宋海燕
摘 要:信息社會(huì)中,通信網(wǎng)絡(luò)建設(shè)在快速發(fā)展,建設(shè)費(fèi)用昂貴,如何使建設(shè)線路最短,從而降低建設(shè)成本成為國(guó)家關(guān)注的重點(diǎn)。該文針對(duì)建設(shè)路徑最短的問(wèn)題,應(yīng)用數(shù)據(jù)結(jié)構(gòu)中的最小生成樹(shù)理論引入了與最小生成樹(shù)相關(guān)的基本概念與定理,分析了通信網(wǎng)絡(luò)線路與最小生成樹(shù)的關(guān)系,最后,應(yīng)用最小生成樹(shù)算法解決了通信網(wǎng)絡(luò)線路最短的實(shí)際問(wèn)題。
關(guān)鍵詞:最小生成樹(shù) 最優(yōu)通信網(wǎng) Prim算法 Kruscal算法
中圖分類(lèi)號(hào):TP393.02 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2014)11(c)-0028-01
隨著現(xiàn)代科技的飛速發(fā)展,通信技術(shù)也得到迅猛的發(fā)展,中國(guó)的通信產(chǎn)業(yè)高速運(yùn)行,通信市場(chǎng)競(jìng)爭(zhēng)加大。在信息時(shí)代,各通信公司為了爭(zhēng)占市場(chǎng),紛紛加大對(duì)通信網(wǎng)絡(luò)的建設(shè)工作,但是高昂的建設(shè)費(fèi)用使通信公司承擔(dān)了巨大的經(jīng)濟(jì)壓力,如何降低通信網(wǎng)絡(luò)的建設(shè)成本是保證運(yùn)營(yíng)商贏得市場(chǎng)的關(guān)鍵。優(yōu)化通信網(wǎng)絡(luò)建設(shè)線路是降低建設(shè)費(fèi)用的一個(gè)途徑,如圖1所示,假設(shè)A,B,C,D,E,F(xiàn)代表六個(gè)城市,任意兩個(gè)城市間連線上的數(shù)字表示兩個(gè)城市的距離,如AB兩城市間的距離為6000 km,現(xiàn)想在這六個(gè)城市間鋪設(shè)網(wǎng)絡(luò)線纜,既可以使六個(gè)城市之間連通,又能夠保證網(wǎng)絡(luò)線纜最短。該文應(yīng)用圖論中的最小生成樹(shù)理論以及生成最小生成樹(shù)的Prim算法和Kruscal算法,優(yōu)化網(wǎng)絡(luò)線路,降低建設(shè)成本。
3.1 算法思想
(1)將圖各邊按照權(quán)值從小到大排序。
(2)依次選入權(quán)值最小的邊(條件:此次找出的邊不能和已加入最小生成樹(shù)集合的邊構(gòu)成環(huán)),若符合條件,則加入最小生成樹(shù)的集合中;若不符合條件則按次序選擇下一條最小權(quán)值的邊。直到找出n-1條邊為止(設(shè)圖有n個(gè)結(jié)點(diǎn),則最小生成樹(shù)的邊數(shù)應(yīng)為n-1條),算法結(jié)束,得到的就是此圖的最小生成樹(shù)。
3.2 構(gòu)造過(guò)程
六個(gè)頂點(diǎn)五條邊即可以連通,應(yīng)用Kruscal算法構(gòu)造的最小生成樹(shù)。
4 結(jié)語(yǔ)
應(yīng)用Prim算法和Kruscal算法構(gòu)造的連通網(wǎng)的最小生成樹(shù),就是最優(yōu)通信網(wǎng),它既可以實(shí)現(xiàn)各個(gè)城市連通,又可以保證通信線路最短,是降低通信網(wǎng)絡(luò)建設(shè)成本的有效途徑。
參考文獻(xiàn)
[1] 謝柏青,余曉歌.算法與數(shù)據(jù)結(jié)構(gòu)[M].高等教育出版社,2001.
[2] 劉自昆.數(shù)據(jù)結(jié)構(gòu)[M].西南師范大學(xué)出版社,2006.
[3] 李筠,姜學(xué)軍.數(shù)據(jù)結(jié)構(gòu)[M].清華大學(xué)出版社,2005.endprint
摘 要:信息社會(huì)中,通信網(wǎng)絡(luò)建設(shè)在快速發(fā)展,建設(shè)費(fèi)用昂貴,如何使建設(shè)線路最短,從而降低建設(shè)成本成為國(guó)家關(guān)注的重點(diǎn)。該文針對(duì)建設(shè)路徑最短的問(wèn)題,應(yīng)用數(shù)據(jù)結(jié)構(gòu)中的最小生成樹(shù)理論引入了與最小生成樹(shù)相關(guān)的基本概念與定理,分析了通信網(wǎng)絡(luò)線路與最小生成樹(shù)的關(guān)系,最后,應(yīng)用最小生成樹(shù)算法解決了通信網(wǎng)絡(luò)線路最短的實(shí)際問(wèn)題。
關(guān)鍵詞:最小生成樹(shù) 最優(yōu)通信網(wǎng) Prim算法 Kruscal算法
中圖分類(lèi)號(hào):TP393.02 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2014)11(c)-0028-01
隨著現(xiàn)代科技的飛速發(fā)展,通信技術(shù)也得到迅猛的發(fā)展,中國(guó)的通信產(chǎn)業(yè)高速運(yùn)行,通信市場(chǎng)競(jìng)爭(zhēng)加大。在信息時(shí)代,各通信公司為了爭(zhēng)占市場(chǎng),紛紛加大對(duì)通信網(wǎng)絡(luò)的建設(shè)工作,但是高昂的建設(shè)費(fèi)用使通信公司承擔(dān)了巨大的經(jīng)濟(jì)壓力,如何降低通信網(wǎng)絡(luò)的建設(shè)成本是保證運(yùn)營(yíng)商贏得市場(chǎng)的關(guān)鍵。優(yōu)化通信網(wǎng)絡(luò)建設(shè)線路是降低建設(shè)費(fèi)用的一個(gè)途徑,如圖1所示,假設(shè)A,B,C,D,E,F(xiàn)代表六個(gè)城市,任意兩個(gè)城市間連線上的數(shù)字表示兩個(gè)城市的距離,如AB兩城市間的距離為6000 km,現(xiàn)想在這六個(gè)城市間鋪設(shè)網(wǎng)絡(luò)線纜,既可以使六個(gè)城市之間連通,又能夠保證網(wǎng)絡(luò)線纜最短。該文應(yīng)用圖論中的最小生成樹(shù)理論以及生成最小生成樹(shù)的Prim算法和Kruscal算法,優(yōu)化網(wǎng)絡(luò)線路,降低建設(shè)成本。
3.1 算法思想
(1)將圖各邊按照權(quán)值從小到大排序。
(2)依次選入權(quán)值最小的邊(條件:此次找出的邊不能和已加入最小生成樹(shù)集合的邊構(gòu)成環(huán)),若符合條件,則加入最小生成樹(shù)的集合中;若不符合條件則按次序選擇下一條最小權(quán)值的邊。直到找出n-1條邊為止(設(shè)圖有n個(gè)結(jié)點(diǎn),則最小生成樹(shù)的邊數(shù)應(yīng)為n-1條),算法結(jié)束,得到的就是此圖的最小生成樹(shù)。
3.2 構(gòu)造過(guò)程
六個(gè)頂點(diǎn)五條邊即可以連通,應(yīng)用Kruscal算法構(gòu)造的最小生成樹(shù)。
4 結(jié)語(yǔ)
應(yīng)用Prim算法和Kruscal算法構(gòu)造的連通網(wǎng)的最小生成樹(shù),就是最優(yōu)通信網(wǎng),它既可以實(shí)現(xiàn)各個(gè)城市連通,又可以保證通信線路最短,是降低通信網(wǎng)絡(luò)建設(shè)成本的有效途徑。
參考文獻(xiàn)
[1] 謝柏青,余曉歌.算法與數(shù)據(jù)結(jié)構(gòu)[M].高等教育出版社,2001.
[2] 劉自昆.數(shù)據(jù)結(jié)構(gòu)[M].西南師范大學(xué)出版社,2006.
[3] 李筠,姜學(xué)軍.數(shù)據(jù)結(jié)構(gòu)[M].清華大學(xué)出版社,2005.endprint
摘 要:信息社會(huì)中,通信網(wǎng)絡(luò)建設(shè)在快速發(fā)展,建設(shè)費(fèi)用昂貴,如何使建設(shè)線路最短,從而降低建設(shè)成本成為國(guó)家關(guān)注的重點(diǎn)。該文針對(duì)建設(shè)路徑最短的問(wèn)題,應(yīng)用數(shù)據(jù)結(jié)構(gòu)中的最小生成樹(shù)理論引入了與最小生成樹(shù)相關(guān)的基本概念與定理,分析了通信網(wǎng)絡(luò)線路與最小生成樹(shù)的關(guān)系,最后,應(yīng)用最小生成樹(shù)算法解決了通信網(wǎng)絡(luò)線路最短的實(shí)際問(wèn)題。
關(guān)鍵詞:最小生成樹(shù) 最優(yōu)通信網(wǎng) Prim算法 Kruscal算法
中圖分類(lèi)號(hào):TP393.02 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2014)11(c)-0028-01
隨著現(xiàn)代科技的飛速發(fā)展,通信技術(shù)也得到迅猛的發(fā)展,中國(guó)的通信產(chǎn)業(yè)高速運(yùn)行,通信市場(chǎng)競(jìng)爭(zhēng)加大。在信息時(shí)代,各通信公司為了爭(zhēng)占市場(chǎng),紛紛加大對(duì)通信網(wǎng)絡(luò)的建設(shè)工作,但是高昂的建設(shè)費(fèi)用使通信公司承擔(dān)了巨大的經(jīng)濟(jì)壓力,如何降低通信網(wǎng)絡(luò)的建設(shè)成本是保證運(yùn)營(yíng)商贏得市場(chǎng)的關(guān)鍵。優(yōu)化通信網(wǎng)絡(luò)建設(shè)線路是降低建設(shè)費(fèi)用的一個(gè)途徑,如圖1所示,假設(shè)A,B,C,D,E,F(xiàn)代表六個(gè)城市,任意兩個(gè)城市間連線上的數(shù)字表示兩個(gè)城市的距離,如AB兩城市間的距離為6000 km,現(xiàn)想在這六個(gè)城市間鋪設(shè)網(wǎng)絡(luò)線纜,既可以使六個(gè)城市之間連通,又能夠保證網(wǎng)絡(luò)線纜最短。該文應(yīng)用圖論中的最小生成樹(shù)理論以及生成最小生成樹(shù)的Prim算法和Kruscal算法,優(yōu)化網(wǎng)絡(luò)線路,降低建設(shè)成本。
3.1 算法思想
(1)將圖各邊按照權(quán)值從小到大排序。
(2)依次選入權(quán)值最小的邊(條件:此次找出的邊不能和已加入最小生成樹(shù)集合的邊構(gòu)成環(huán)),若符合條件,則加入最小生成樹(shù)的集合中;若不符合條件則按次序選擇下一條最小權(quán)值的邊。直到找出n-1條邊為止(設(shè)圖有n個(gè)結(jié)點(diǎn),則最小生成樹(shù)的邊數(shù)應(yīng)為n-1條),算法結(jié)束,得到的就是此圖的最小生成樹(shù)。
3.2 構(gòu)造過(guò)程
六個(gè)頂點(diǎn)五條邊即可以連通,應(yīng)用Kruscal算法構(gòu)造的最小生成樹(shù)。
4 結(jié)語(yǔ)
應(yīng)用Prim算法和Kruscal算法構(gòu)造的連通網(wǎng)的最小生成樹(shù),就是最優(yōu)通信網(wǎng),它既可以實(shí)現(xiàn)各個(gè)城市連通,又可以保證通信線路最短,是降低通信網(wǎng)絡(luò)建設(shè)成本的有效途徑。
參考文獻(xiàn)
[1] 謝柏青,余曉歌.算法與數(shù)據(jù)結(jié)構(gòu)[M].高等教育出版社,2001.
[2] 劉自昆.數(shù)據(jù)結(jié)構(gòu)[M].西南師范大學(xué)出版社,2006.
[3] 李筠,姜學(xué)軍.數(shù)據(jù)結(jié)構(gòu)[M].清華大學(xué)出版社,2005.endprint