• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameters Optimizing of Ammonia-Recovery System in the Modified Equipment of Flax Fiber

    2015-01-12 08:12:30MENGZiyi孟子義MENGZhuoRENGuobin任國斌SUNZhijun孫志軍SUNYize孫以澤
    關(guān)鍵詞:志軍孟子

    MENG Zi-yi (孟子義), MENG Zhuo (孟 婥), REN Guo-bin (任國斌), SUN Zhi-jun (孫志軍), SUN Yi-ze (孫以澤)

    College of Mechanical Engineering, Donghua University, Shanghai 201620, China

    Parameters Optimizing of Ammonia-Recovery System in the Modified Equipment of Flax Fiber

    MENG Zi-yi (孟子義), MENG Zhuo (孟 婥)*, REN Guo-bin (任國斌), SUN Zhi-jun (孫志軍), SUN Yi-ze (孫以澤)

    CollegeofMechanicalEngineering,DonghuaUniversity,Shanghai201620,China

    A detailed analysis of operational process and principle of ammonia-recovery system in the modified equipment of flax fiber, which will be applied to parameters optimizing of the ammonia-recovery system as a foundational principle, is presented. According to the principle, an ammonia compressor, whose working conditions are based on key operational parameters of the whole ammonia-recovery system, is the mainly energy-consumption part of ammonia-recovery system in the modified equipment of flax fiber. A generally mathematical model based on work efficiency of an ammonia compressor is founded, which is available to rate effective work and energy consumption of the ammonia compressor. The optimum operation-efficiency of the ammonia compressor is chosen as the goal to analyze and calculate the key operational parameters of the ammonia-recovery system. In the above analyzing and calculating, a mathematical model on ammonia flowing from the reactor to the register 1 is developed, in order to provide further understanding of the principle of an ammonia-recovery system. At the meantime, the ammonia flow regime in the pipeline and the process of ammonia inflation and deflation from the reactor to the register 1 are taken separately into account in the model. An iterative method is for obtaining parametric solutions of the mathematical model on ammonia flowing from the reactor to the register 1 and the key operational parameters of the ammonia-recovery system. A parametric analysis is put forward to complete showing the ammonia velocity or the state of the reactor and the register 1. The key optimized parameters will be achieved in term of the minimum efficiency after comparing the work efficiencies of an ammonia compressor at different working conditions.

    ammonia-recoverysystem;parameteroptimizing;ammoniacompressor;workefficiency;charginganddischargingmodel

    Introduction

    Linen cloth,which is of good hygroscopicity and breathability, is beloved of customers. However, natural flax fiber, which has many shortcomings such as hard and brittle fiber, poor elasticity and crease resistance, can’t completely meet people’s high requirements. Liquid ammonia treatment could improve not only crease-resistant and shrinking rate, but also hygroscopicity and air permeability of linen fabrics[1]. Meanwhile, the treated linen fabrics by liquid ammonia has better bend-resistant. Therefore, the key technologies of the equipment of flax fiber modified by liquid ammonia should be studied urgently. The special characters of ammonia make reclaiming residual ammonia in the modified equipment of flax fiber become a crucial technique.

    A great deal of research work about the ammonia-recovery process has been done by researchers[2-5]at home and abroad. However, improving ammonia-recovery rate caught most attention in the ammonia-recovery system. This paper reports on reducing energy consumption of the whole ammonia-recovery system via saving energy of mainly energy-consuming facilities in the operating process. A detailed analysis of operational process and principle of the ammonia-recovery system has been done in view of high-purity remaining ammonia in the modified equipment of flax fiber. The condensation and liquefaction must be completed in the range of pressure according to designed crafts of ammonia-recovery system in the equipment. The pressure of liquefaction is from ammonia compressors in the ammonia-recovery system. So ammonia compressors are the mainly energy-consuming installations in the system. If energy consumption of compressors could be decreased by means of optimizing operation of the ammonia-recovery system, energy consumption of the whole system would be lower. Therefore, a mathematical model of work efficiency of the ammonia compressor was developed to optimize its operation. As operational parameters of the ammonia-recovery system depending on the range of operational pressure of the register 1, a mathematical model of First Compression Stage was developed to calculate operational pressure range of the register 1. The operational pressure of register 1, which is the key operational parameter of the whole ammonia-recovery system, was achieved by means of numerical simulation. Likewise, the operational pressure of the register 2 was achieved to optimize operation of the front ammonia compressor.

    1 Operational Principle of Ammonia-Recovery System in the Modified Equipment of Flax Fiber

    Ammonia-recovery system in the modified equipment of flax fiber is shown in Fig.1. The whole system could be theoretically broken up into two parts with different functions of different parts.

    Q—ball valve; J—cut-off valve; number (5, 9, 11, …)—serial number of valve in the systemFig.1 Ammonia-recovery system in the modified equipment of flax fiber

    (1) First Compression Stage: this part consists of the front ammonia compressor, vacuum pump and the register 2. Its function is to provide stably suitable pressure and temperature for intake of the rear ammonia compressor.

    (2) Second Compression Stage: this part consists of the register 1, the rear ammonia compressor, evaporative condenser and auxiliary storage. Its function is that ammonia from the register 1 is compressed to saturated vapor pressure or superheated steam pressure of ammonia at reasonable temperature by the rear ammonia compressor. Under this condition, the ammonia can be condensed into liquid ammonia in the evaporative condenser. Then, the liquid ammonia at normal temperature is reclaimed into auxiliary storage.

    On the basis of analysis above, the register 1 is the key device and its operational pressure range has important influence on operations of other installations in the ammonia-recovery system, especially on the rear ammonia compressor. Therefore, for analyzing the pressure of register 1 easily, three running states shown in Fig.2 on First Compression Stage of ammonia-recovery system in the modified equipment of flex fiber can be described in the light of working pressure of the reactor.

    Fig.2 Running states of First Compression Stage in the ammonia-recovery system

    (1) High-pressure state: there is the dynamic equilibrium process of ammonia gas-liquid transformation during ammonia pump exhausting liquid ammonia from the reactor. Ammonia of saturated steam, whose temperature is lower than that in the outside and pressure is about over 1 MPa, is full of the reactor, when the amount of liquid ammonia in the reactor is near null. This moment, the reactor pressure, is lower than the saturated vapor pressure of ammonia at room temperature, but is far higher than the register 1 pressure. Therefore, ammonia would flow spontaneously from reactor to register without any other assistance.

    (2) Medium-pressure state: the pressure difference between the reactor and the register 1 would be smaller and smaller because of the ammonia flowing spontaneously from the reactor to the register 1. Ammonia flows from the reactor to the register 1 with assistance of the front ammonia compressor, when there is no pressure difference between them(the pressure difference is under 0.01 MPa).

    (3) Low-pressure state: along with ammonia decreasing in the reactor, the reactor pressure will be lower than proposed intake pressure of the front ammonia compressor. At this moment, ammonia in reactor will be exhausted by vacuum pump to register 2. Ammonia in the register 2 is pumped by front ammonia compressor into the register 1, when pressure of the register 2 is appropriate.

    After operational principle of the ammonia-recovery system is analyzed, the ammonia compressors are often used and provide power for ammonia flowing. At the meantime, the ammonia compressors also provide suitable pressure for ammonia condensing. We can conclude that ammonia compressors are mainly energy-consumption installations in the system. On the other way, inlet pressure of the ammonia compressor is almost equal to working pressure of the register. Therefore, pressures of registers have significant impact on working and energy consumption of ammonia compressors. The registers are key installations in the ammonia-recovery system. Consequently, a general mathematical model of ammonia compressor work efficiency is developed to weigh up the efficient utilization of energy by ammonia compressors and to optimize working pressures of the registers, which are parameters of the ammonia-recovery system, and to fit the best working conditions of ammonia compressors reducing energy consumption of the whole ammonia-recovery system.

    2 Mathematical Model of Ammonia-Recovery System in the Modified Equipment of Flax Fiber

    2.1 Mathematical model of ammonia-compressor work efficiency

    Work efficiency of an ammonia compressor can be affected by many factors, for example, configuration of an ammonia compressor, characters of ammonia in different thermodynamic states, ammonia thermodynamic characters of ammonia when it is intake or outlet of ammonia compressor and so on. In the paper, the mathematical model of ammonia compressor work efficiency is developed in accordance with the selected compressor. Therefore, the configuration of the ammonia compressor and ammonia saturated vapor pressure are known and only working conditions of the maximum work efficiencyηmaxof the ammonia compressor is what we should attain.

    Factors affecting on the ammonia compressor work efficiency[6]ηinvolve volumetric efficiencyηv, indicated efficiencyηi, mechanical efficiencyηmand electrical efficiencyηe.

    (1) Volumetric efficiencyηvis ratio of actual to theoretical displacement about ammonia compressor and reflects effective utilization ratio of an ammonia compressor cylinder volume. Factors affecting volumetric efficiencyηvof an ammonia compressor mostly include clearance coefficientλv, pressure coefficientλp, preheating coefficientλtand leakage coefficientλl. Therefore, the volumetric efficiencyηvis:

    ηv=λvλpλtλl.

    (1)

    But the accurate solutions of four coefficients in Eq. (1) are very difficult to verify at different working conditions[7-9]. Consequently, usually empirical Eq. (2) is selected[10]in the paper to attain the volumetric efficiencyηv.

    (2)

    whereξis pressure ratio;k, which is 1.28, is the polytropic exponent of ammonia.

    (2) Indicated efficiencyηiis ratio of theoretical to indicated power about ammonia compressor and reflects thermodynamic perfect degree of an ammonia compressor. Factors affecting indicated efficiencyηiof an ammonia compressor mostly include pressure ratioξ, relative clearance volumeδ0, preheating coefficientλtand leakage coefficientλl. Therefore, indicated efficiencyηi[11]is:

    (3)

    wherenis adiabatic exponent of ammonia;k, which is 1.28, is the polytropic exponent of ammonia;Zais ammonia compressibility factor in the theoretical intake state a of an ammonia compressor;Zbindicates ammonia compressibility factor in the theoretical outlet state b of an ammonia compressor;Z1indicates ammonia compressibility factor in the actual intake state 1 of an ammonia compressor;Z2indicates ammonia compressibility factor in the actual outlet state 2 of an ammonia compressor.

    (3) Mechanical efficiencyηmis ratio of indicated to shaft power about an ammonia compressor and reflects power ratio of transmission gear in compressor. Friction loss of transmission gear in the selected ammonia compressor increases with pressure ratioξdecreasing. Therefore, mechanical efficiency of the ammonia compressor is inversely proportional to its pressure ratioξ.

    (4) Electrical efficiencyηeis ratio of shaft to power of motor about an ammonia compressor and reflects effective work of motor in an ammonia compressor at different working conditions. Electrical efficiency of the selected ammonia compressor changes little at certain working conditions. As a matter of experience[12], electrical efficiencyηeof the selected ammonia compressor is 0.95.

    Mostly affected factors about work efficiency of an ammonia compressor indicate efficiency of energy transfer during the compressor operating. Consequently, the mathematical model of work efficiencyηof the selected ammonia compressor in the paper is:

    η=ηvηiηmηe.

    (4)

    2.2 Mathematical model of First Compression Stage in the ammonia-recovery system

    First Compression Stage in the ammonia-recovery system is simplified in accordance with the fluid mass balance principle. We got the logistic model as shown in Fig.3.The pressure of the register 1 is:

    p=F(p1, p2, p3)-Δp,

    (5)

    wherep1is pressure of the register 1 in high-pressure state, Pa;p2is pressure of the register 1 in medium-pressure state, Pa;p3is pressure of register 1 in low-pressure state, Pa; Δp is pressure difference in the register 1 after ammonia pumped by the rear ammonia compressor, Pa;Fis coupling relationship of the register 1 pressure in three states.

    Fig.3 Logical model of First Compression Stage

    (1) In the high-pressure state, ammonia flow spontaneously from the reactor to the register 1 under pressure difference. This process can be regarded as adiabatic degassing of the reactor and adiabatic charging of the register 1[13].

    According to the law of conservation of mass and the first law of thermodynamics, the mass of ammonia degassing from the reactor is:

    (6)

    where Δm1is mass of degassing ammonia from reactor, kg;p1is pressure of the reactor before degassing, Pa;p2is pressure of the reactor after degassing, Pa;V1is volume of the reactor, m3;T1is temperature of the reactor before degassing, K;Ris constant of proportionality, J·(mol·K)-1;nis adiabatic exponent of ammonia.

    Temperature of the reactor after degassing is:

    (7)

    whereT1is temperature of the reactor before degassing, K;T2is temperature of the reactor after degassing, K.

    The mass of ammonia charging into the register 1 is:

    (8)

    where Δm2is mass of ammonia charging into the register 1, kg;p3is pressure of the register 1 before charging, Pa;p4is pressure of the register 1 after charging, Pa;V2is volume of the register 1, m3;T3is temperature of the register 1 before charging, K;T4is temperature of the register 1 after charging, K.

    Temperature of the Register 1 after charging is:

    (9)

    whereT0is temperature of ammonia from supply, K.

    In the high-pressure state, when ammonia flow spontaneously from the reactor to the register 1 and the process ends in equilibrium,p2is equal top4and Δm1=Δm2.

    (2) When ammonia flow through the pipeline, it is forced by differential pressure from ends of pipeline and drag force from pipe wall. Therefore, ammonia flowing through the pipeline can be seen as flowing state between adiabatic and isothermal[14]. Relation of ammonia current speed to the pressure from ends of pipeline is:

    (10)

    (3) Mass velocity of the ammonia compressor is concerned with thermodynamic state of intake ammonia. Mass velocity of the ammonia compressor, in accordance with volumetric flow of ammonia compressor and gas equation, is:

    (11)

    whereG0is mass velocity of ammonia compressor, kg·s-1;Vhis theoretical flowing capacity of ammonia compressor, m3·s-1;pis intake pressure of the ammonia compressor, Pa;Tis intake ammonia temperature of ammonia compressor, K;ηvis volumetric efficiency of ammonia compressor;Mis molar mass of ammonia, kg·mol-1.

    3 Running Parameters Optimizing of Ammonia-Recovery System in the Modified Equipment of Flax Fiber

    According to the principle and process of the ammonia-recovery system above, inlet pressure of the rear ammonia compressor is equal to pressure of the register 1 without pressure drop of pipeline. In the light of crafts of the ammonia-recovery system, the outlet pressure of the rear ammonia compressor is saturated vapor pressure of ammonia or above. compression ratio of the rear ammonia compressor mainly depends on working pressure of the register 1. Likewise, compression ratio of the front ammonia compressor almost depends on working pressure of the register 2. Therefore, optimizing the operational parameters of the ammonia-recovery system is to calculate appropriately operational pressure range to make sure that the ammonia compressors work at the best working conditions.

    Thermal effects to an ammonia compressors could be neglected, when the optimum working condition of the ammonia compressor is discussed, because ammonia-recovery system in the modified equipment of flex fiber runs at normal temperature (20±2)℃. So, we assume that ammonia compressors run at constant temperature (20℃). Consequently, pressure ratioξwould be the mainly considering factor affecting ammonia operation-efficiencyη. There is difference in displacement and outlet pressure between the front and rear ammonia compressors. Therefore, the relationship of pressure ratio to ammonia operation-efficiency will help us to analyze the best ammonia compressor operation-efficiency of both front and rear ammonia compressors.

    (1) During ammonia compressor operation-efficiency is calculated, some of parameters, which have influence on operation-efficiency, are shown in Table 1 from information of the front and rear ammonia compressor.

    Table 1 Parameter about ammonia compressor operation. efficiency

    ParameterValueNotePreheatingcoefficientλt0.9837ActualworkingconditionLeakagecoefficientλl0.9837ActualworkingconditionRatiooftheoreticalammoniacompressibilityfactortoac-tual ZbZaZ2Z11.017TableofammoniacompressibilityfactorRelativeclearancevolumeδ00.05Dataofammoniacompressor

    According to the mathematical model of the ammonia compressor working efficiency and graph of mechanical efficiency from Ref. [11], the relationship of ammonia compressor operation-efficiency ηtocompressionratioξisdescribedinFig.4.

    Fig.4 Relation of ammonia compressor operation-efficiency to compression ratio

    (2)Alldataaboutinstallationsofammonia-recoverysystemareshowninTable2.Theinitialtemperaturesofbothreactorandregister1are294.15K.Highpressurepartofpipelineisconnectedtothereactorandlowpressureisconnectedtotheregister1.Inthelightofcalculatingmathematicalmodelofammoniaflowingbetweenthereactorandtheregister1Eqs. (6)-(9)andammoniaflowinginpipelineEq. (10),pressuresofreactorandregister1andmassvelocityofammoniainthepipeline,areshowninTable3.

    Table 2 Parameter of installations in the ammonia-recovery system

    ParameterValueInitialpressureofreactor/MPa1Volumeofreactor/m31Numberofreactor5Initialpressureoftheregister1/MPa0Volumeoftheregister1/m35Distanceofpipeline/m5Diameterofpipeline/m0.04

    Table 3 Pressure of reactor/register 1 and mass velocity of pipeline

    Pressureofreactor/kPaPressureofregister1/kPaMassvelocityofpipeline/(kg·s-1)1000.00395.361.03810.09414.480.80669.12428.280.61566.55437.220.44495.02441.060.28449.97447.670.12

    (3) The data about the selected ammonia compressors are shown in Table 4. On the basis of the mathematical model of mass velocity Eq. (11) and volumetric flow of the selected ammonia compressors, mass velocity of the ammonia compressors, which are shown in Figs.5 and 6, are calculated under specified inlet pressures of them.

    Table 4 Parameters of the selected ammonia compressors

    ParameteroftheselectedammoniacompressorValueRatedvolumetricflowofthefrontammoniacom-pressor/(m3·min-1)0.5Specifiedinletpressureofthefrontammoniacom-pressor/MPa0.00.6Ratedvolumetricflowoftherearammoniacom-pressor/(m3·min-1)0.4Specifiedinletpressureoftherearammoniacom-pressor/MPa0.02.0

    Fig.5 Mass velocity of the front ammonia compressor

    Fig.6 Mass velocity of the rear ammonia compressor

    (4) As shown in Fig.4, when compression ratio is 1.8-5.0, ammonia compressor work efficiency is optimum and total fruitless consumptions are low. Therefore, the optimum working pressure of the register 1 preliminarily is 0.4-1.0 MPa and of the register 2 is 0.12-0.30 MPa in accordance with optimum work efficiencies of ammonia compressor and the selected ammonia compressors. When ammonia compressors start working, ammonia mass flowing in and out of register should be almost the same to make sure that ammonia compressors can work in the best working condition. Finally, the optimum working range of the register 1 is 0.4-0.5 MPa after overall consideration of the mass velocity of ammonia flowing in pipeline shown in Table 3, of the front ammonia compressor shown in Fig.5, and of the rear ammonia compressor shown in Fig.6. When the pressure of the register 1 is above 0.4 MPa, the rear ammonia compressor should work continuously. As the mass velocity of inlet of the register 1 is almost equal to its outlet, when the intake pressure of the rear ammonia compressor is 0.4 MPa, the consumption of futile power is low according to Fig.4. At the same time, the rear ammonia compressor work continuously to avoid extra power consumption of starting compressor repeatedly. A function of the front ammonia compressor is to pump the low-pressure ammonia in the reactor and the register 2. Therefore, starting of the front compressor should be not frequent and its work condition should be perfect. The working pressure range of the register 2 is 0.1-0.2 MPa. When the pressure of the register 2 is above 0.2 MPa, the front ammonia compressor will pump ammonia from the register 2 until its pressure is under 0.1 MPa.

    4 Conclusions

    (1) Detailed analyses of operational process and principle of ammonia-recovery system in the modified equipment of flax fiber, which is applied to optimization analysis of the ammonia-recovery system as the foundational principle, are presented.

    (2) Mathematical model of work efficiency of ammonia compressor is proposed to evaluate the energy consumption of ammonia compressor.

    (3) Mathematical model of First Compression Stage in the ammonia-recovery system is developed in order to achieve operational parameters of the ammonia-recovery system. The optimum work efficiency of ammonia compressor is used to calculate registers 1 and 2 operational pressure ranges. At the meantime, key parameters of the ammonia-recovery system are optimized and the energy consumption is reduced.

    [1] Feng J H, Zhang H, Li J. Wear ability of Linen Fabrics after Liquid Ammonia/Crosslinking Treatment [J].JournalofTextileResearch, 2008, 29(8): 63-66.(in Chinese)

    [2] Zhang H, Zhao H L, Feng S B. Advances in Processes for Ammonia Recovery[C]. Chinese Annual Conference on Process Systems Engineering in 2009, Hangzhou, China, 2009: 125-128. (in Chinese)

    [3] Ventas R, Vereda C, Lecuona A,etal. Experimental Study of a Thermo-Chemical Compressor for an Absorption/Compression Hybrid Cycle [J].AppliedEnergy, 2012, 97: 297-304.

    [4] Wang B M, Wu H G, Li J F,etal. Experimental Investigation on the Performance of NH3/CO2Cascade Refrigeration System with Twin-Screw Compressor [J].InternationalJournalofRefrigeration, 2009, 32(6): 1358-1365.

    [5] Meng X L, Zheng D X, Wang J Z,etal. Energy Saving Mechanism Analysis of the Absorption Compression Hybrid Refrigeration Cycle [J].RenewableEnergy, 2013, 57: 43-50.

    [6] Wang G B. Determination of Property Parameters for Reciprocating Compressor [J].ProcessEquipment&Piping, 2005, 42(3): 44-47. (in Chinese)

    [7] Chen R D, Yue X F. Refrigeration Technology and Application[M]. Shanghai: Tongji University Press, 2006: 39-49. (in Chinese).

    [8] Wang J, Wang Y Y. Investigation on the Volumetric Efficiency of Automotive Air-Conditioning Compressor [J].FluidMachinery, 1994, 22(8): 53-56, 63.(in Chinese)

    [9] Liang Y, Shi L. Simulation of Compressor of Automobile Air Conditioners [J].JournalofTsinghuaUniversity:Science&Technology, 1999, 39(11): 79-82.

    [10] Shen X, Wang X Y, Huang Y J,etal. Thermodynamic Performance of Refrigeration Compressor Running at Variable Condition [J].JournalofRefrigeration, 2009, 30(6): 15-19.(in Chinese)

    [11] Miao D P. Piston Refrigerant Compressor[M]. Beijing: China Machine Press, 1983: 5-45.(in Chinese)

    [12] Yao J, Chen Z J. Prediction of Optimal Operation Point for Hermetically Sealed Piston Type Compressor with Simulation Program[C]. Annual Conference on Shanghai Institute of Refrigeration, Shanghai, China, 1989. (in Chinese)

    [13] Qi M Z. Analysis of Energy in Chemical Engineering[M]. Shanghai: East China University of Science and Technology Press, 2009: 20-40.(in Chinese)

    [14] Chen M H, Cong D Z, Fang T A,etal. Principles of Chemical Industry[M]. Beijing: Chemical Industry Press, 2006: 20-46.(in Chinese)

    Foundation items: National Science and Technology Support Program, China (No. 2012BAF13B03); Program of Shanghai Subject Chief Scientist, China (No. 12XD1420300)

    TS195.3 Document code: A

    1672-5220(2015)01-0068-05

    Received date: 2013-10-09

    * Correspondence should be addressed to MENG Zhuo, E-mail: mz@dhu.edu.cn

    猜你喜歡
    志軍孟子
    神奇的“魔力語”
    磨刀不誤砍柴工
    夏天的味道
    楊志軍:閱讀是人生的常態(tài)
    商周刊(2017年10期)2017-08-23 13:30:40
    實(shí)業(yè)崛起
    中國品牌(2017年5期)2017-05-11 00:57:38
    當(dāng)好小記者
    觀察也要有“情”
    美女高潮喷水抽搐中文字幕| 午夜福利高清视频| 欧美3d第一页| 一本一本综合久久| 亚洲人成伊人成综合网2020| 在线观看66精品国产| www国产在线视频色| 嫁个100分男人电影在线观看| 美女大奶头视频| 亚洲自偷自拍图片 自拍| 成人亚洲精品av一区二区| 男插女下体视频免费在线播放| 国产一区二区三区在线臀色熟女| 老汉色av国产亚洲站长工具| 国内揄拍国产精品人妻在线| 男女午夜视频在线观看| 12—13女人毛片做爰片一| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区免费观看 | 少妇人妻一区二区三区视频| 久热爱精品视频在线9| 欧美日本视频| 一卡2卡三卡四卡精品乱码亚洲| 国产熟女午夜一区二区三区| 舔av片在线| 亚洲18禁久久av| 国内揄拍国产精品人妻在线| 中文亚洲av片在线观看爽| 国产精品电影一区二区三区| 99热这里只有精品一区 | 伊人久久大香线蕉亚洲五| 中文字幕av在线有码专区| 黑人操中国人逼视频| 91大片在线观看| 美女 人体艺术 gogo| 亚洲精品久久国产高清桃花| 亚洲国产精品999在线| av福利片在线观看| 免费观看精品视频网站| 女警被强在线播放| 久久久国产成人免费| 最近最新免费中文字幕在线| 亚洲国产精品成人综合色| 久久久精品欧美日韩精品| 免费观看人在逋| 99精品欧美一区二区三区四区| 亚洲精品在线观看二区| 好男人电影高清在线观看| 成人永久免费在线观看视频| 亚洲精品av麻豆狂野| 亚洲av电影不卡..在线观看| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 国产精品免费视频内射| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美网| 欧美高清成人免费视频www| 搞女人的毛片| 一二三四在线观看免费中文在| 在线十欧美十亚洲十日本专区| 国产午夜精品论理片| 欧美乱色亚洲激情| 99热这里只有精品一区 | 99精品欧美一区二区三区四区| 宅男免费午夜| 亚洲欧美日韩无卡精品| 国产亚洲精品第一综合不卡| 神马国产精品三级电影在线观看 | 给我免费播放毛片高清在线观看| 男女视频在线观看网站免费 | 国产成人精品久久二区二区免费| 精品国产乱子伦一区二区三区| 国产片内射在线| 亚洲av电影不卡..在线观看| 国内精品久久久久久久电影| 国产精品美女特级片免费视频播放器 | 男人舔奶头视频| 熟女电影av网| 亚洲色图av天堂| 亚洲最大成人中文| 国产精品1区2区在线观看.| 丁香六月欧美| 国产午夜精品论理片| 国产熟女xx| 欧美高清成人免费视频www| 搡老熟女国产l中国老女人| 国产亚洲精品av在线| 亚洲午夜理论影院| 国产1区2区3区精品| 校园春色视频在线观看| 国产av一区在线观看免费| 欧美性猛交╳xxx乱大交人| 亚洲av日韩精品久久久久久密| 国产精品爽爽va在线观看网站| 亚洲av电影在线进入| 99riav亚洲国产免费| 在线观看美女被高潮喷水网站 | 亚洲 欧美 日韩 在线 免费| 在线观看66精品国产| 国产精品一区二区精品视频观看| 国产乱人伦免费视频| 国产精品99久久99久久久不卡| 欧美不卡视频在线免费观看 | 舔av片在线| 免费看美女性在线毛片视频| 成在线人永久免费视频| 亚洲av日韩精品久久久久久密| 国产私拍福利视频在线观看| 99精品欧美一区二区三区四区| 亚洲av成人av| 听说在线观看完整版免费高清| 精品免费久久久久久久清纯| 在线观看午夜福利视频| 亚洲成av人片免费观看| 亚洲欧美日韩高清专用| 桃红色精品国产亚洲av| 91国产中文字幕| 丝袜人妻中文字幕| 国模一区二区三区四区视频 | 99国产综合亚洲精品| 黄频高清免费视频| videosex国产| 久久久久久久午夜电影| 国产精品亚洲一级av第二区| 国产激情欧美一区二区| 日韩欧美在线二视频| 欧美成人免费av一区二区三区| 黑人欧美特级aaaaaa片| 日韩大尺度精品在线看网址| 两个人看的免费小视频| 日日爽夜夜爽网站| 窝窝影院91人妻| 韩国av一区二区三区四区| 国产精品一区二区三区四区免费观看 | 禁无遮挡网站| av福利片在线| 可以免费在线观看a视频的电影网站| 99热6这里只有精品| 非洲黑人性xxxx精品又粗又长| 亚洲免费av在线视频| 校园春色视频在线观看| 成人18禁在线播放| 亚洲国产精品久久男人天堂| 怎么达到女性高潮| 精品高清国产在线一区| 成人高潮视频无遮挡免费网站| 一边摸一边做爽爽视频免费| 欧美一区二区精品小视频在线| 少妇粗大呻吟视频| 97人妻精品一区二区三区麻豆| 亚洲自拍偷在线| 国产av一区二区精品久久| 国产三级黄色录像| 我要搜黄色片| 1024手机看黄色片| 亚洲精品久久国产高清桃花| 别揉我奶头~嗯~啊~动态视频| 美女 人体艺术 gogo| 高清在线国产一区| 精品国产乱子伦一区二区三区| 精品高清国产在线一区| 欧美日韩瑟瑟在线播放| 国产精品久久久久久久电影 | 日韩高清综合在线| a在线观看视频网站| 香蕉国产在线看| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 欧美精品亚洲一区二区| 日韩精品青青久久久久久| 亚洲av美国av| 少妇裸体淫交视频免费看高清 | 99精品久久久久人妻精品| 久久久精品国产亚洲av高清涩受| 国产成人啪精品午夜网站| 看黄色毛片网站| 亚洲最大成人中文| 嫩草影视91久久| 成人三级黄色视频| 岛国视频午夜一区免费看| 久久中文看片网| 国产av不卡久久| 久久中文字幕一级| 亚洲国产欧洲综合997久久,| 亚洲熟妇中文字幕五十中出| 90打野战视频偷拍视频| 久久人妻福利社区极品人妻图片| 午夜激情福利司机影院| 色综合婷婷激情| 人人妻人人澡欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 热99re8久久精品国产| 亚洲欧美日韩高清在线视频| 亚洲一区中文字幕在线| 国产爱豆传媒在线观看 | 国产精品亚洲av一区麻豆| 国产伦在线观看视频一区| 免费看a级黄色片| 变态另类丝袜制服| 欧美在线一区亚洲| 亚洲成a人片在线一区二区| 观看免费一级毛片| 国产乱人伦免费视频| 此物有八面人人有两片| 日韩欧美一区二区三区在线观看| 国产精品久久久人人做人人爽| 午夜亚洲福利在线播放| 久久精品国产亚洲av高清一级| 精品久久久久久久末码| 精品日产1卡2卡| 亚洲最大成人中文| 亚洲自拍偷在线| 成在线人永久免费视频| 亚洲成a人片在线一区二区| 91在线观看av| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 欧美日韩一级在线毛片| 久久热在线av| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 亚洲九九香蕉| 最近在线观看免费完整版| 淫妇啪啪啪对白视频| 亚洲一区中文字幕在线| 好男人电影高清在线观看| av欧美777| 国产高清有码在线观看视频 | 舔av片在线| 好男人在线观看高清免费视频| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 国产一区二区在线观看日韩 | 精品日产1卡2卡| 国产成人精品久久二区二区免费| 亚洲成人免费电影在线观看| 亚洲精品色激情综合| 嫁个100分男人电影在线观看| 国产高清videossex| 免费无遮挡裸体视频| 18禁黄网站禁片免费观看直播| 床上黄色一级片| 午夜免费激情av| 欧美色欧美亚洲另类二区| 亚洲天堂国产精品一区在线| 在线十欧美十亚洲十日本专区| 欧美又色又爽又黄视频| 丰满的人妻完整版| 精品国产乱码久久久久久男人| 麻豆成人午夜福利视频| 熟女少妇亚洲综合色aaa.| 欧美日韩国产亚洲二区| 亚洲中文字幕一区二区三区有码在线看 | 午夜久久久久精精品| 黄色成人免费大全| 免费高清视频大片| 久久久久久亚洲精品国产蜜桃av| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久成人av| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕| 狂野欧美白嫩少妇大欣赏| 熟妇人妻久久中文字幕3abv| 日韩精品免费视频一区二区三区| 老汉色av国产亚洲站长工具| 男插女下体视频免费在线播放| 男女那种视频在线观看| 老司机靠b影院| 久久中文看片网| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人久久性| 免费电影在线观看免费观看| 国模一区二区三区四区视频 | www国产在线视频色| 啦啦啦韩国在线观看视频| 成年版毛片免费区| 美女午夜性视频免费| 国产精品自产拍在线观看55亚洲| 日韩大码丰满熟妇| 性欧美人与动物交配| 日韩欧美在线乱码| 成人av一区二区三区在线看| 久久久久久久久久黄片| 欧美色视频一区免费| 正在播放国产对白刺激| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区三| 久久亚洲真实| 日本在线视频免费播放| 日本成人三级电影网站| 一区福利在线观看| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 欧美精品亚洲一区二区| av欧美777| 麻豆av在线久日| 黄色丝袜av网址大全| 亚洲电影在线观看av| 亚洲男人天堂网一区| 亚洲色图 男人天堂 中文字幕| 一本精品99久久精品77| 又紧又爽又黄一区二区| 宅男免费午夜| 91国产中文字幕| 一级毛片精品| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 久久久久性生活片| 国产午夜精品论理片| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 国产成人av激情在线播放| 精品国产亚洲在线| 黄片小视频在线播放| 午夜免费激情av| 国产又黄又爽又无遮挡在线| av免费在线观看网站| 99久久精品热视频| 给我免费播放毛片高清在线观看| 久久国产精品人妻蜜桃| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 国产区一区二久久| xxx96com| 久久久久久人人人人人| 久久久久久久午夜电影| x7x7x7水蜜桃| 亚洲av成人一区二区三| 亚洲av成人不卡在线观看播放网| 久久久水蜜桃国产精品网| 禁无遮挡网站| 国产精品一区二区免费欧美| 国产精品1区2区在线观看.| 丁香欧美五月| 欧美性猛交黑人性爽| 久久午夜亚洲精品久久| 亚洲一区二区三区不卡视频| 欧美在线黄色| 久久久国产成人免费| 国产激情偷乱视频一区二区| 黄色女人牲交| 黄色片一级片一级黄色片| 一级黄色大片毛片| 国产av不卡久久| 色av中文字幕| 一边摸一边做爽爽视频免费| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 国产高清有码在线观看视频 | 久久久国产精品麻豆| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲五月天丁香| 香蕉久久夜色| 深夜精品福利| 久久久久国产一级毛片高清牌| 成人特级黄色片久久久久久久| 九色成人免费人妻av| 少妇的丰满在线观看| 国产高清视频在线播放一区| 国产高清有码在线观看视频 | 亚洲中文字幕一区二区三区有码在线看 | ponron亚洲| cao死你这个sao货| 看黄色毛片网站| 美女黄网站色视频| 久久久精品国产亚洲av高清涩受| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| www.www免费av| 国产熟女xx| 国产真人三级小视频在线观看| 免费搜索国产男女视频| xxx96com| 99re在线观看精品视频| 亚洲人成电影免费在线| 亚洲一区二区三区不卡视频| 亚洲成人国产一区在线观看| 操出白浆在线播放| 特级一级黄色大片| 国产精品久久久久久精品电影| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 美女大奶头视频| 两性夫妻黄色片| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 在线a可以看的网站| 麻豆国产97在线/欧美 | 日日夜夜操网爽| 精品人妻1区二区| 99riav亚洲国产免费| 久久 成人 亚洲| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 精品无人区乱码1区二区| 欧美乱码精品一区二区三区| 成人三级黄色视频| 最近在线观看免费完整版| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 校园春色视频在线观看| 亚洲熟女毛片儿| 狠狠狠狠99中文字幕| 久久久精品大字幕| 999久久久国产精品视频| 国产高清有码在线观看视频 | 欧美绝顶高潮抽搐喷水| 国产成年人精品一区二区| 国产精品亚洲av一区麻豆| 身体一侧抽搐| 制服丝袜大香蕉在线| 国产片内射在线| 国产爱豆传媒在线观看 | 日韩欧美在线乱码| 欧美黑人精品巨大| 久9热在线精品视频| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| www国产在线视频色| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 欧美黑人欧美精品刺激| 精品欧美一区二区三区在线| 亚洲电影在线观看av| 久久中文字幕一级| 99热这里只有是精品50| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| 99热这里只有是精品50| 美女大奶头视频| 热99re8久久精品国产| 国产亚洲精品久久久久久毛片| 亚洲中文av在线| 九色国产91popny在线| 国产一区在线观看成人免费| 久久久久九九精品影院| netflix在线观看网站| 精品国产美女av久久久久小说| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| av在线播放免费不卡| 亚洲人成电影免费在线| 变态另类成人亚洲欧美熟女| 久久人妻福利社区极品人妻图片| 久久久精品大字幕| 国产真人三级小视频在线观看| 成人av在线播放网站| 777久久人妻少妇嫩草av网站| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 此物有八面人人有两片| 久久性视频一级片| 亚洲色图av天堂| 亚洲性夜色夜夜综合| 精品久久久久久久久久免费视频| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 身体一侧抽搐| 亚洲欧美日韩高清专用| 亚洲一区二区三区色噜噜| 午夜免费激情av| 曰老女人黄片| 久久精品国产亚洲av高清一级| 在线观看舔阴道视频| 亚洲无线在线观看| 精品第一国产精品| 丰满的人妻完整版| 国产久久久一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲精品综合一区在线观看 | 天堂影院成人在线观看| 宅男免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 国产爱豆传媒在线观看 | 国产一区二区三区视频了| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 国产一区二区三区视频了| 在线观看日韩欧美| 777久久人妻少妇嫩草av网站| 免费电影在线观看免费观看| xxx96com| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 亚洲av成人精品一区久久| 免费电影在线观看免费观看| 高清在线国产一区| 一a级毛片在线观看| 精品一区二区三区四区五区乱码| 大型黄色视频在线免费观看| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女| 在线观看免费日韩欧美大片| 国产99白浆流出| 成年人黄色毛片网站| 熟女电影av网| 日韩大码丰满熟妇| 亚洲电影在线观看av| 成人手机av| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 少妇粗大呻吟视频| 欧美人与性动交α欧美精品济南到| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 欧美日韩黄片免| 毛片女人毛片| 人妻夜夜爽99麻豆av| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 欧美日韩一级在线毛片| 亚洲全国av大片| 午夜激情福利司机影院| 人人妻,人人澡人人爽秒播| 国产成人av教育| 国产99白浆流出| 一级作爱视频免费观看| 亚洲 国产 在线| 久久久久性生活片| 无遮挡黄片免费观看| 国产v大片淫在线免费观看| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲片人在线观看| 一区二区三区国产精品乱码| 久久精品国产亚洲av高清一级| 麻豆久久精品国产亚洲av| 婷婷丁香在线五月| 亚洲精品美女久久久久99蜜臀| 国产精品乱码一区二三区的特点| 久久久国产成人免费| 色噜噜av男人的天堂激情| 中文字幕久久专区| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 高清在线国产一区| 国产精品av久久久久免费| 一二三四在线观看免费中文在| 精品无人区乱码1区二区| 亚洲激情在线av| 一本综合久久免费| 亚洲色图 男人天堂 中文字幕| 18禁黄网站禁片免费观看直播| 精品国内亚洲2022精品成人| 一个人免费在线观看电影 | 日韩精品免费视频一区二区三区| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 国产野战对白在线观看| 国内精品久久久久精免费| 欧美zozozo另类| 亚洲专区中文字幕在线| 国产高清videossex| 99国产综合亚洲精品| 在线观看www视频免费| 91麻豆av在线| 国产精品日韩av在线免费观看| av福利片在线观看| 精品一区二区三区四区五区乱码| 黄片小视频在线播放| 亚洲最大成人中文| 黄色片一级片一级黄色片| 1024香蕉在线观看| 99国产精品一区二区三区| 日韩有码中文字幕| 久久婷婷人人爽人人干人人爱| 国产成人精品久久二区二区免费| 嫁个100分男人电影在线观看| 丁香欧美五月| 看片在线看免费视频| 日韩大码丰满熟妇| 一级a爱片免费观看的视频| 欧美一级a爱片免费观看看 | 不卡一级毛片| 成年女人毛片免费观看观看9| 19禁男女啪啪无遮挡网站| 国产乱人伦免费视频| 两人在一起打扑克的视频| 亚洲av成人av| 色老头精品视频在线观看| 久久这里只有精品19| 欧美黑人欧美精品刺激| 成年版毛片免费区| 夜夜夜夜夜久久久久| 久久久水蜜桃国产精品网| 三级男女做爰猛烈吃奶摸视频| 首页视频小说图片口味搜索| 黄色视频不卡| av福利片在线观看| 久久精品国产99精品国产亚洲性色| 一二三四社区在线视频社区8| 婷婷精品国产亚洲av| 国产精品亚洲av一区麻豆| 女生性感内裤真人,穿戴方法视频| 日本成人三级电影网站| 国产单亲对白刺激| 欧美日韩中文字幕国产精品一区二区三区| 国产视频一区二区在线看| 婷婷丁香在线五月| 中文字幕熟女人妻在线| 三级国产精品欧美在线观看 | 老熟妇乱子伦视频在线观看| av片东京热男人的天堂|