• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cell replacement therapy for central nervous system diseases

    2015-01-21 19:58:33DanjuTsoRandallMcKinnon

    Danju Tso, Randall D. McKinnon

    Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

    Cell replacement therapy for central nervous system diseases

    Danju Tso#, Randall D. McKinnon*,#

    Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

    The brain and spinal cord can not replace neurons or supporting glia that are lost through traumatic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this fi eld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate patient-specifi c replacement cells is to reprogram autologous cells such as fi broblasts into pluripotent stem cells which can then be diff erentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms fi broblasts into the fi nal graftable cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion effi ciency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the effi ciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

    in vivo direct reprogramming; spinal cord injury; trauma; personalized medicine; induced pluripotent stem cell; embryonic stem cells

    Funding: This study was supported by grants from the New Jersey Commission on Spinal Cord Research (11-0015-SCR).

    Tso D, McKinnon RD (2015) Cell replacement therapy for central nervous system diseases. Neural Regen Res 10(9):1356-1358.

    Introduction

    The adult central nervous system (CNS) has limited de novo neurogenesis (Blight, 2002; Bechmann, 2005) and only minimal capacity to replace cells lost due to tissue insult, injury or disease. This is seen in acquired and inherited brain disease (Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS)) and in CNS injury induced by trauma, vascular insult or surgery. Trauma carries the added burden of a breakdown in the blood-brain barrier which introduces systemic immunity that exacerbates parenchymal destruction. Immune suppression can slow wound progression, but this does not promote repair. Damaged axons also do not regenerate through gliotic scars or inhibitors in myelin (Filbin, 2003). Thus we rely on redundancy and rewiring of surviving circuits for partial recovery of lost function. This failure to repair likely refl ects insuffi -cient stem cells, rather than repair competence, since exogenous cells are eff ective in many preclinical models of genetic, chemical and traumatic brain and spinal cord injury (SCI) (Chen et al., 2007). Indeed we (Kiel et al., 2008) and others (Windrem et al., 2008) have used cell grafts to completely rescue a lethal cell autonomous neurodegenerative mouse model. Thus at present the objectives for clinical intervention in brain repair are to arrest wound progression and promote cell replacement therapy. Here we examine potential sources of replacement cells.

    Replacement Cells

    For pre-clinical milestones to be translated in clinical practice, we must fi rst identify an appropriate graft resource. At present, the three sources include allografts of fetal brain tissue, allografts derived from pluripotent embryonic stem cells (ESCs) (Murry and Keller, 2008), and autologous neural cells generated in vitro by reprogramming patient-specifi c somatic cells such as dermal fi broblasts. Fetal brain allografts were used for PD, the fi rst placebo-controlled neurosurgical trial in the U.S., and the cell source, fetal dopaminergic neurons, proved both ineff ective and diffi cult to standardize (Freed et al., 2001). ESC-derived glial progenitor cells were used in a trial for acute SCI sponsored by Geron Inc. This trial was based on initially promising pre-clinical studies with CNS myelin forming oligodendroglial progenitor cell (OPC) transplants (Keirstead et al., 2005). Both pre-clinical and clinical trials with such cells have generated sometimes sensational but often controversial results (Burke et al., 2013), and the Geron trial was halted early due to cost, immune complications and apparently cystic nodule formations. Both the fetal tissue and embryonic stem (ES) derived cells have ethical limitations, both represent allografts that require immune suppression with serious side eff ects, and cell grafts derived from pluripotent ESCs can also carry an unacceptable risk for neoplasia. We demonstrated that therapeutic engraftment requires substantial cell numbers (Kiel et al., 2008), well within the neoplastic load limit of ESC-derived cultures (Sadowski et al., 2010). Thus grafts derived from pluripotent cells may never be considered therapeutically safe and appropriate for organ repair.

    A third potential source of replacement brain cells are autol-

    ogous somatic cells genetically engineered to trans-diff erentiate into neural cells. The reprogramming fi eld has now given us this novel and exciting strategy to generate ethically neutral, patient-specifi c replacement cells from induced pluripotent stem (iPS) cells. Yamanaka identifi ed four factors that reprogram fi broblasts into iPS cells (Takahashi and Yamanaka, 2006), extending early work in amphibian (Gurdon and Melton, 2008) showing that cell fate can be plastic (Yamanaka, 2009). The process appears to work on any cell type (Park et al., 2008b; Soldner et al., 2009; Yu et al., 2009) including readily accessible cells such as adipose-derived mesenchymal stromal cells (MSCs), and iPS lines have now been established from many sources (Park et al., 2008a; Soldner et al., 2009). The process requires pioneer factors Oct4 and Sox2 (Takahashi et al., 2007; Smale, 2010) but can also work with Oct4 (Kim et al., 2009; Zhu et al., 2010) combined with small molecules that promote chromatin remodeling (Huangfu et al., 2008; Lin et al., 2009). Patient derived iPS cells now have potential to generate disease specifi c cell types that can replace animals for drug screens. However the iPS cell reprogramming is not complete (Kim et al., 2010; Lister et al., 2011) raising the concern they may not generate valid replacement cells, and since they are immune protected autologous cells their neoplastic potential will be even greater than ESC-derived allografts.

    An alternative to generate autologous cells for graft therapy is to fi nd some combination of factors that directly reprogram fi broblasts into the desired cell types and avoid the pluripotent intermediates. Trans-diff erentiation has been controversial and early reports were either disproved (Bertani et al., 2005; Woodbury et al., 2000), misinterpretations due to cell fusion (Lagasse et al., 2000; Wang et al., 2003) or remain unconfi rmed (Jiang et al., 2002). However, Yamanaka has rejuvenated the fi eld and recent studies now demonstrate direct reprogramming of pancreatic exocrine cells into β-cells (Zhou et al., 2008) and somatic fi broblasts into hepatocytes, cardiomyocytes, blood progenitors and neurons (Zhou et al., 2008; Ieda et al., 2010; Szabo et al., 2010; Vierbuchen et al., 2010; Efe et al., 2011; Pfi sterer et al., 2011; Sekiya and Suzuki, 2011; Son et al., 2011; Karow et al., 2012). The process is not fully understood and to date reprogramming to generate some cell types has resulted in only partial phenotypes (Najm et al., 2013; Yang et al., 2013).

    Reprogramming Effi ciency

    For SCI repair three conclusions are quite clear and none are unique to SCI research. First we need a standardized source of autologous cells. Second we need rigid and objective approaches to resolve graft outcome and evaluate effi cacy (Burke et al., 2013). Third, in order to generate a safe graft reagent it is imperative that we improve the effi ciency of the reprogramming process. The low effi ciency of reprogramming generates very few graftable cells, and the necessary mitogen amplifi cation in vitro can compromises the quality control and result in karyotype abnormalities and neoplasia concerns (Miura et al., 2006; Tolar et al., 2007).

    All forms of cell reprogramming suff er from low effi ciencies. For iPS cell reprogramming the effi ciency is commonly 0.1%. This can be improved under experimental settings by starting with fi broblasts that contain drug inducible reprogramming factor transgenes, although for these the rate remains less than 10%. Chromatin remodeling is also an early event (Simonsson and Gurdon, 2004) and a limiting factor (Luna-Zurita and Bruneau, 2013) for cell reprogramming. Small molecules that block DNA and histone methylation, which remodel the epigenome by removing transcription repressive marks, also enhance iPS cell reprogramming (Huangfu et al., 2008; Lin et al., 2009). We recently identifi ed a histone H1 chaperone that also promotes reprogramming (Tso et al., in preparation). This factor appears to modulate chromatin structure by relaxing condensed chromatin, as seen with other H1 modifying enzymes (Christophorou et al., 2014) and binding proteins (Philpott et al., 1991; Martic et al., 2005; Hayakawa et al., 2012). Thus chromatin remodeling factors may provide the key to optimizing the reprogramming process.

    In vivo Reprogramming

    Finally, an emerging strategy to avoid long term culture of graft cells is to deliver the exogenous reprogramming factors directly into target cells in vivo. A graft-free reprogramming strategy would expand our paradigm for cell replacement for clinical therapies. Gene delivery methods such as viral vectors are feasible, and direct gene transduction using episomal plasmids would avoid the safety concerns and oncogenic potential of viral vectors. For in vivo reprogramming to work eff ectively it will be necessary to identify target cell populations that can serve as a resource for cell reprogramming. For neuronal cell replacement, both pericytes (Karow et al., 2012) and astrocytes (Niu et al., 2013) can be reprogrammed into induced neurons, and elevated levels of the transcription factor Sox10 can convert peripheral satellite glia into CNS-like myelinating glia (Weider et al., 2015). Another target population in the adult brain are NG2 cells (Nishiyama et al., 1996; Nishiyama et al., 2009). NG2, a transmembrane proteoglycan expressed by OPCs in vitro, identifi es presumed myelin lineage glial progenitors in vivo. The adult NG2 population includes 5% of the cells in the adult brain (Nishiyama, 2007), and at least some of these may generate other cell types (Nishiyama et al., 2009). NG2 cells can generate protoplasmic astrocytes in grey matter. They can respond to extrinsic stimuli and injury. They can also respond to neurotransmitters and thus may have a role in neural transmission. While it is not clear why NG2 cells do not promote myelin replacement in injury or disease, it is clear that at least a subset of these cells are good targets for transgene delivery to regenerate myelinating oligodendrocytes in vivo. To achieve this we will need to identify relevant transcription factors to eff ectively reprogram these cells in vivo.

    Confl icts of interest: The authors declare no competing fi nancial interests.

    Bechmann I (2005) Failed central nervous system regeneration - A downside of immune privilege? Neuromol Med 7:217-228.

    Bertani N, Malatesta P, Volpi G, Sonego P, Perris R (2005) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 118:3925-3936.

    Blight AR (2002) Miracles and molecules - progress in spinal cord repair. Nat Neurosci 5:1051-1054.

    Burke DA, Whittemore SR, Magnuson DS (2013) Consequences of common data analysis inaccuracies in CNS trauma injury basic research. J Neurotrauma 30:797-805.

    Chen CP, Kiel ME, Sadowski D, McKinnon RD (2007) From stem cells to oligodendrocytes: Prospects for brain therapy. Stem Cell Rev 3:280-288.

    Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104-108.

    Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fi broblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13:215-222.

    Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703-713.

    Freed CR, Breeze RE, Greene P, Fahn S, Tsai WY, Trojanowski JQ, Eidelberg D (2001) Transplanted dopaminergic neurons: More or less? Nat Med 7:512-513.

    Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811-1815.

    Hayakawa K, Ohgane J, Tanaka S, Yagi S, Shiota K (2012) Oocyte-specifi c linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency. Epigenetics 7:1029-1036.

    Huangfu DW, Maehr R, Guo WJ, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defi ned factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795-797.

    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fi broblasts into functional cardiomyocytes by defi ned factors. Cell 142:375-386.

    Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du JB, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41-49.

    Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A, Cossu G, Goldbrunner R, Gotz M, Berninger B (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471-476.

    Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694-4705.

    Kiel ME, Chen CP, Sadowski D, McKinnon RD (2008) Stem cell-derived therapeutic myelin repair requires 7% cell replacement. Stem Cells 26:2229-2236.

    Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649-653.

    Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LIR, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, Mckinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285-290.

    Lagasse E, Connors H, Al Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can diff erentiate into hepatocytes in vivo. Nat Med 6:1229-1234.

    Lin TX, Ambasudhan R, Yuan X, Li WL, Hilcove S, Abujarour R, Lin XY, Hahm HS, Hao E, Hayek A, Ding S (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805-808.

    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68-73.

    Luna-Zurita L, Bruneau BG (2013) Chromatin modulators as facilitating factors in cellular reprogramming. Curr Opin Genet Dev 23:556-561.

    Martic G, Karetsou Z, Kefala K, Politou AS, Clapier CR, Straub T, Papamarcaki T (2005) Parathymosin aff ects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem 280:16143-16150.

    Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095-1103. Murry CE, Keller G (2008) Diff erentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 132:661-680.

    Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ (2013) Transcription factor-mediated reprogramming of fi broblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31:426-433.

    Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13:62-76.

    Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9-22.

    Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 43:299-314.

    Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL (2013) In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 15:1164-1175.

    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008a) Disease-specifi c induced pluripotent stem cells. Cell 134:877-886.

    Park IH, Lerou PH, Zhao R, Huo HG, Daley GQ (2008b) Generation of human-induced pluripotent stem cells. Nat Protocols 3:1180-1186.

    Pfi sterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fi broblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343-10348. Philpott A, Leno GH, Laskey RA (1991) Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell 65:569-578.

    Sadowski D, Kiel ME, Apicella M, Arriola AG, Chen CP, McKinnon RD (2010) Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells. Stem Cells Dev 19:1343-1353.

    Sekiya S, Suzuki A (2011) Direct conversion of mouse fi broblasts to hepatocyte-like cells by defi ned factors. Nature 475:390-393.

    Simonsson S, Gurdon J (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 6:984-990. Smale ST (2010) Pioneer factors in embryonic stem cells and diff erentiation. Curr Opin Genet Dev 20:519-526.

    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964-977.

    Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fi broblasts into functional spinal motor neurons. Cell Stem Cell 9:205-218.

    Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fi broblasts to multilineage blood progenitors. Nature 468:521-526.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fi broblast cultures by defi ned factors. Cell 126:663-676.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fi broblasts by defi ned factors. Cell 131:861-872.

    Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis MA, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, et al. (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371-379.

    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fi broblasts to functional neurons by defi ned factors. Nature 463:1035-1041.

    Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897-901. Weider M, Wegener A, Schmitt C, Kuspert M, Hillgartner S, Bosl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M (2015) Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet 11:e1005008.

    Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2:553-565.

    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells diff erentiate into neurons. J Neurosci Res 61:364-370.

    Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49-52.

    Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M (2013) Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 31:434-439.

    Yu JY, Hu KJ, Smuga-Otto K, Tian SL, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797-801.

    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627-U30.

    Zhu SY, Li WL, Zhou HY, Wei WG, Ambasudhan R, Lin TX, Kim J, Zhang K, Ding S (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651-655.

    *Correspondence to:

    Randall D. McKinnon, Ph.D.,

    mckinnon@rwjms.rutgers.edu.

    # These authors contributed equally to this work.

    10.4103/1673-5374.165209

    http://www.nrronline.org/

    Accepted: 2015-06-19

    av黄色大香蕉| 国产午夜福利久久久久久| 日日啪夜夜撸| 免费观看a级毛片全部| 日韩大片免费观看网站| 日本欧美国产在线视频| 蜜桃久久精品国产亚洲av| 高清视频免费观看一区二区| 97人妻精品一区二区三区麻豆| 亚洲最大成人av| 男人爽女人下面视频在线观看| 中文在线观看免费www的网站| 亚洲欧美日韩东京热| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 秋霞在线观看毛片| 国产毛片在线视频| 麻豆久久精品国产亚洲av| av免费在线看不卡| 国产成人aa在线观看| 在线观看人妻少妇| 成人亚洲精品一区在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 国产精品一二三区在线看| 久热这里只有精品99| 国产男女超爽视频在线观看| 亚洲一级一片aⅴ在线观看| av卡一久久| 香蕉精品网在线| 人人妻人人爽人人添夜夜欢视频 | 欧美97在线视频| 精品视频人人做人人爽| 国产免费一区二区三区四区乱码| 国产亚洲精品久久久com| 韩国av在线不卡| 99热6这里只有精品| 日韩一区二区三区影片| 成人综合一区亚洲| 高清毛片免费看| 久久精品夜色国产| videossex国产| 久久久精品欧美日韩精品| 国产成人免费观看mmmm| 亚洲精品久久久久久婷婷小说| 在线a可以看的网站| 免费av观看视频| 真实男女啪啪啪动态图| 美女视频免费永久观看网站| 下体分泌物呈黄色| 国产成人a∨麻豆精品| 男女国产视频网站| 日韩中字成人| 久久久亚洲精品成人影院| 国产毛片a区久久久久| 日韩欧美一区视频在线观看 | 老司机影院毛片| 亚洲性久久影院| 国产免费又黄又爽又色| 中文字幕亚洲精品专区| 免费在线观看成人毛片| 亚洲欧美清纯卡通| 啦啦啦中文免费视频观看日本| 亚洲国产欧美人成| 少妇人妻 视频| av在线观看视频网站免费| 在线看a的网站| 亚洲经典国产精华液单| 国产毛片在线视频| 欧美一级a爱片免费观看看| 狠狠精品人妻久久久久久综合| 精品人妻熟女av久视频| 亚洲色图综合在线观看| 久久久精品欧美日韩精品| av又黄又爽大尺度在线免费看| 少妇丰满av| 欧美最新免费一区二区三区| 尾随美女入室| 好男人在线观看高清免费视频| 大陆偷拍与自拍| 国产成人午夜福利电影在线观看| av在线老鸭窝| 久久久久久久大尺度免费视频| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区黑人 | 日本一本二区三区精品| 男人和女人高潮做爰伦理| av在线观看视频网站免费| 国产av码专区亚洲av| 中国美白少妇内射xxxbb| 日韩欧美一区视频在线观看 | 精品久久久久久电影网| 国产 一区精品| 日韩av在线免费看完整版不卡| 精品国产露脸久久av麻豆| 国产女主播在线喷水免费视频网站| 永久网站在线| 免费av不卡在线播放| 欧美激情久久久久久爽电影| 亚洲无线观看免费| 亚洲人成网站在线观看播放| 内地一区二区视频在线| 欧美成人精品欧美一级黄| a级毛色黄片| 午夜激情福利司机影院| 亚洲欧美中文字幕日韩二区| 成人无遮挡网站| 久久精品久久精品一区二区三区| av一本久久久久| 97在线视频观看| 国产男人的电影天堂91| 99久久精品热视频| 黄片wwwwww| 亚洲精品,欧美精品| 在线观看av片永久免费下载| 午夜福利在线观看免费完整高清在| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频 | 国产伦理片在线播放av一区| 久久久精品免费免费高清| 免费黄网站久久成人精品| 免费看av在线观看网站| 人妻系列 视频| 麻豆乱淫一区二区| 午夜爱爱视频在线播放| 卡戴珊不雅视频在线播放| 国产黄片视频在线免费观看| 黄色欧美视频在线观看| 97在线人人人人妻| 99久久九九国产精品国产免费| 一区二区三区精品91| 欧美国产精品一级二级三级 | 观看免费一级毛片| 97在线人人人人妻| 新久久久久国产一级毛片| av在线app专区| 最近最新中文字幕大全电影3| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 日本三级黄在线观看| 国产久久久一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲国产成人一精品久久久| 亚洲av不卡在线观看| 在线播放无遮挡| 精品国产露脸久久av麻豆| 男人舔奶头视频| 欧美精品一区二区大全| 在线看a的网站| 欧美精品人与动牲交sv欧美| 中文字幕av成人在线电影| 日韩一本色道免费dvd| 日韩一本色道免费dvd| 神马国产精品三级电影在线观看| 国产高潮美女av| 欧美区成人在线视频| 午夜福利在线观看免费完整高清在| 三级国产精品欧美在线观看| 国产免费一级a男人的天堂| 身体一侧抽搐| 精品人妻偷拍中文字幕| 国产伦理片在线播放av一区| 日韩欧美一区视频在线观看 | 少妇被粗大猛烈的视频| 日韩精品有码人妻一区| 亚洲av男天堂| 一边亲一边摸免费视频| 久久ye,这里只有精品| 日韩成人av中文字幕在线观看| 女人十人毛片免费观看3o分钟| 美女内射精品一级片tv| 高清欧美精品videossex| 国产片特级美女逼逼视频| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜爽| 国产日韩欧美亚洲二区| 国产色婷婷99| 久久久欧美国产精品| 欧美激情国产日韩精品一区| 国产精品一区二区三区四区免费观看| 欧美最新免费一区二区三区| 亚洲欧美精品自产自拍| 男的添女的下面高潮视频| 免费高清在线观看视频在线观看| 欧美日韩在线观看h| 男女下面进入的视频免费午夜| 高清日韩中文字幕在线| 精品午夜福利在线看| 国产视频首页在线观看| 一区二区三区四区激情视频| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说 | 搞女人的毛片| 五月开心婷婷网| 成人亚洲欧美一区二区av| 免费观看在线日韩| 男人舔奶头视频| 日韩中字成人| 高清日韩中文字幕在线| 国产精品三级大全| 欧美一区二区亚洲| av卡一久久| 在线免费十八禁| 成人鲁丝片一二三区免费| 亚洲精品一区蜜桃| 黄色欧美视频在线观看| 欧美日本视频| 亚洲色图av天堂| 1000部很黄的大片| 欧美日韩在线观看h| 日日撸夜夜添| 男女国产视频网站| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 大香蕉久久网| 日韩伦理黄色片| 能在线免费看毛片的网站| 精品亚洲乱码少妇综合久久| 白带黄色成豆腐渣| 国产精品一及| 水蜜桃什么品种好| 国产91av在线免费观看| 中文字幕久久专区| 久久精品国产亚洲av涩爱| 在线a可以看的网站| 国产乱人视频| 又大又黄又爽视频免费| 国产亚洲91精品色在线| 欧美一区二区亚洲| 久久久久九九精品影院| 麻豆精品久久久久久蜜桃| 日日啪夜夜爽| 日韩在线高清观看一区二区三区| h日本视频在线播放| 国产永久视频网站| 精品国产乱码久久久久久小说| 国产精品国产三级国产av玫瑰| 青春草亚洲视频在线观看| 国产免费一区二区三区四区乱码| 国产中年淑女户外野战色| 高清毛片免费看| 国产精品国产av在线观看| 波野结衣二区三区在线| 婷婷色麻豆天堂久久| 亚洲欧美成人综合另类久久久| 亚洲国产欧美人成| 亚洲精品影视一区二区三区av| 韩国高清视频一区二区三区| 尾随美女入室| 大话2 男鬼变身卡| 国产午夜精品久久久久久一区二区三区| 在线天堂最新版资源| 亚洲欧洲日产国产| 中文字幕制服av| 美女脱内裤让男人舔精品视频| 日韩av免费高清视频| 国产精品久久久久久精品古装| 在线a可以看的网站| www.色视频.com| 插阴视频在线观看视频| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 夫妻性生交免费视频一级片| 欧美bdsm另类| 欧美成人一区二区免费高清观看| 国产 一区 欧美 日韩| 人人妻人人澡人人爽人人夜夜| 在线观看一区二区三区| 日日摸夜夜添夜夜爱| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 日本与韩国留学比较| 国产综合精华液| 成人亚洲精品av一区二区| a级一级毛片免费在线观看| 精品国产一区二区三区久久久樱花 | 国国产精品蜜臀av免费| 大片免费播放器 马上看| 久久精品久久久久久久性| 男人添女人高潮全过程视频| 成人亚洲精品一区在线观看 | 大又大粗又爽又黄少妇毛片口| 亚洲色图av天堂| 亚洲国产精品成人久久小说| 免费av观看视频| 97人妻精品一区二区三区麻豆| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 亚洲成人一二三区av| 99久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲欧美精品专区久久| 色哟哟·www| 国语对白做爰xxxⅹ性视频网站| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 免费观看在线日韩| 日本wwww免费看| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 一级毛片电影观看| 日本欧美国产在线视频| 国产在线一区二区三区精| 十八禁网站网址无遮挡 | 亚洲精品第二区| 成人美女网站在线观看视频| av天堂中文字幕网| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 国产精品一区www在线观看| 男女那种视频在线观看| .国产精品久久| 少妇被粗大猛烈的视频| 免费大片18禁| 少妇熟女欧美另类| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 久久精品久久精品一区二区三区| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 美女内射精品一级片tv| 久久久欧美国产精品| 国产精品偷伦视频观看了| 成人特级av手机在线观看| 亚洲国产精品成人久久小说| 男女那种视频在线观看| 亚洲成人av在线免费| 视频区图区小说| 午夜免费鲁丝| 日本黄色片子视频| 欧美日本视频| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 久久国内精品自在自线图片| 亚洲av在线观看美女高潮| 看十八女毛片水多多多| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 久久精品久久久久久久性| 97超碰精品成人国产| 午夜日本视频在线| 欧美少妇被猛烈插入视频| 国产 精品1| 人妻 亚洲 视频| 日韩人妻高清精品专区| 国产精品三级大全| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| av在线蜜桃| 亚洲av福利一区| 五月天丁香电影| 日韩电影二区| 精品人妻偷拍中文字幕| 男女边吃奶边做爰视频| 熟女人妻精品中文字幕| 久久久精品免费免费高清| 久久热精品热| 丰满乱子伦码专区| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 久久99蜜桃精品久久| 亚洲av一区综合| 男人狂女人下面高潮的视频| 国产成人freesex在线| 欧美日韩精品成人综合77777| 69av精品久久久久久| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 亚洲丝袜综合中文字幕| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 免费黄色在线免费观看| av在线亚洲专区| 街头女战士在线观看网站| 偷拍熟女少妇极品色| 极品教师在线视频| 国产黄片美女视频| 99久久精品热视频| 午夜福利视频1000在线观看| 天堂网av新在线| 国内少妇人妻偷人精品xxx网站| 国产黄a三级三级三级人| 免费黄色在线免费观看| 熟女av电影| 五月伊人婷婷丁香| 久久午夜福利片| av黄色大香蕉| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 久久久精品94久久精品| 51国产日韩欧美| 尾随美女入室| 精品人妻视频免费看| 成人国产av品久久久| 亚洲国产av新网站| 日韩免费高清中文字幕av| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站| 久久精品综合一区二区三区| 久久久久性生活片| 麻豆成人av视频| 国产精品福利在线免费观看| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频 | 日本-黄色视频高清免费观看| 国产av不卡久久| 99久国产av精品国产电影| 一级毛片aaaaaa免费看小| 亚洲精品久久久久久婷婷小说| 日本av手机在线免费观看| 直男gayav资源| 精品熟女少妇av免费看| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| h日本视频在线播放| 亚洲自偷自拍三级| 亚洲欧美日韩另类电影网站 | 免费看日本二区| 国产男女超爽视频在线观看| 一级片'在线观看视频| 人妻系列 视频| 白带黄色成豆腐渣| 国产精品人妻久久久影院| 少妇 在线观看| 国产成人精品久久久久久| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂| 成人毛片a级毛片在线播放| 国产综合精华液| 极品少妇高潮喷水抽搐| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站| 直男gayav资源| 欧美精品一区二区大全| 视频中文字幕在线观看| 亚洲天堂国产精品一区在线| 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂 | 晚上一个人看的免费电影| 在线天堂最新版资源| 精品一区在线观看国产| 在线亚洲精品国产二区图片欧美 | 交换朋友夫妻互换小说| 观看美女的网站| 免费黄频网站在线观看国产| 久久久午夜欧美精品| 国产免费福利视频在线观看| 我的女老师完整版在线观看| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 国产男女内射视频| 18禁动态无遮挡网站| 我的老师免费观看完整版| 免费大片18禁| av在线app专区| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲欧美日韩东京热| 日韩三级伦理在线观看| 青春草国产在线视频| 人体艺术视频欧美日本| 日韩强制内射视频| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 亚洲国产最新在线播放| 亚洲精品一二三| 少妇人妻久久综合中文| 免费在线观看成人毛片| av天堂中文字幕网| 搡老乐熟女国产| 男女那种视频在线观看| 深夜a级毛片| 国产片特级美女逼逼视频| 亚洲在久久综合| 国产av不卡久久| 成年av动漫网址| 日日啪夜夜撸| 少妇人妻精品综合一区二区| 身体一侧抽搐| 亚洲精品影视一区二区三区av| 成人午夜精彩视频在线观看| 久久99热这里只有精品18| 韩国av在线不卡| 免费观看在线日韩| 91在线精品国自产拍蜜月| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 三级国产精品片| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 久热这里只有精品99| 日韩制服骚丝袜av| 性色av一级| 中文天堂在线官网| av国产久精品久网站免费入址| 尾随美女入室| 国产男女内射视频| 极品少妇高潮喷水抽搐| 欧美日韩视频精品一区| 黄色视频在线播放观看不卡| 亚洲成色77777| 国产视频首页在线观看| 久久久久久久亚洲中文字幕| 欧美bdsm另类| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 日本爱情动作片www.在线观看| 99久久精品一区二区三区| 国产成人免费观看mmmm| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 看免费成人av毛片| 久久久精品欧美日韩精品| 又爽又黄a免费视频| 街头女战士在线观看网站| 精品久久久久久久末码| 国产精品不卡视频一区二区| xxx大片免费视频| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 国产精品一区www在线观看| 国产有黄有色有爽视频| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看| 国产欧美另类精品又又久久亚洲欧美| 欧美高清性xxxxhd video| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 22中文网久久字幕| 精品久久久久久久末码| 亚洲欧美日韩东京热| 99九九线精品视频在线观看视频| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 尤物成人国产欧美一区二区三区| 黄片wwwwww| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 欧美区成人在线视频| 天天躁日日操中文字幕| 黄色配什么色好看| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| 成人特级av手机在线观看| 精品一区二区三卡| 国产欧美另类精品又又久久亚洲欧美| 伊人久久国产一区二区| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| 国产亚洲5aaaaa淫片| 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| 老司机影院毛片| 亚洲欧美日韩卡通动漫| 欧美+日韩+精品| 中国国产av一级| kizo精华| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 亚洲精品乱久久久久久| av线在线观看网站| 亚洲国产av新网站| 久久久久久久久久久丰满| 精品久久久久久电影网| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 国产久久久一区二区三区| 搡女人真爽免费视频火全软件| 熟妇人妻不卡中文字幕| 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美 | 自拍偷自拍亚洲精品老妇| a级毛色黄片| 日本午夜av视频| 高清在线视频一区二区三区| 久久久成人免费电影| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 欧美日韩在线观看h| 免费看日本二区| eeuss影院久久| 内地一区二区视频在线| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 久久久久久伊人网av| tube8黄色片| 国产一区亚洲一区在线观看| 男人添女人高潮全过程视频| 精品久久国产蜜桃| 18+在线观看网站| 99九九线精品视频在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 如何舔出高潮| 日韩不卡一区二区三区视频在线| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 国产精品国产av在线观看| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱| 国产免费视频播放在线视频| 亚洲成人av在线免费|