周 琴,盛德喬
(三峽大學(xué)醫(yī)學(xué)院 腫瘤微環(huán)境與免疫治療湖北省重點(diǎn)實(shí)驗(yàn)室,湖北宜昌 443002)
免疫耐受是指機(jī)體免疫系統(tǒng)接觸某種特定抗原后表現(xiàn)出特異性免疫無(wú)應(yīng)答狀態(tài)。根據(jù)耐受機(jī)制的不同,通常將免疫耐受分為中樞免疫耐受和外周免疫耐受。中樞免疫耐受是T細(xì)胞發(fā)育過(guò)程中通過(guò)陰性選擇清除自身反應(yīng)性T細(xì)胞克隆,避免自身免疫應(yīng)答。陰性選擇能清除大多數(shù)的自身反應(yīng)性T淋巴細(xì)胞,但仍有部分T淋巴細(xì)胞能逃避陰性選擇到達(dá)外周淋巴器官,機(jī)體通過(guò)克隆清除、激活調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)、抑制樹(shù)突狀細(xì)胞(dendritic cells,DCs)活性、調(diào)控共刺激分子表達(dá)等多種機(jī)制限制自身反應(yīng)性T細(xì)胞的活性。微小RNA(microRNA,miRNA)通過(guò)與靶基因mRNA的特異性堿基互補(bǔ)配對(duì),引起mRNA的降解或者抑制其翻譯,從而下調(diào)靶基因表達(dá)。miRNA參與了多種生命活動(dòng)的調(diào)節(jié),包括細(xì)胞發(fā)育、分化、病毒防御、增殖和凋亡等。miRNA在調(diào)控T細(xì)胞發(fā)育和成熟、Tregs和DCs功能、共刺激分子表達(dá)等方面都發(fā)揮著重要作用,與外周免疫耐受調(diào)控密切相關(guān)。
miRNA生物合成與功能
miRNA基因轉(zhuǎn)錄生成初級(jí)轉(zhuǎn)錄物后,經(jīng)Drosha酶加工處理成發(fā)夾狀的前體miRNA(pre-miRNA)[1],pre-miRNA在Exportin 5蛋白的幫助下從細(xì)胞核運(yùn)送到細(xì)胞質(zhì)[2],被Dicer酶剪切成約22個(gè)核苷酸的雙鏈miRNA,其中一條成熟的miRNA結(jié)合到RNA誘導(dǎo)的沉默復(fù)合物(miRNA-induced silencing complex,miRISC)中[3],結(jié)合到靶mRNA的3′端非翻譯區(qū)域(untranslated region,UTR)特異性位點(diǎn)而抑制翻譯,或與靶mRNA分子結(jié)合引起靶mRNA的降解。
最近的研究發(fā)現(xiàn),miRNA通過(guò)調(diào)控基因表達(dá)參與了一系列免疫學(xué)事件,在調(diào)控免疫耐受過(guò)程中發(fā)揮有重要作用。miRNA-181a參與了陰性選擇和陽(yáng)性選擇,它可通過(guò)調(diào)控T細(xì)胞對(duì)抗原的敏感性來(lái)調(diào)控免疫應(yīng)答和耐受[4];miRNA-132和miRNA-212在Toll樣受體(toll-like receptors,TLRs)信號(hào)通路中,通過(guò)TLR2信號(hào)誘導(dǎo)其下調(diào)白細(xì)胞介素(interleukin,IL)-1受體相關(guān)激酶4(IL-1 receptor-associated kinase 4,IRAK4),調(diào)控免疫應(yīng)答和耐受[5];miRNA-146a通過(guò)下調(diào)IL-1相關(guān)激酶1(IL-1 receptor-associated kinase 1,IRAK1)調(diào)控外周耐受[6]。這些研究揭示了miRNA在外周免疫耐受中起著重要的調(diào)控作用。
miRNA與T細(xì)胞發(fā)育
miRNA參與了T細(xì)胞的發(fā)育、分化及調(diào)節(jié)功能。未成熟T淋巴細(xì)胞在胸腺中要經(jīng)歷陽(yáng)性選擇和陰性選擇才能發(fā)育為成熟T細(xì)胞,再移居于外周淋巴組織,發(fā)揮細(xì)胞免疫功能。
最近研究發(fā)現(xiàn),miRNA-181a對(duì)陽(yáng)性選擇和陰性選擇過(guò)程中有重要影響,其機(jī)制主要是在T細(xì)胞胸腺發(fā)育階段通過(guò)下調(diào)多磷酸化位點(diǎn)調(diào)控T細(xì)胞受體(T cell receptor,TCR)信號(hào)強(qiáng)度,使可被磷酸化區(qū)域增加并降低TCR信號(hào)閾值,T細(xì)胞受到抗原刺激后,miRNA-181a表達(dá)減少,將導(dǎo)致有缺陷的免疫應(yīng)答發(fā)生[7]。在T細(xì)胞發(fā)育的晚期,miRNA-181通過(guò)調(diào)控人第10號(hào)染色體缺失的磷酸酶及張力蛋白同源的基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)的表達(dá)調(diào)控磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)信號(hào),影響自然殺傷T細(xì)胞(nature kill T cell,NKT)發(fā)育及內(nèi)穩(wěn)態(tài)[8]。另外,miRNA-150在T細(xì)胞發(fā)育的Notch通路中起著重要的作用,Notch3是miRNA-150的一個(gè)靶點(diǎn),miRNA-150可通過(guò)靶向Notch3調(diào)控T細(xì)胞發(fā)育[9]。
陰性選擇依賴外周組織抗原(peripheral tissue antigen,PTA)在胸腺的異位表達(dá),未成熟T細(xì)胞與這些抗原肽結(jié)合后會(huì)誘導(dǎo)凋亡而被清除。自身免疫調(diào)控因子(autoimmune regulator,Aire)在胸腺中可調(diào)控成百上千個(gè)PTA基因表達(dá),在誘導(dǎo)中樞免疫耐受中發(fā)揮重要作用。最近研究發(fā)現(xiàn),miRNA也參與了這個(gè)過(guò)程,miRNA 不僅在胸腺中調(diào)控PTA表達(dá),而且與Aire存在相互依賴關(guān)系[10-11]。敲除小鼠胸腺髓質(zhì)上皮細(xì)胞Aire基因后發(fā)現(xiàn)其miRNA表達(dá)譜發(fā)生變化;miRNA-220b可通過(guò)與Aire基因的3′UTR區(qū)域結(jié)合抑制Aire基因的翻譯[11-12],由此推測(cè)Aire基因也可通過(guò)調(diào)控miRNAs的表達(dá)來(lái)調(diào)控PTA表達(dá),而且可能存在相互依存關(guān)系,共同在胸腺髓質(zhì)上皮細(xì)胞中調(diào)控PTA的異位表達(dá),介導(dǎo)陰性選擇。
這些研究表明,miRNA可通過(guò)調(diào)控PTA基因的表達(dá)在T細(xì)胞發(fā)育過(guò)程中發(fā)揮重要作用。
miRNA與T細(xì)胞活化
T細(xì)胞的活化有賴于TCR識(shí)別抗原并結(jié)合特異性人肽-主要組織相容性復(fù)合體復(fù)合物(human peptide-major histocompatibility complex complexes,PMHC)提供第一信號(hào),介導(dǎo)APC和T細(xì)胞間相互作用的表面共刺激分子提供第二信號(hào),除此之外,T細(xì)胞的充分活化還有賴于多種細(xì)胞因子的參與。
在外周,幼稚T細(xì)胞在遭遇PTAs后,調(diào)控與PTAs受體結(jié)合的親和力,影響提呈抗原信號(hào),導(dǎo)致克隆選擇并分化成效應(yīng)細(xì)胞,使T細(xì)胞成為失活狀態(tài)(耐受)或直接表現(xiàn)出效應(yīng)功能[13],miRNA逐漸被認(rèn)為是參與此過(guò)程的重要調(diào)控因子[14]。miRNA-21通過(guò)調(diào)控Sprouty1靶點(diǎn),促進(jìn)活化T細(xì)胞中的細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)和c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信號(hào),通過(guò)這個(gè)正反饋機(jī)制調(diào)控T細(xì)胞免疫應(yīng)答[15]。miRNA-155通過(guò)靶向細(xì)胞因子信號(hào)1抑制因子(suppressor of cytokine signaling-1,SOCS1)誘導(dǎo)T細(xì)胞活化,促進(jìn)自身免疫炎癥疾病的發(fā)生[16-17];相反,miR-146a表達(dá)增加可抑制T細(xì)胞活化,形成免疫耐受[18];miRNA-27可靶向TCR信號(hào)通路成分和下游效應(yīng)因子,能很好抑制絲裂原活化蛋白激酶(mitogen activated protein kinases,MAPKs)通路的活化,從而抑制T細(xì)胞活化[19]。
由此可見(jiàn),miRNA在調(diào)控T細(xì)胞活化及免疫耐受過(guò)程中發(fā)揮重要作用。
miRNA與Treg細(xì)胞
Treg細(xì)胞在維持外周免疫耐受、阻止自身免疫疾病發(fā)生過(guò)程中發(fā)揮重要作用,Treg細(xì)胞介導(dǎo)的免疫耐受依賴相關(guān)miRNA表達(dá)。
小鼠體內(nèi)的Treg細(xì)胞中miRNA缺失將導(dǎo)致致命的自身免疫疾病[20]。miRNA-155、miRNA-126和miRNA-146a是3種在Treg中高表達(dá)的miRNA,與Treg的發(fā)育和功能密切相關(guān)。最近有研究報(bào)道,由叉頭框蛋白3(forkhead transcription factor,F(xiàn)OXP3)調(diào)控的miR-155的表達(dá)與Treg細(xì)胞的分化、維持及功能有關(guān)[21],miRNA-155通過(guò)抑制Janus激酶信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活因子(Janus Kinase-Signal transducers and activators of transcription,JAK-STAT)信號(hào)通路,靶向負(fù)調(diào)控因子SOCS1,影響Treg細(xì)胞的發(fā)育和調(diào)控Treg功能[22];miRNA-126是通過(guò)抑制p85β和調(diào)節(jié)PI3K/AKT通路來(lái)調(diào)控CD4+Foxp3+Tregs的抑制功能[23];miRNA-146a通過(guò)靶向STAT1來(lái)調(diào)控Treg細(xì)胞介導(dǎo)的Th1應(yīng)答[24]。miRNA-17-92是一類(lèi)多順?lè)醋有缘膍iRNA族包含7種miRNA(miRNA-17-5p、miRNA-17-3p、miRNA-18a、miRNA-19a、miRNA-20a、miRNA-19b和miRNA-92)[25],其中miRNA-17和miRNA-19b是調(diào)控Th1應(yīng)答及Foxp3+Treg細(xì)胞重要調(diào)控因子[25-26]。miRNA-10a在Treg中高表達(dá),通過(guò)調(diào)控轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)及全反式維甲酸促進(jìn)誘導(dǎo)Treg的分型[27]。Treg細(xì)胞來(lái)源的含miRNA的外泌體介導(dǎo)調(diào)控抑制致病性Th1細(xì)胞,其中miRNA-Let-7d在此抑制作用中有重要貢獻(xiàn)[28]。近期,有研究者建立了一種新型的人類(lèi)Treg細(xì)胞,稱之為HOZOT細(xì)胞[29],它是一種CD4+CD8+表型的多功能Treg細(xì)胞,miRNA-155通過(guò)靶向AKT信號(hào)的一個(gè)負(fù)調(diào)控因子-FOXP3a,影響HOZOT細(xì)胞發(fā)育及功能。
以上研究表明,miRNA與Treg有著密切關(guān)系,影響Treg細(xì)胞和FOXP3+Treg的發(fā)育及內(nèi)穩(wěn)態(tài),在外周耐受維持中發(fā)揮重要作用。
miRNA調(diào)控共刺激分子表達(dá)
T細(xì)胞活化依賴T細(xì)胞和APC表面黏附分子作用提供的共刺激信號(hào)。共刺激分子包括共刺激分子通路和共抑制分子通路。共刺激分子通路包括來(lái)源于CD28/B7或腫瘤壞死因子受體(tumor necrosis factor receptor,TNFR)/TNF共刺激家族的CD80/CD86/CD28、CD40/CD40L、ICOSL/ICOS、CD70/CD27等;共抑制分子通路包括來(lái)源于CD28家族或B7家族的CD80/CD86/CTLA- 4,程序性死亡受體-1(programmed cell death-1,PD-1)及其配體(PD-L1,PD-L2)PD-L1/PD-L2/PD-1,B7-H3等。共刺激分子可促進(jìn)T細(xì)胞的增殖和活化,共抑制分子則減弱T細(xì)胞應(yīng)答,誘導(dǎo)耐受。miRNA可通過(guò)調(diào)控共刺激分子的表達(dá)來(lái)調(diào)控免疫應(yīng)答的強(qiáng)度。
miRNA-210可抑制CD28的表達(dá),調(diào)控T細(xì)胞分化,阻止免疫疾病發(fā)生[30]。miRNA-126通過(guò)調(diào)控PI3K/AKT信號(hào)通路調(diào)控細(xì)胞毒性T淋巴細(xì)胞抗原(cytotoxic T-lymphocyte antigen- 4,CTLA- 4)與B7結(jié)合激發(fā)的抑制信號(hào),抑制T細(xì)胞活化及增殖,并發(fā)揮負(fù)調(diào)節(jié)作用[23]。PD-1缺陷小鼠通過(guò)PD-1/STAT5/miR-21/PDCD4信號(hào)級(jí)聯(lián)反應(yīng)調(diào)控免疫耐受和免疫活性之間的平衡[31]。
這些研究表明,miRNA參與共刺激通路的調(diào)控,在不同階段發(fā)揮正或負(fù)調(diào)節(jié)作用,其中負(fù)調(diào)節(jié)在建立和維持免疫耐受中有著重要作用。然而miRNA與這些共刺激分子在外周免疫耐受中的作用是復(fù)雜的,至今還沒(méi)有明確的機(jī)制說(shuō)明。
miRNA在轉(zhuǎn)錄后水平調(diào)控基因表達(dá),在各種生命活動(dòng)中發(fā)揮越來(lái)越重要的作用。在免疫系統(tǒng)中,miRNA參與了調(diào)控免疫系統(tǒng)的發(fā)育、分化、凋亡、免疫細(xì)胞的效應(yīng)功能及腫瘤的發(fā)生。miRNA不僅在調(diào)控T細(xì)胞的發(fā)育、成熟及活化的過(guò)程中發(fā)揮重要作用,而且還能通過(guò)調(diào)控Tregs細(xì)胞的功能,DCs的發(fā)育和成熟,以及調(diào)控共刺激分子的表達(dá)來(lái)調(diào)控免疫耐受,其在調(diào)控免疫耐受中的作用正逐漸被認(rèn)識(shí)。自身免疫疾病,包括1型糖尿病、類(lèi)風(fēng)濕性關(guān)節(jié)炎等疾病的發(fā)生與外周免疫耐受被打破有關(guān),但確切的病因還不十分清楚。miRNA在調(diào)控外周免疫耐受過(guò)程中作用的研究將有助于明確自身免疫疾病發(fā)生的分子機(jī)制,為早期干預(yù)和治療這些疾病提供了新思路和靶標(biāo)。
[1]Lee Y,Ahn C,Han J,et al.The nuclear RNase Ⅲ Drosha initiates microRNA processing[J].Nature,2003,425:415- 419.
[2]Yi R,Qin Y,Macara IG,et al.Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J].Genes Dev,2003,17:3011-3016.
[3]Denli AM,Tops BB,Plasterk RH,et al.Processing of primary microRNAs by the Microprocessor complex[J].Nature,2004,432:231-235.
[4]Ebert PJ,Jiang S,Xie J,et al.An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a[J].Nat Immunol,2009,10:1162-1169.
[5]Nahid MA,Yao B,Dominguez-Gutierrez PR,et al.Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212[J].J Immunol,2013,190:1250-1263.
[6]Quinn EM,Wang JH,O’Callaghan G,et al.MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling[J].PloS ONE,2013,8:e62232.
[7]Li G,Yu M,Lee WW,et al.Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity[J].Nat Med,2012,18:1518-1524.
[8]Henao-Mejia J,Williams A,Goff LA,et al.The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis[J].Immunity,2013,38:984-997.
[9]Ghisi M,Corradin A,Basso K,et al.Modulation of microRNA expression in human T-cell development:targeting of NOTCH3 by miR-150[J].Blood,2011,117:7053-7062.
[10] Ucar O,Tykocinski LO,Dooley J,et al.An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression[J].Eur J Immunol,2013,43:1769-1778.
[11] Macedo C,Evangelista AF,Marques MM,et al.Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells[J].Immunobiology,2013,218:554-560.
[12] Matsuo T,Noguchi Y,Shindo M,et al.Regulation of human autoimmune regulator (AIRE) gene translation by miR-220b[J].Gene,2013,530:19-25.
[13] Kyewski B,Derbinski J,Gotter J,et al.Promiscuous gene expression and central T-cell tolerance:more than meets the eye[J].Trends Immunol,2002,23:364-371.
[14] Macedo C,Oliveira EH,Almeida RS,et al.Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction[J].Immunobiology,2015,220:93-102.
[15] Wang L,He L,Zhang R,et al.Regulation of T lymphocyte activation by microRNA-21[J].Mol Immunol,2014,59:163-171.
[16] Dudda JC,Salaun B,Ji Y,et al.MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer[J].Immunity,2013,38:742-753.
[17] Lind EF,Elford AR,Ohashi PS.Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges[J].J Immunol,2013,190:1210-1216.
[18] Li K,Du Y,Jiang BL,et al.Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves’ ophthalmopathy[J].Med Sci Monit,2014,20:639- 643.
[19] Guo YE,Riley KJ,Iwasaki A,et al.Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function[J].Mol Cell,2014,54:67-79.
[20] Liston A,Lu LF,O’Carroll D,et al.Dicer-dependent microRNA pathway safeguards regulatory T cell function[J].J Exp Med,2008,205:1993-2004.
[21] Lu LF,Thai TH,Calado DP,et al.Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein[J].Immunity,2009,30:80-91.
[22] Yao R,Ma YL,Liang W,et al.MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1[J].PloS one,2012,7:e46082.
[23] Qin A,Wen Z,Zhou Y,et al.MicroRNA-126 regulates the induction and function of CD4(+) Foxp3(+) regulatory T cells through PI3KAKT pathway[J].J Cell Mol Med,2013,17:252-264.
[24] Lu LF,Boldin MP,Chaudhry A,et al.Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses[J].Cell,2010,142:914-929.
[25] Jiang S,Li C,Olive V,et al.Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation[J].Blood,2011,118(20):5487-5497.
[26] Skinner JP,Keown AA,Chong MM.The miR-17 approximately 92a cluster of microRNAs is required for the fitness of Foxp3+ regulatory T cells[J].PloS ONE,2014,9:e88997.
[27] Jeker LT,Zhou X,Gershberg K,et al.MicroRNA 10a marks regulatory T cells[J].PloS ONE,2012,7:e36684.
[28] Okoye IS,Coomes SM,Pelly VS,et al.MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells[J].Immunity,2014,41:89-103.
[29] Yamamoto M,Kondo E,Takeuchi M,et al.miR-155,a Modulator of FOXO3a Protein Expression,Is Underexpressed and Cannot Be Upregulated by Stimulation of HOZOT,a Line of Multifunctional Treg[J].PloS ONE,2011,6:e16841.
[30] Wang H,F(xiàn)lach H,Onizawa M,et al.Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210[J].Nat Immunol,2014,15:393- 401.
[31] Iliopoulos D,Kavousanaki M,Ioannou M,et al.The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21[J].Eur J Immunol,2011,41:1754-1763.