• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Properties of Polylactic Acid (PLA)/Nano-SiO2 Composite Master Batch with Good Thermal Properties

    2015-01-12 08:33:11LIUShuqiang劉淑強(qiáng)WUGaihong吳改紅GUOHongxia郭紅霞ZUOZhong左中鵝DAIJinming戴晉明
    關(guān)鍵詞:紅霞

    LIU Shu-qiang (劉淑強(qiáng)), WU Gai-hong(吳改紅), GUO Hong-xia(郭紅霞), ZUO Zhong-e(左中鵝), DAI Jin-ming (戴晉明)

    1 College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030021, China2 Fashion Institute, Donghua University, Shanghai 200051, China

    Preparation and Properties of Polylactic Acid (PLA)/Nano-SiO2Composite Master Batch with Good Thermal Properties

    LIU Shu-qiang (劉淑強(qiáng))1*, WU Gai-hong(吳改紅)1, 2, GUO Hong-xia(郭紅霞)1, ZUO Zhong-e(左中鵝)1, DAI Jin-ming (戴晉明)1

    1CollegeofTextileEngineering,TaiyuanUniversityofTechnology,Taiyuan030021,China2FashionInstitute,DonghuaUniversity,Shanghai200051,China

    In order to improve the thermal properties of polylactic acid (PLA) master batch, the nano-SiO2was applied to mixing with PLA. The structure and thermal properties of the composite master batches were studied. The results showed that the nano-SiO2modified by 3% coupling agent KH-570 could be dispersed evenly in PLA in small scale. The thermal decomposition temperature of composite master batches increased by 6.20-10.80℃, the glass transition temperature increased by 0.22-5.16℃, and the heat enthalpy at the glass transition temperature increased by 0.574-2.437 J/g, compared with pure PLA. The composite master batch possessed superior thermal stability and heat resistance.

    compositemasterbatch;nano-SiO2;polylacticacid(PLA);thermalproperty

    Introduction

    Polylactic acid (PLA) possesses some excellent performances, including biocompatibility, biodegradability, biological absorbability and so on[1]. The raw material sources of PLA are renewable grains, such as corn, wheat and rice. Therefore, PLA is different from other traditional synthetic materials, such as polyester (PET) and nylon, which depend very heavily on petroleum, natural gas and natural gas liquids as sources of raw materials[2]. Moreover, the PLA material in water or soil can be completely decomposed into water (H2O) and carbon dioxide (CO2), which causes no pollution. Thence PLA is a kind of environment-friendly materials, and is different from other traditional synthetic materials which are degraded difficultly and cause many environmental pollutions[3].

    PLA is often used as surgical sutures, scaffolds, drug slow release and tissue culture. But PLA exists some shortcomings, such as high brittleness and poor thermal property especially[4]. The pure PLA and its products are able to be used at room temperature. However, once the temperature rises over the PLA’s glass transition temperature (commonly 57℃), the PLA and its products would become easy to distort, wrinkle or tear, and the mechanical properties would fall sharply[5]. This is due to PLA’s poor thermal properties, so it is particularly important to improve the thermal properties of PLA.

    In order to improve the thermal properties of PLA, some scholars mixed PLA with other heat-resistant polymers. For instance, Chenetal.[6]mixed PET, which was grafted with long-chain carboxylic acid and had good heat-resistance, with PLA to make composites with higher heat-resistance. Mamun and Bledzki[7]applied polypropylene (PP) to enhance the thermal properties of PLA. However, the mixed polymers with higher heat-resistance are usually non-degradable so that they would affect the degradation of PLA. Some heat-resistant inorganic nanoparticles were usually used as a new method to modify PLA in recent years[8]. For instance, the montmorillonite, rare earths nanoparticles, nanometer calcium carbonate and hydroxyl apatite were frequently reported to modify PLA[9]. The interface treatment between inorganic material and PLA matrix is very important, which is due to that the interface between them affects the dispersion of inorganic material in PLA matrix, the mechanical properties of composites, and other properties. The nano-SiO2was relatively less reported to enhance the thermal properties of PLA. The nano-SiO2is a kind of white, non-toxic and amorphous powder with micro porous morphology, lightweight, good chemical stability, high temperature resistance, non-flammability, and about 1750 ℃ melting point[10].

    In this article, the PLA is mixed with nano-SiO2to form composite master batch. In order to improve the dispersibility of nano-SiO2throughout PLA and the interfacial bonding between nano-SiO2and PLA, the silane coupling agent KH-570 was applied to modifying nano-SiO2. The structure and thermal properties of PLA/nano-SiO2composite master batches were measured, and the effects of nano-SiO2on properties of composite master batch were studied. This provided a theoretical basis for preparing PLA/nano-SiO2composites with good thermal properties.

    1 Experimental

    1.1 Materials

    PLA (6202D) was kindly supplied by Nature Works Industry (U.S.). The number average molecular weight (Mn) of PLA was 51000.

    Nano-SiO2with particle size of 20-180 nm was provided by Fengcheng Chemical Industry, Tianjin, China.

    1.2 Surface modification of nano-SiO2

    In order to improve the dispersion of nano-SiO2in PLA and increase their compatibility, the nano-SiO2should be modified by the coupling agent KH-570.

    The process of modification was as follows: 0.04-0.20 g KH-570 and 15 mL anhydrous ethanol were put into a beaker together, and then 0.1 mol/L HCl was added into the beaker to adjust pH value to 5-6. After that, the beaker was heated in water bath at 70℃ for 30 min, and then 2 g nano-SiO2was added to the solution. The mixtures were shocked by using sonication at 30℃ and 30 kHz for 30 min. After that, the mixed solution was dried under 120 ℃ for 8 h by using the drum (101-2A,Beijing Zhongxing Weiye Instrument Co., Ltd., China). Then the dried mass was crushed and grinded into fine particles by using ball mill (QM-1SP, Nanjing Daxue Instrument Company, China).

    1.3 Processing of PLA/nano-SiO2composite master batch

    Before melt-blending, the pure PLA was dried at 100 ℃ for 20 h under vacuum. Then the dried pure PLA and 3% treated nano-SiO2were fed into the double screw extruder (CET35-40D, Coperion (Nanjing) Machine Co., Ltd., China) during main feed opening (Fig.1a) and auxiliary feed opening (Fig.1b). The temperatures of ten heating zones (Fig.1d) in extruder were set in Table 1. The melt was extruded from extruder into a cool water bath (Fig.1f) to be solidified. At last, the solid band (Fig.1g) was cut as small chips (Φ: 3.175 mm, long: 3.175 mm) by a chip cutter (Fig.1h, LQ, Coperion (Nanjing) Machine Co., Ltd., China). The cut chips were PLA/nano-SiO2master batches.

    a—main feed opening; b—auxiliary feed opening; c—single-screw; d—heating zones; e—connecting with vacuum pump; f—a cool water bath; g—golid band; h—chip cutter; i—basket; j—composite master batchFig.1 PLA/nano-SiO2 composite master batch processing

    Table 1 Temperatures of ten heating zones in extruder

    1.4 Scanning electron microscopy (SEM)

    The dispersion of nano-SiO2and the fracture surfaces of pure PLA and PLA/nano-SiO2composite master batches, were studied by a JEOL JSM-6700F SEM under an acceleration voltage of 10 kV. Prior to the SEM examination, the pure PLA and PLA/nano-SiO2composite master batches were submerged in liquid nitrogen and broken to expose the internal structure for SEM studies. And all the surfaces were sputtered with gold.

    1.5 Thermogravimetric analysis (TGA)

    Thermogravimetric analysis (TGA, Germany Netzsch TG 209 F3) was performed on pure PLA and PLA/nano-SiO2composite samples as follows: 2.5 mg weight samples, nitrogen flow (600 mL/min), temperature range from 40 to 700 ℃, 10℃/min heating rate.

    1.6 Differential scanning calorimetry (DSC)

    The thermal properties of samples (6-9 mg) were measured by a Q100 V9.4 Build 287 DSC (TA Instruments Company, USA) using aluminium oxide as the standard. The melting point (Tm) and glass-transition temperature (Tg) of each sample were measured from 10 to 210℃ under nitrogen at a heating rate of 10℃/min.

    2 Results and Discussion

    2.1 Effect of KH-570 dosage on dispersion of nano-SiO2

    The morphological characterizations of unmodified and modified nano-SiO2were measured. The SEM images of nano-SiO2are shown in Fig.2.

    (a)

    (b)

    (c)Fig.2 SEM images (×10000) of nano-SiO2: (a) unmodified; (b) modified by 3% KH-570; (c) modified by 5% KH-570

    Figure 2(a) is the image of unmodified nano-SiO2, which showed that the nano-SiO2was agglomerated as big mass. Figure 2(b) is the image of nano-SiO2modified by 3% KH-570, which showed that the nano-SiO2was dispersed evenly and loosely in nano-scale. Figure 2(c) is the image of nano-SiO2modified by 5% KH-570, which shows that the nano-SiO2was agglomerated as big mass, even bigger than that of unmodified nano-SiO2(Fig.2(a)).

    The unmodified nano-SiO2was covered with many hydroxyl groups (—OH) as shown in Fig.3. The hydroxyl groups (—OH) between SiO2nanoparticles could form hydrogen bonds. Then the SiO2nanoparticles were linked by hydrogen bonds. So the unmodified nano-SiO2was easy to be agglomerated as big mass. However, if the SiO2nanoparticles were modified by 3% coupling agent KH-570, some hydroxyl groups on its surface would be replaced by organic chain of coupling agent KH-570, and the number of hydroxyl groups (—OH) on surface of nano-SiO2would decrease[11]. So the agglomerating of nano-SiO2which was caused by hydrogen bonds (—OH) would weaken. Therefore, the nano-SiO2modified by 3% KH-570 could disperse evenly and loosely in nano-scale. Moreover, if the nano-SiO2was modified by excessive coupling agent KH-570 (i.e., 5%), there was too much KH-570 between SiO2nanoparticles, and the long-chained KH-570 could link nano-SiO2particles like some bridges between nano-SiO2particles. So the excessive KH-570 (i.e., 5%) would lead to agglomerate mass of nano-SiO2.

    Fig.3 Diagram of nano-SiO2 covered with hydroxyl groups

    2.2 Effect of KH-570 dosage on dispersion of nano-SiO2in composite master batch

    The morphological characterizations of pure PLA and PLA/nano-SiO2composite master batches are shown in Fig.4. Figure 4(a) shows a plane fracture section of pure PLA. Figure 4(b) is the image of fracture section of PLA/unmodified nano-SiO2composite master batch, which showed that the unmodified nano-SiO2were unevenly distributed in the PLA matrix, and in some areas, some nano-SiO2particles (circles) were agglomerated in large scale. This indicated that the nano-SiO2without modifying were easy to be agglomerated in the PLA matrix. Figure 4(c) is the image of fracture section of PLA/3% nano-SiO2modified by 3% KH-570, which shows a uniform dispersion of nano-SiO2in the PLA matrix. Moreover, nano-SiO2still remained small scale (most of them are less than 1m in diameter) in the PLA polymer and was not separated from PLA matrix. This declared that the right amount of KH-570 (i.e., 3%) to modify nano-SiO2was beneficial to the dispersability of nano-SiO2in the PLA matrix and the link between nano-SiO2and PLA. Figure 4(d), the image of fracture section of PLA/3% nano-SiO2modified by 5% KH-570, showed that SiO2was agglomerated as bigger particles (circles) over 1.0 μm embedding in PLA. This image declared that too much KH-570 (i.e., 5%) to modify nano-SiO2, in fact, would lead to bigger agglomerations.

    (a)

    (b)

    (c)

    (d)

    The KH-570 silane coupling agent has two functions in the master batch of PLA/nano-SiO2composite. One is that they could improve the dispersion of nano-SiO2, for details see section 2.1 above. The other is that they could connect nano-SiO2with the PLA matrix. The molecular structure of KH-570 silane coupling agent could be abbreviated as RnSiX3, in which R is an organic functional group which can form a chemical bond with the PLA polymer, and X is an easily hydrolyzable group which can react with the hydroxyl groups (—OH) on the surface of nano-SiO2and then connect KH-570 with nano-SiO2[12]. So the KH-570 silane coupling agent, as a bridge, connects the PLA polymer with nano-SiO2together. The process of connecting is shown in Fig.5.

    Fig.5 The process of connecting nano-SiO2 with PLA by KH-570

    2.3 Dispersion of nano-SiO2in composite master batch

    The morphological characterizations of PLA/nano-SiO2composite master batch with different nano-SiO2dosages are shown in Fig.6. From Figs.6(a)-(d), the nano-SiO2dosages are 1%, 3%, 5% and 10%.

    Fig.6 SEM images (×3000) of PLA/nano-SiO2composite master batches with different nano-SiO2dosages: (a) PLA/1% nano-SiO2;

    (b) PLA/3% nano-SiO2; (c) PLA/5% nano-SiO2; (d) PLA/10% nano-SiO2

    Figure 6 shows that 1%-5% nano-SiO2, can distribute evenly in small scale throughout the PLA matrix, but 10% nano-SiO2formed some dense band (circles). These declare that when the PLA matrix includes less nano-SiO2(generally lower than 5%), the nano-SiO2, modified by appropriate amount of KH-570 silane coupling agent, can distribute evenly throughout the PLA matrix, so the KH-570 is effective. When the PLA matrix includes too much nano-SiO2(e.g., 10%), although the nano-SiO2is modified by KH-570 silane coupling agent, the nano-SiO2is still agglomerated as some dense band, and then the KH-570 is ineffective. Because the nano-SiO2nanoparticles have large surface energy, and the dosage of nano-SiO2increases, the density of nano-SiO2particles enhances, and the chances for nano-SiO2particles to contact with each other also increase, so they tend to get together. On the contrary, the KH-570 gives the nano-SiO2a tendency of separating from each other. When less nano-SiO2in PLA, the tendency of separating from each other occupied the main position, and when too much nano-SiO2in PLA, the tendency of getting together occupied the main position.

    2.4 Thermal characterization of composite master batches

    PLA can be thermal-decomposed easily at high temperature, due to its poor thermal stability. The thermo-decomposing temperature is a parameter of evaluating material’s thermal stability.

    The TGA curves of pure PLA and composite master batches including different nano-SiO2are shown in Fig.7. The results show that the pure PLA and composite master batches lost weight mainly at 300-400℃. The four curves all have only one knee, which means that the PLA samples were all broken down in just one step. According to the four curves, the thermo-decomposing temperatures, which means the maximum slope of curve, are measured and shown in Table 2. The thermo-decomposing temperature of PLA composited with 1% to 5% nano-SiO2was higher than that of pure PLA by 6.20℃ to 10.80℃. This results declare that the added nano-SiO2can improve the thermo-decomposing temperature of composite master batches, and the more nano-SiO2, the higher thermo-decomposing temperature. For this there were many causes. The nano-SiO2itself was a kind of heat resistant material whose melting point was as high as 1750 ℃. Also its heterogeneous-nucleation-effect increased the crystallinity degree of PLA matrix. The bonds of “Si—O—Si” and “Si—O—C” also formed when nano-SiO2was reacted with PLA, and the energy of “Si—O” bond formed in composites was higher than that of “C—C” bond in pure PLA. All above were helpful to the thermal stability of composite master batches. Therefore, the thermo-decomposing temperature of composite master batches was higher than that of pure PLA.

    Fig.7 TGA curves of pure PLA and composite master batches

    The DSC heating curves of pure PLA and composite master batches are shown in Fig.8. According to these DSC curves, the glass transition temperature (Tg), melting temperature (Tm) and heat enthalpy are measured and shown in Table 2. The results indicated that the glass transition temperature (Tg) of composite master batches with 1%-5% nano-SiO2is higher than that of pure PLA by 0.22-5.16℃, and the melting temperature (Tm) of composite master batches with 1%-5% nano-SiO2are higher than that of pure PLA by 0.83-2.01℃, and the heat enthalpy atTgof composite master batches is higher than that of pure PLA by 0.574-2.437 J/g. Moreover, the more nano-SiO2added in PLA matrix, the higherTg,Tmand heat enthalpy atTg. It was due to the increase of crystallinity-degree of PLA caused by nano-SiO2, and the more nano-SiO2, the higher crystallinity-degree of composites, then the higherTg,Tmand heat enthalpy atTg. Moreover, the higher heat enthalpy atTgindicated that it needed more heat to soften the composites. All above results show that the nano-SiO2could improve the heat resistance of PLA.

    Fig.8 DSC curves of pure PLA and composite master batches

    Table 2 Parameters of TGA and DSC curves of pure PLA and composite master batches

    4 Conclusions

    The nano-SiO2modified by 3% KH-570 were evenly distributed in the PLA matrix in small scale, and the nano-SiO2were not separated from the PLA matrix. The nano-SiO2unmodified or modified by too much KH-570 (i.e., 5%) were agglomerated as bigger particles over 1.0 μm embedding in PLA.

    When the PLA matrix included less nano-SiO2(generally lower than 5%), the nano-SiO2could distribute evenly throughout the PLA matrix. However, when the PLA matrix included too much nano-SiO2(e.g., 10%), the nano-SiO2was agglomerated as some dense band.

    The thermo-decomposing temperature of PLA composited with 1% to 5% nano-SiO2was higher than that of pure PLA by 6.20-10.80℃. The added nano-SiO2could improve the thermo-decomposing temperature of batches, and the more nano-SiO2, the higher thermo-decomposing temperature.

    The glass transition temperature (Tg) of composites with 1%-5% nano-SiO2increased by 0.22-5.16℃, and the melting temperature (Tm) increased by 0.83-2.01℃, and the heat enthalpy atTgincreased by 0.574-2.437 J/g. Moreover, the more nano-SiO2added in the PLA matrix, the higherTg,Tmand heat enthalpy atTg. So the nano-SiO2could improve the heat resistance of PLA.

    [1] Tsuji H, Kidokoro Y, Mochizuki M. Enzymatic Degradation of Poly (L-lactic acid) Fibers: Effects of Small Drawing [J].JournalofAppliedPolymerScience, 2007, 103(3): 2064-2071.

    [2] Chen X Q, Lu R H, Meng D,etal. Preparation and Characterization of Magnetic Star-Shaped Amphiphilic Copolymer Nanoparticles of S-Fe3O4-PLA-b-MPEG [J].PolymerComposites, 2012, 33(12): 2134-2139.

    [3] Zhao F W, Liu Y, Yuan H L,etal. Orthogonal Design Study on Factors Affecting the Degradation of Polylactic Acid Fibers of Melt Electrospinning [J].JournalofAppliedPolymerScience, 2012, 125(4): 2652-2658.

    [4] Kontou E, Georgiopoulos P, Niaounakis M. The Role of Nanofillers on the Degradation Behavior of Polylactic Acid [J].PolymerComposites, 2012, 33(2): 282-294.

    [5] Oi T, Shinyama K, Fujita S. Electrical Properties of Heat-Treated Polylactic Acid [J].ElectricalEngineeringinJapan, 2012, 180(1): 1-8.

    [6] Chen H P, Pyda M, Cebe P. Non-isothermal Crystallization of PET/PLA Blends [J].ThermochimicaActa, 2009, 492(1/2): 61-66.

    [7] Mamun A A, Bledzki A K. Micro Fibre Reinforced PLA and PP Composites: Enzyme Modification, Mechanical and Thermal Properties [J].CompositesScienceandTechnology, 2013, 78: 10-17.

    [8] Farhoodi M, Dadashi S, Mousavi S M A,etal. Influence of TiO2Nanoparticle Filler on the Properties of PET and PLA Nanocomposites [J].Polymer-Korea, 2012, 36(6): 745-755.

    [9] Murariu M, da Silva Ferreira A, Phuta M,etal. Polylactide (PLA)-CaSO4Composites Toughened with Low Molecular Weight and Polymeric Ester-like-Plasticizers and Related Performances [J].EuropeanPolymerJournal, 2008, 44(11): 3842-3852.

    [10] Shang Q Q, Wang M Y, Liu H,etal. Facile Fabrication of Superhydrophobic Raspberry-like SiO2/Polystyrene Composite Particles [J].PolymerComposites, 2013, 34(1): 51-57.

    [11] Wu G H, Liu S Q, Guo H X,etal. Surface Modification of Nano-SiO2and Application in the Poly lactic Acid (PLA) [J].BulletinoftheChineseCeramicSociety, 2014, 33(3): 506-510. (in Chinese)

    [12] Zhang Y H, Zhai L L, Wang Y,etal. Surface Modification of Nano-SiO2by Silane Coupling Agent 3-(methacryloyloxy) Propyltrimethoxysilane [J].JournalofMaterialsScience&Engineering, 2012, 30(5): 752-756. (in Chinese)

    Foundation items: Shanxi Province Science Foundation for Youths, China (No.2014021020-2); the Projects of Taiyuan University of Technology, China (Nos. 2012L074, 2013T020, 2013T021, and 2013T022); Shanxi Province College Students Training Program, China (No. 2013067)

    TQ342+.8 Document code: A

    1672-5220(2015)01-0097-06

    Received date: 2014-03-21

    * Correspondence should be addressed to LIU Shu-qiang, E-mail: liushuqiang8866@126.com

    猜你喜歡
    紅霞
    如何推薦一部動(dòng)畫片
    點(diǎn)詞成金
    請你幫個(gè)忙
    《烏鴉喝水》中的“想”
    Therapeutic efficacy of moxibustion plus medicine in the treatment of infertility due to polycystic ovary syndrome and its effect on serum immune inflammatory factors
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    高紅霞教授
    讓動(dòng)作“活”起來
    “光的直線傳播”“光的反射”練習(xí)
    夕陽依舊映紅霞
    中國火炬(2014年7期)2014-07-24 14:21:26
    国产高清三级在线| 成人午夜精彩视频在线观看| 综合色丁香网| 久久久久久国产a免费观看| 亚洲激情五月婷婷啪啪| 日韩av不卡免费在线播放| 亚洲精品aⅴ在线观看| 可以在线观看毛片的网站| 蜜桃久久精品国产亚洲av| 国产亚洲av片在线观看秒播厂| 国产高清三级在线| 国产亚洲av片在线观看秒播厂| 最近最新中文字幕大全电影3| 欧美高清性xxxxhd video| 搞女人的毛片| 亚洲性久久影院| 国产精品不卡视频一区二区| 欧美老熟妇乱子伦牲交| 天天一区二区日本电影三级| 国产精品.久久久| h日本视频在线播放| 精品国产一区二区三区久久久樱花 | 午夜激情福利司机影院| 韩国高清视频一区二区三区| 啦啦啦啦在线视频资源| 欧美成人午夜免费资源| 日韩欧美一区视频在线观看 | 亚洲,一卡二卡三卡| av卡一久久| 免费观看的影片在线观看| 国产 精品1| 啦啦啦啦在线视频资源| 亚洲久久久久久中文字幕| 亚洲av成人精品一区久久| 国产欧美日韩精品一区二区| 伊人久久精品亚洲午夜| 国产高清不卡午夜福利| 大话2 男鬼变身卡| 蜜臀久久99精品久久宅男| 亚洲精品成人久久久久久| 亚洲美女视频黄频| 麻豆国产97在线/欧美| 在线观看美女被高潮喷水网站| 精品久久久久久久末码| 色婷婷久久久亚洲欧美| 国产亚洲一区二区精品| 国产爽快片一区二区三区| 亚洲成人一二三区av| 免费黄频网站在线观看国产| 91精品一卡2卡3卡4卡| 日韩成人伦理影院| 精品少妇黑人巨大在线播放| 国产精品一区二区在线观看99| 最近中文字幕2019免费版| 成人毛片60女人毛片免费| 91午夜精品亚洲一区二区三区| 亚洲精品日韩av片在线观看| 国产成年人精品一区二区| 丰满乱子伦码专区| 国产黄片视频在线免费观看| 插阴视频在线观看视频| 男插女下体视频免费在线播放| 亚洲av免费高清在线观看| 午夜激情福利司机影院| 18禁动态无遮挡网站| 高清毛片免费看| av黄色大香蕉| 亚洲av成人精品一区久久| 看黄色毛片网站| 免费av不卡在线播放| 成人毛片a级毛片在线播放| 欧美日韩精品成人综合77777| 婷婷色综合大香蕉| 五月玫瑰六月丁香| 国产精品精品国产色婷婷| 美女内射精品一级片tv| 国产精品嫩草影院av在线观看| 国产精品久久久久久精品古装| 极品少妇高潮喷水抽搐| av国产精品久久久久影院| 中国美白少妇内射xxxbb| 在线观看三级黄色| 三级经典国产精品| 亚洲精品第二区| 看非洲黑人一级黄片| 少妇的逼水好多| 天天躁日日操中文字幕| 精品人妻偷拍中文字幕| 久久精品人妻少妇| 99热国产这里只有精品6| 五月玫瑰六月丁香| 国产亚洲最大av| 听说在线观看完整版免费高清| 一区二区三区四区激情视频| 亚洲国产精品成人综合色| 好男人在线观看高清免费视频| 亚洲精品456在线播放app| 在线观看人妻少妇| 久久久欧美国产精品| 五月开心婷婷网| 亚洲电影在线观看av| 国产乱人视频| 国产精品av视频在线免费观看| 亚洲国产精品专区欧美| 国国产精品蜜臀av免费| 超碰av人人做人人爽久久| 欧美日韩国产mv在线观看视频 | 啦啦啦啦在线视频资源| 亚洲国产精品国产精品| 少妇的逼水好多| 高清午夜精品一区二区三区| 亚洲精品久久久久久婷婷小说| 中文字幕av成人在线电影| 汤姆久久久久久久影院中文字幕| 美女国产视频在线观看| 九色成人免费人妻av| 校园人妻丝袜中文字幕| 久久久久九九精品影院| 秋霞在线观看毛片| 九九爱精品视频在线观看| 精品一区二区三卡| 99re6热这里在线精品视频| 精品熟女少妇av免费看| 自拍偷自拍亚洲精品老妇| 看非洲黑人一级黄片| 国产国拍精品亚洲av在线观看| 亚洲,一卡二卡三卡| 欧美xxxx性猛交bbbb| 久久精品国产a三级三级三级| 80岁老熟妇乱子伦牲交| 看免费成人av毛片| 男的添女的下面高潮视频| 99久久精品热视频| av在线天堂中文字幕| 男插女下体视频免费在线播放| 啦啦啦啦在线视频资源| 免费少妇av软件| 天天一区二区日本电影三级| 91久久精品电影网| 日韩伦理黄色片| 男女国产视频网站| 亚洲精品国产av成人精品| 婷婷色av中文字幕| 国产日韩欧美在线精品| 亚洲性久久影院| 边亲边吃奶的免费视频| 亚洲精品成人久久久久久| 黑人高潮一二区| 亚洲色图综合在线观看| 国产美女午夜福利| 国产亚洲av片在线观看秒播厂| 在线精品无人区一区二区三 | 国产永久视频网站| 菩萨蛮人人尽说江南好唐韦庄| a级毛片免费高清观看在线播放| 欧美xxxx黑人xx丫x性爽| 秋霞在线观看毛片| 一级毛片aaaaaa免费看小| 国产熟女欧美一区二区| 久久精品国产自在天天线| 综合色av麻豆| 中文乱码字字幕精品一区二区三区| 91精品国产九色| 免费av观看视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 久久久国产一区二区| 王馨瑶露胸无遮挡在线观看| 国产美女午夜福利| 99久久人妻综合| 麻豆成人av视频| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 一级二级三级毛片免费看| 99久国产av精品国产电影| 欧美成人精品欧美一级黄| 人人妻人人看人人澡| 亚洲第一区二区三区不卡| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 国语对白做爰xxxⅹ性视频网站| 亚洲av不卡在线观看| 91精品一卡2卡3卡4卡| 欧美xxⅹ黑人| 一区二区av电影网| 亚洲国产精品成人综合色| 亚洲精品中文字幕在线视频 | 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 好男人在线观看高清免费视频| 极品教师在线视频| 日韩欧美精品免费久久| 18禁动态无遮挡网站| 老女人水多毛片| 欧美三级亚洲精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日撸夜夜添| 男男h啪啪无遮挡| 亚洲人成网站在线播| 色5月婷婷丁香| 日日啪夜夜撸| 麻豆国产97在线/欧美| 亚洲四区av| 97在线人人人人妻| 国产成人精品福利久久| 深夜a级毛片| 一级二级三级毛片免费看| 久久99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 最近中文字幕2019免费版| 高清日韩中文字幕在线| 精品久久久久久久末码| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 久久99精品国语久久久| 日韩伦理黄色片| 最近中文字幕高清免费大全6| 嘟嘟电影网在线观看| 国产精品99久久久久久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲av电影在线观看一区二区三区 | 精品人妻一区二区三区麻豆| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看 | 天天躁夜夜躁狠狠久久av| 日韩av免费高清视频| 国产黄色视频一区二区在线观看| 欧美一级a爱片免费观看看| 免费观看在线日韩| 国产精品国产三级国产av玫瑰| 精品久久久精品久久久| av在线app专区| 一级毛片黄色毛片免费观看视频| 国内揄拍国产精品人妻在线| 亚洲精品久久午夜乱码| 久热久热在线精品观看| 亚洲,欧美,日韩| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 欧美丝袜亚洲另类| 在线观看人妻少妇| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 亚洲欧美日韩另类电影网站 | 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 亚州av有码| 国产亚洲av嫩草精品影院| av在线老鸭窝| 国产午夜福利久久久久久| 成人国产av品久久久| 女人久久www免费人成看片| 五月伊人婷婷丁香| 欧美zozozo另类| 如何舔出高潮| 一级毛片黄色毛片免费观看视频| 九九久久精品国产亚洲av麻豆| 亚洲,一卡二卡三卡| 免费在线观看成人毛片| av在线亚洲专区| 日本午夜av视频| 一区二区三区免费毛片| 91精品国产九色| 伦理电影大哥的女人| 亚洲av.av天堂| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 日韩av不卡免费在线播放| 少妇的逼好多水| 国产黄色视频一区二区在线观看| 日韩一区二区视频免费看| 交换朋友夫妻互换小说| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 欧美另类一区| 日韩 亚洲 欧美在线| 少妇人妻久久综合中文| 高清欧美精品videossex| 99久久精品一区二区三区| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 亚洲美女搞黄在线观看| 熟女电影av网| 国产国拍精品亚洲av在线观看| 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 国产精品福利在线免费观看| 听说在线观看完整版免费高清| 国产精品伦人一区二区| 亚洲性久久影院| 国内揄拍国产精品人妻在线| 国产免费一区二区三区四区乱码| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 亚洲国产欧美人成| 久久人人爽人人片av| 免费看光身美女| 精品一区二区免费观看| 男插女下体视频免费在线播放| 中文字幕久久专区| 日韩一本色道免费dvd| 免费大片18禁| 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 国产精品人妻久久久久久| 久久99精品国语久久久| 国产av国产精品国产| 99久久人妻综合| 边亲边吃奶的免费视频| 亚洲最大成人av| 亚洲精品国产av蜜桃| 国产av码专区亚洲av| 亚洲内射少妇av| 99热这里只有是精品在线观看| 白带黄色成豆腐渣| 18禁裸乳无遮挡动漫免费视频 | 日本黄大片高清| 精品久久久久久久久av| 国产乱来视频区| 久久久久久久久久人人人人人人| 有码 亚洲区| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 精品久久久久久久久av| 麻豆乱淫一区二区| 一个人看的www免费观看视频| 一级片'在线观看视频| 国产视频内射| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 如何舔出高潮| 国产高潮美女av| av国产精品久久久久影院| tube8黄色片| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 午夜视频国产福利| 最新中文字幕久久久久| 国产人妻一区二区三区在| 亚洲,欧美,日韩| xxx大片免费视频| 成人二区视频| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级 | 亚洲三级黄色毛片| 国产精品无大码| 亚洲国产最新在线播放| kizo精华| 日本wwww免费看| 免费黄色在线免费观看| 成人高潮视频无遮挡免费网站| 777米奇影视久久| 亚洲精品中文字幕在线视频 | 午夜免费鲁丝| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 欧美zozozo另类| 免费少妇av软件| 又大又黄又爽视频免费| 国产人妻一区二区三区在| 国产成人精品福利久久| 国产亚洲91精品色在线| 中文字幕亚洲精品专区| 日韩欧美 国产精品| 女人十人毛片免费观看3o分钟| 真实男女啪啪啪动态图| 日本与韩国留学比较| 王馨瑶露胸无遮挡在线观看| 午夜视频国产福利| 亚洲怡红院男人天堂| 少妇 在线观看| 成人亚洲欧美一区二区av| 国产亚洲最大av| 日日啪夜夜爽| 亚洲自拍偷在线| 国产淫片久久久久久久久| 国产成人freesex在线| 成人特级av手机在线观看| 直男gayav资源| 汤姆久久久久久久影院中文字幕| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 少妇人妻精品综合一区二区| 免费大片黄手机在线观看| 亚洲内射少妇av| av线在线观看网站| 男女啪啪激烈高潮av片| 亚洲国产最新在线播放| 麻豆成人av视频| 亚洲欧美一区二区三区黑人 | 亚洲人成网站在线播| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 中国美白少妇内射xxxbb| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线 | 国产欧美另类精品又又久久亚洲欧美| 51国产日韩欧美| 夫妻性生交免费视频一级片| 久久人人爽av亚洲精品天堂 | 欧美人与善性xxx| 色哟哟·www| 国产在线一区二区三区精| 在线看a的网站| 久久久久久久久久人人人人人人| 2018国产大陆天天弄谢| 国产日韩欧美亚洲二区| av播播在线观看一区| 狂野欧美激情性bbbbbb| 欧美三级亚洲精品| 国产精品久久久久久av不卡| .国产精品久久| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 91久久精品国产一区二区三区| 日本一本二区三区精品| 视频区图区小说| 国产精品久久久久久久久免| 久久精品人妻少妇| 一本久久精品| 免费看光身美女| 一级二级三级毛片免费看| 成年女人在线观看亚洲视频 | 久久精品夜色国产| 成人免费观看视频高清| 嫩草影院精品99| 免费少妇av软件| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 欧美亚洲 丝袜 人妻 在线| 精品久久久精品久久久| 五月开心婷婷网| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 国产成人91sexporn| 中文字幕免费在线视频6| 蜜臀久久99精品久久宅男| 在线免费十八禁| 免费观看av网站的网址| 国产免费视频播放在线视频| 91狼人影院| 国产亚洲最大av| a级一级毛片免费在线观看| 国产精品一及| 欧美日韩亚洲高清精品| 2021天堂中文幕一二区在线观| 成年人午夜在线观看视频| 国产精品久久久久久久电影| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 欧美性猛交╳xxx乱大交人| 男女无遮挡免费网站观看| 国产一区亚洲一区在线观看| 亚洲av在线观看美女高潮| 亚洲精品成人久久久久久| 欧美3d第一页| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 男人爽女人下面视频在线观看| 在线天堂最新版资源| 18禁在线无遮挡免费观看视频| 国产白丝娇喘喷水9色精品| 我要看日韩黄色一级片| 男人添女人高潮全过程视频| 99久久中文字幕三级久久日本| 日本三级黄在线观看| av国产免费在线观看| 又爽又黄无遮挡网站| 中文欧美无线码| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 少妇 在线观看| 久久久久久九九精品二区国产| 亚洲av免费高清在线观看| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 亚洲成色77777| 日本爱情动作片www.在线观看| 中文资源天堂在线| 亚洲欧洲日产国产| 成人综合一区亚洲| 亚州av有码| 久久久久久久亚洲中文字幕| av免费在线看不卡| 欧美高清性xxxxhd video| 亚洲精品成人久久久久久| 一级av片app| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲网站| 日韩av在线免费看完整版不卡| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区黑人 | 日韩成人伦理影院| 欧美少妇被猛烈插入视频| 久久这里有精品视频免费| 777米奇影视久久| 精品久久久噜噜| 久久人人爽人人爽人人片va| 成人美女网站在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 能在线免费看毛片的网站| 99精国产麻豆久久婷婷| 一区二区三区免费毛片| 网址你懂的国产日韩在线| 毛片一级片免费看久久久久| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 国产成人freesex在线| 亚洲,一卡二卡三卡| 亚洲国产日韩一区二区| 亚洲,一卡二卡三卡| 久久久久久久久久久免费av| 国产av国产精品国产| 亚洲av二区三区四区| 最后的刺客免费高清国语| 人妻 亚洲 视频| 久久ye,这里只有精品| 尾随美女入室| 夫妻午夜视频| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 日韩欧美一区视频在线观看 | 精品酒店卫生间| 国产综合精华液| 黄色配什么色好看| 亚洲aⅴ乱码一区二区在线播放| 在线a可以看的网站| 99久久精品国产国产毛片| 免费观看在线日韩| 在线 av 中文字幕| 成人毛片60女人毛片免费| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕| 欧美丝袜亚洲另类| 久久热精品热| 青春草国产在线视频| 国产 一区精品| 成人亚洲精品av一区二区| 精品国产三级普通话版| 国产综合懂色| 黑人高潮一二区| 99久久精品一区二区三区| 听说在线观看完整版免费高清| 亚洲国产精品999| 国产精品精品国产色婷婷| 特级一级黄色大片| av在线播放精品| 波野结衣二区三区在线| 午夜福利视频1000在线观看| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 日产精品乱码卡一卡2卡三| 丝袜脚勾引网站| 久久99精品国语久久久| 亚洲av不卡在线观看| 九九久久精品国产亚洲av麻豆| 久久久a久久爽久久v久久| 大片电影免费在线观看免费| 亚洲精华国产精华液的使用体验| 激情 狠狠 欧美| 国产毛片在线视频| 一二三四中文在线观看免费高清| 网址你懂的国产日韩在线| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人 | 色综合色国产| 禁无遮挡网站| 亚洲激情五月婷婷啪啪| 美女高潮的动态| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 99九九线精品视频在线观看视频| 岛国毛片在线播放| 能在线免费看毛片的网站| 永久免费av网站大全| 国产69精品久久久久777片| 日本午夜av视频| 国产在线一区二区三区精| xxx大片免费视频| 日韩欧美一区视频在线观看 | 99精国产麻豆久久婷婷| 在线 av 中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产淫语在线视频| 超碰av人人做人人爽久久| av福利片在线观看| 人妻少妇偷人精品九色| 国产 一区精品| 乱码一卡2卡4卡精品| 久久精品综合一区二区三区| 国产成人freesex在线| 最后的刺客免费高清国语| 国产爱豆传媒在线观看| 国产精品伦人一区二区| 高清日韩中文字幕在线| 男女无遮挡免费网站观看|