高度通透性,可調(diào)節(jié)乙酰膽堿的釋放,對認(rèn)知和記憶功能有重要影響,并且在人類神經(jīng)母細(xì)胞瘤細(xì)胞系SH-SY5Y細(xì)胞和海馬CA1區(qū)及皮層廣泛表達(dá)[23-27]。細(xì)胞實驗表明在培養(yǎng)基中用外源性Aβ1-42處理使神經(jīng)細(xì)胞中Aβ1-42聚集,后續(xù)用α7nAChR拮抗物α-BTX共作用可增強(qiáng)Aβ在SH-SY5Y細(xì)胞中的毒性作用,而用nAChR興奮劑nicotine處理可增強(qiáng)α7nAChR與自噬小體的聚集,并抑制應(yīng)用Aβ后導(dǎo)致的細(xì)胞死亡[28]?;蛩降难芯恳脖砻饔肁tg7siRNA抑制早期階段自噬體的形成或用α7nAChR siRNA可以顯著增強(qiáng)自噬誘導(dǎo)的神經(jīng)毒性。故Shil-Ya Hung等認(rèn)為是α7nAChR作為載體將Aβ轉(zhuǎn)運至細(xì)胞質(zhì),經(jīng)自噬途徑降解,從而抑制Aβ的細(xì)胞毒性[28]。在動物模型中Nordberg和Hellstrom-Lindahl分別用長期(4.5月)和短期(10天)的nicotine處理都可以減少APPsw小鼠腦內(nèi)Aβ的沉積和不可溶性Aβ,而不影響可溶性Aβ、α/β/γ分泌酶活性和APP合成,提示nicotine誘導(dǎo)的自噬增強(qiáng)可能在細(xì)胞外Aβ的清除中發(fā)揮作用[29,30]。溶酶體組織蛋白酶 B(CSTB)是木瓜蛋白酶家族中的一種半胱氨酸蛋白酶,可降解溶酶體系統(tǒng)內(nèi)的多肽和蛋白質(zhì)。Dun-Sheng Yang等在TgCRND8小鼠中敲除CSTB基因,以加強(qiáng)CSTB活性,發(fā)現(xiàn)小鼠腦組織中Aβ沉積現(xiàn)象明顯改善,Aβ40和Aβ42水平顯著下降,并且在驚恐試驗和嗅覺記憶實驗中與對照組相比表現(xiàn)出更好的學(xué)習(xí)和記憶能力[31,32]。而 CSTB 缺失的小鼠腦內(nèi) Aβ1-42水平升高,Aβ斑塊過度沉積[33]。又PADK作為一種溶酶體調(diào)節(jié)劑,可以升高CSTB水平及其活性,減少AD小鼠腦組織中的Aβ沉積[34]。ATG5基因敲除或Beclin1和Ulk1基因沉默細(xì)胞Aβ和βCTF水平顯著升高[22]。
雖然自噬通過清除異常聚集的蛋白質(zhì)發(fā)揮神經(jīng)保護(hù)作用已被大家廣泛接受和認(rèn)可,但隨著研究的深入,有些學(xué)者認(rèn)為異常的自噬反而導(dǎo)致了造成神經(jīng)系統(tǒng)退行性病變的異常聚集蛋白質(zhì)的產(chǎn)生,對細(xì)胞具有損傷作用[35]。自噬的功能可受多種因素的影響,如衰老、營養(yǎng)不良、氧化應(yīng)激、小分子物質(zhì)等。例如Aβ既可以被自噬途徑清除,又可以作為調(diào)控點來誘導(dǎo)自噬以維持其自身的平衡[28,36,37]。正常情況下Aβ清除障礙可激活beclin1誘導(dǎo)的自噬正調(diào)控通路,使其對Aβ清除能力增強(qiáng),對抗Aβ毒性引起的神經(jīng)損傷[28]。但研究表明AD病人早期腦內(nèi)beclin1蛋白表達(dá)減少,beclin1缺乏使自噬體成熟過程受阻,AVs積累,造成 Aβ生成增加[8]。這提示一旦自噬功能障礙可使Aβ不能被有效清除。Nixon等用免疫電子顯微鏡研究顯示,在AD患者腦內(nèi)營養(yǎng)不良神經(jīng)突的神經(jīng)細(xì)胞內(nèi)自噬泡和自噬小體顯著聚集,也提示在AD中自噬介導(dǎo)的蛋白質(zhì)降解途徑發(fā)生進(jìn)展性功能障礙[38]。而在Yu等研究中發(fā)現(xiàn)無論在神經(jīng)細(xì)胞還是非神經(jīng)細(xì)胞(過表達(dá)野生型人類APP的轉(zhuǎn)基因小鼠肝細(xì)胞)自噬囊泡中均富集Aβ、APP羧基末端(C末端)片段β-CTF和早老素依賴性 γ分泌酶,認(rèn)為自噬體可產(chǎn)生Aβ[10,11]。但其具體機(jī)制尚不清楚,有待于進(jìn)一步研究。
綜上所述,在正常情況下,神經(jīng)元自噬功能活躍[39],APP可在自噬溶酶體中剪切生成Aβ,隨后被自噬溶酶體清除,以防止Aβ聚集[40]。但隨著年齡增長,基因作用,代謝產(chǎn)物聚集等因素的影響,體內(nèi)自噬溶酶體的降解過程受損,自噬能力減弱,Aβ的清除變慢,游離的Aβ增加達(dá)到一定濃度時,就會聚集、沉積,從而產(chǎn)生細(xì)胞毒性,并進(jìn)一步阻止自噬的更新[10]。所以明確自噬功能在AD不同階段的變化情況,在體內(nèi)Aβ達(dá)到臨界濃度之前,以自噬過程中某些信號分子為靶點進(jìn)行干預(yù),以期阻止Aβ的沉積,對于防治AD的發(fā)生發(fā)展具有重要的理論意義和廣闊的應(yīng)用前景。
[1]Boeve BF.Mild cognitive impairment associated with underlying Alzheimer’s disease versus Lewy body disease [J].Parkinsonism Relat Disord,2012,18(Suppl 1):S41-S44.
[2]Serrano-Pozo A,F(xiàn)rosch MP,Masliah E,et al.Neuropathological alterations in Alzheimer disease[J].Cold Spring Harb Persp Med,2011,1(1):a6189.
[3]Korczyn AD.Commentary on“Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines forAlzheimer’sdisease.”[J].Alzheimer’s& Dementia,2011,7(3):333-334.
[4]董雯,王蓉.β淀粉樣肽與阿爾茨海默病的研究進(jìn)展[J].神經(jīng)損傷與功能重建,2014,6(5):418-420.
[5]Eisenstein M.Molecular biology:remove,reuse,recycle[J].Nature,2014,514(7522):S2-S4.
[6]Moreira PI,Santos RX,Zhu X,et al.Autophagy in Alzheimer’s disease[J].Expert Rev Neurotherapeut,2010,10(7):1209-1218.
[7]Mizushima N,Levine B,Cuervo AM,et al.Autophagy fights disease through cellular self-digestion [J].Nature,2008,451(7182):1069-1075.
[8]Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders:pathogenic roles and therapeutic implications[J].Trends Neurosci,2010,33(12):541-549.
[9]張靜爽,王蓉.阿爾茨海默病發(fā)生機(jī)制的研究進(jìn)展[J].首都醫(yī)科大學(xué)學(xué)報,2014,35(6):721-724.
[10]Yu WH,Cuervo AM,Kumar A,et al.Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease[J].J Cell Biol,2005,171(1):87-98.
[11]Yu WH,Kumar A,Peterhoff C,et al.Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities:implications for β-amyloid peptide over-production and localization in Alzheimer’s disease[J].Int J Biochem Cell Biol,2004,36(12):2531-2540.
[12]Ma JF,Huang Y, Chen SD,et al.Immunohistochemical evidence for macroautophagy in neurones and endothelial cells in Alzheimer’s disease [J].Neuropathol Appl Neurobiol,2010,36(4):312-319.
[13]Lee J,Yu WH,Kumar A,et al.Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimerrelated PS1 mutations[J].Cell,2010,141(7):1146-1158.
[14]Avrahami L,F(xiàn)arfara D,Shaham-Kol M,et al.Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model:in vivo and in vitro studies[J].J Biol Chem,2013,288(2):1295-1306.
[15]Belinson H,Lev D,Masliah E,et al.Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits[J].J Neurosci,2008,28(18):4690-4701.
[16]Bové J,Martínez-Vicente M,Vila M.Fighting neurodegeneration with rapamycin:mechanistic insights[J].Nature Rev Neurosci,2011,12(8):437-452.
[17]Steele JW,Lachenmayer ML,Ju S,et al.Latrepirdine improves cognition and arrestsprogression ofneuropathology in an Alzheimer’s mouse model[J].Mol Psychiatry,2012,18(8):889-897.
[18]Onodera J,Ohsumi Y.Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation[J].J Biol Chem,2005,280(36):31582-31586.
[19]Zhu Z,Yan J,Jiang W,et al.Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance [J].J Neurosci,2013,33(32):13138-13149.
[20]Hara T,Nakamura K,Matsui M,et al.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J].Nature,2006,441(7095):885-889.
[21]Komatsu M,Waguri S,Chiba T,et al.Loss of autophagy in the central nervous system causes neurodegeneration in mice[J].Nature,2006,441(7095):880-884.
[22]Tian Y,Bustos V,F(xiàn)lajolet M,et al.A small-molecule enhancer of autophagy decreases levels of A and APP-CTF via Atg5-dependent autophagy pathway [J].The FASEB J,2011,25(6):1934-1942.
[23]Young JW,Crawford N,Kelly JS,et al.Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice[J].Eur Neuropsychopharmacol,2007,17(2):145-155.
[24]Hoyle E,Genn RF,F(xiàn)ernandes C,et al.Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task [J].Psychopharmacology,2006,189(2):211-223.
[25]Berg DK,Conroy WG.Nicotinic α7 receptors:synaptic options and downstream signaling in neurons[J].J Neurobiol,2002,53(4):512-523.
[26]Court JA,Martin-Ruiz C,Graham A,et al.Nicotinic receptors in human brain:topography and pathology [J].J Chem Neuroanat,2000,20(3-4):281-298.
[27]Peng X,Gerzanich V,Anand R,et al.Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SHSY5Y [J].Mol Pharmacol,1997,51(5):776-784.
[28]Hung SY,Huang WP,Liou HC,et al.Autophagy protects neuron from Abeta-induced cytotoxicity[J].Autophagy,2009,5(4):502-510.
[29]Hellstrom-Lindahl E,Court J, Keverne J, et al.Nicotine reduces Ab in the brain and cerebral vessels of APPsw mice[J].Eur J Neurosci,2004,19(10):2703-2710.
[30]Nordberg A,Hellstrom-Lindahl E,Lee M,et al.Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease(APPsw) [J].J Neurochem,2002,81(3):655-658.
[31]Yang DS,Stavrides P,Mohan PS,et al.Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits[J].Brain,2010,134(1):258-277.
[32]Yang DS,Stavrides P,Mohan PS,et al.Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis [J].Autophagy,2011,7(7):788-789.
[33]Mueller-Steiner S,Zhou Y,Arai H,et al.Antiamyloidogenic and neuroprotective functions of cathepsin B:implications for Alzheimer’s disease[J].Neuron,2006,51(6):703-714.
[34]Butler D,Hwang J,Estick C,et al.Protective effects of positive lysosomal modulation in Alzheimer’s disease transgenic mouse models[J].PLoS ONE,2011,6(6):e20501.
[35]Tung YT,Wang BJ,Hu MK,et al.Autophagy:a double-edged sword in Alzheimer’s disease[J].J Biosci,2012,37(1):157-165.
[36]Hayashi S,Sato N,Yamamoto A,et al.Alzheimer diseaseassociated peptide, amyloid beta40, inhibits vascular regeneration with induction of endothelial autophagy [J].Arterioscler Thromb Vasc Biol,2009,29(11):1909-1915.
[37]Lipinski MM,Zheng B,Lu T,et al.Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease[J].Proc Natl Acad Sci U S A,2010,107(32):14164-14169.
[38]Nixon RA,Wegiel J,Kumar A,et al.Extensive involvement of autophagy in Alzheimer disease:an immuno-electron microscopy study[J].J Neuropathol Exp Neurol,2005,64(2):113-122.
[39]Fimia GM,Bartolomeo SD,Piacentini M,et al.Unleashing the Ambra1-Beclin 1 complex from dynein chains:Ulk1 sets Ambra1 free to induce autophagy [J].Autophagy,2011,7(1):115-117.
[40]劉敏,馬建芳,湯薈冬.自噬在阿爾茨海默病中的作用機(jī)制及治療前景[J].中國現(xiàn)代神經(jīng)疾病雜志,2014(05):441-445.