• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Property and Crystal Structure of Poly(p-phenylene terephthalamide) (PPTA) Fibers during Heat Treatment under Tension

    2015-01-12 08:33:18YANDongdong嚴(yán)冬東CHENLeiCAOYutong曹煜彤LUChaofeng魯超風(fēng)YUJunrong于俊榮LIUZhaofeng劉兆峰ZHUJingWANGYanHUZuming胡祖明
    關(guān)鍵詞:嚴(yán)冬

    YAN Dong-dong (嚴(yán)冬東), CHEN Lei (陳 蕾), CAO Yu-tong (曹煜彤), LU Chao-feng (魯超風(fēng)), YU Jun-rong (于俊榮), LIU Zhao-feng (劉兆峰), , ZHU Jing (諸 靜), WANG Yan (王 彥), HU Zu-ming (胡祖明)*

    1 College of Material Science and Engineering, Donghua University, Shanghai 201620, China 2 Suzhou Zhaoda Special Fiber Technical Co., Ltd., Changshu 215522, China

    Mechanical Property and Crystal Structure of Poly(p-phenylene terephthalamide) (PPTA) Fibers during Heat Treatment under Tension

    YAN Dong-dong (嚴(yán)冬東)1, CHEN Lei (陳 蕾)1, CAO Yu-tong (曹煜彤)2, LU Chao-feng (魯超風(fēng))1, YU Jun-rong (于俊榮)1, LIU Zhao-feng (劉兆峰)1, 2, ZHU Jing (諸 靜)1, WANG Yan (王 彥)1, HU Zu-ming (胡祖明)1*

    1CollegeofMaterialScienceandEngineering,DonghuaUniversity,Shanghai201620,China2SuzhouZhaodaSpecialFiberTechnicalCo.,Ltd.,Changshu215522,China

    The relationship between property and structure of poly (p-phenylene terephthalamide) (PPTA) was investigated for the purpose of obtaining products with better performance. PPTA fiber subjected to heat treatment under different conditions was intensively studied. Simultaneous wide-angle X-ray diffraction (WAXD) technique was introduced to study the changes of crystal structure. It was found that the tensile modulus was strongly sensitive to the levels of temperature and tension. The structure parameters including crystal size and crystal orientation after heat treatment evolve similarly to the tensile modulus, indicating a direct structure-property relationship. The latticc-dimension increases after heat treatment and is greatly affected by the tension. An optimal temperature can be found around 400 ℃, where big change can happen in the crystal structure due toα-relaxation in the crystal region as supported in dynamic mechanical analysis (DMA).

    poly(p-phenyleneterephthalamide) (PPTA)fibers;heattreatment;crystalstructure;crystalorientation;mechanicalproperties

    Introduction

    Poly(p-phenylene terephthalamide) (PPTA) fiber is well known for its high tensile strength, modulus, and thermal stability[1-3]. Its excellent performance allows a wide range of applications in cables and rope, fiber-reinforced composites, and ballistic fabrics[4]. The mechanical property of PPTA fiber can be greatly enhanced through post-treatment. In order to achieve better performance, it is important to understand the relationship between the variation of structure and post-treatment and its effect on the property enhancement. In the last two decades, its structure-property relationship has been extensively studied[5-8]. Ran and coworkers studied structure changes in Kevlar?fibers via on-line synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques[9]. It was found that the fraction (mass) of mesophase in the Kevlar49 fiber was about 20%. The fibril length obtained using the Ruland method was nearly 90 nm and decreased until the stretch ratio was below 2.0%. Raoetal.[10]investigated the evolution of structure and property for PPTA fiber under different post-treatment conditions, and thought the fiber modulus was mainly affected by two factors including crystal orientation and paracrystalline parameter. Daviesetal.[11]conducted on-axis microbeam wide- and small-angle scattering experiments of a sectioned PPTA fiber. It confirmed a radial texture of crystalline domains with orientational order differing for skin, central core and intermediate layers. The analysis of crystallographic texture also provided direct evidence for hydrogen-bonding interactions in the radial direction along theb-axis of PPTA unit.

    From the above, it is clear that studies on structure-property relationship have led to different conclusions among authors. However, few studies on the change of crystal structure with heat treatment under tension through simultaneous WAXD technique have been reported. In this paper, we apply the as-spun PPTA fiber to different treatment conditions including different temperature and tension to carefully investigate all relative structure parameters using simultaneous WAXD technique[12-14].

    1 Experimental

    1.1 Material

    PPTA fibers were supplied by Suzhou Zhaoda Special Fiber Technical Co., Ltd., China. The fineness of single fiber is about 1.65 dtex.

    1.2 Heat treatment experiments

    The as-spun PPTA fibers were heat-treated through two kinds of modes: (1) constant tension mode, in which as received fibers were heat-treated at 350, 380, 400, 420, and 450 ℃ for 5 min with a tension of 0.6 cN/dtex; (2) constant temperature mode, in which as received fibers were heat-treated at 400 ℃ for 5 min with different tensions 0.6, 1.2, 1.8, and 2.4 cN/dtex.

    The temperature control accuracy is ±5%. The tension on the fiber during heat treatment was created by a certain quality of counterweight. The whole treatment process was performed under Nitrogen environment.

    1.3 Mechanical property test

    The tensile strength and modulus were measured on XQ-1C fiber tensile tester at room temperature. The fiber length between two clamps was set to 20 mm. The fiber was drawn at a speed of 10 mm/min. Each sample was tested for 30 times to get the average value.

    1.4 WAXD measurement

    Single fibers were glued to the support structure. X-ray diffraction experiments were performed at SSRF BL14B1 beamline at a wavelength of 0.12398 nm. The fiber axis was oriented in the vertical direction and normal to the X-ray beam. 2D diffraction pattern was recorded in transmission for 30 s using Marccd225. The detector-to-sample distance was determined by LaB6 calibration standard asD=215.4307 mm. Data reduction for the selected pattern was performed with the FIT2D software package. In the present case, data analysis was limited to the strongest equatorial reflections.

    The crystal structure parameters investigated include equatorial X-ray diffraction crystallinity,Xcr; crystal size of planes (110) and (200),L110andL200; the (200) orientation factor,fc; and lattice parameter,c.

    1.5 Dynamic mechanical analysis (DMA)

    The DMA experiment was performed with a DMA instrument, constructed by TA Instruments (USA, Q800). The measurement was carried out from 30 to 450 ℃ in nitrogen environment with a rate of 5 ℃/min at a definite frequency of 50 Hz. The amplitude of displacement was kept at 20 μm.

    2 Results and Discussion

    2.1 Mechanical behavior

    The mechanical properties of PPTA fibers heat-treated under different conditions are shown in Table 1 and Fig.1.

    Table 1 Mechanical property of PPTA fibers at different temperatures with a tension of 0.6 cN/dtex

    Temperature/℃Elongation/%Strength/(cN·dtex-1)Modulus/(cN·dtex-1)Asreceived4.6624.12454.483503.7123.87577.903803.6623.68594.544003.5022.52624.864203.5521.29606.354503.5320.36567.01

    Fig.1 Stress-strain curves for PPTA fibers heat-treated at 400 ℃ under different tensions: (a) as received; (b) 0.6 cN/dtex; (c) 1.2 cN/dtex; (d) 1.8 cN/dtex; (e) 2.4 cN/dtex

    Table 1 describes the mechanical properties for PPTA fibers heat-treated at different temperatures at a tension of 0.6 cN/dtex. It is clear that the tensile modulus is largely improved as the temperature increases and reaches its maximum at 400 ℃. Then the modulus starts to deteriorate when the temperature is higher than 400 ℃. Compared with the as received fiber, both the tensile strength and elongation decrease after heat treatment. Figure 1 shows the relationship between tensile modulus and applied tension. When the applied tension is larger, the tensile modulus is even improved more.

    2.2 Crystal structure evolution

    Commercially, PPTA fibers are heated under tension to provide products with better performance, such as Kevlar49. Under such conditions, the microstructure change of PPTA fiber takes place. For better understanding the structure evolution during the heat treatment, we studied the crystal structure of PPTA fiber through simultaneous WAXD.

    Figure 2 is the 2D WAXD diffraction pattern of PPTA fiber. Two strong reflections located on the equator are indexed as (110) and (200) planes, respectively. The (211) plane emerges along the equatorial direction symmetrically. Along the meridional direction, (002), (004), and (006) planes distribute orderly.

    Fig.2 2D WAXD diffraction pattern for as received PPTA fiber

    2.2.1 Crystallinity and crystal size

    The equatorial diffractograms for PPTA fibers heat-treated under different temperatures and tensions are shown in Fig.3. Three obvious diffraction peaks are shown at 16.42°, 18.39°, and 23.03°, corresponding to the (110), (200), and (211) planes. It is found that the diffraction peaks at (110) and (200) planes get strengthened and become sharper after heat treatment, indicating the evolution of the crystal structure.

    Fig.3 Equatorial diffractograms for PPTA fibers heat-treated under different conditions: (a) as received fibers and fibers heat-treated at 350, 380, 400, 420, and 450 ℃ with a tension of 0.6 cN/dtex; (b) as received fibers and fibers heat-treated at 400 ℃ with different tensions 0.6, 1.2, 1.8, and 2.4 cN/dtex

    To characterize the crystallinity of PPTA fibers after heat treatment quantitatively, a Gaussian function is fitted to the X-ray diffractograms with Peakfit Software. Meanwhile, the apparent crystal sizes of (110) and (200) planes are also calculated through Scherrer formula in terms of the half width at diffraction peaks. The crystallinity and apparent crystal size are shown in Fig.4.

    Fig.4 Evolution of crystal structure parameters for PPTA fiber under different heat treatment conditions: (a) crystal sizes of (110) and (200) planes under different temperatures; (b) crystal sizes of (110) and (200) planes with different tensions; (c) crystallinity under different temperatures; (d) crystallinity with different tensions

    Figure 4 shows the changes of apparent crystal sizes of (110) and (200) planes and crystallinities for PPTA fibers heat-treated under different temperatures and different tensions. The apparent crystal size evolves similarly to the crystallinity degree. And the apparent crystal size of (110) increases faster than (200). This can be due to the fact that the hydrogen bonds exist between polymer chains along thebdirection and the binding forces like van der Waals type and π-electron interactions are involved in the stacking of the PPTA layers along theadirection[15]. Therefore more hydrogen bonds are created and theb-dimension is shortened during the heat treatment under tension. Meanwhile, thea-dimension is enlarged for steric reason. This change in chain conformation contributes to the crystal growth along the direction of hydrogen bonds. Hence, the apparent crystal size of (110) is largerly improved.

    As illustrated in Figs.4 (a) and (c), both crystallinity and apparent crystal size go through the maximum at 400 ℃, corresponding to the modulus change. Figures 4 (b) and (d) show correlations of both apparent crystal size and crystallinity with the applied tensions at 400 ℃. It is found that these two quantities both increase with the increasing tension. For PPTA fibers during heat treatment under tension, the presence of tension played an important role in the growth of crystal size. The defects in crystalline region decreased and the crystalloid structure became more perfect. Meanwhile, the amorphous phase could convert to the crystals or the mesophase. That ultimately contributed to the increment of the crystallinity.

    2.2.2 Crystal orientation

    Heat treatment under tension is expected to improve the alignment of polymer chains. If we only consider the crystal phase, its orientation can be defined as the relationship of some crystallographic direction to an external reference frame. Usually the drawing direction (along the fiber axis) is defined as the reference direction. As for PPTA fiber, the (200) plane is often used for the calculation of crystal orientation due to its strongest diffraction[16]. For the (200) plane, its orientation, expressed as 〈cos2φ〉200, can be calculated,

    (1)

    whereφis the azimuthal angle andI(φ) is the azimuthal profile. Usually the parameterfc, the so-called Herman’s orientation function, is used to describe the degree of orientation.

    (2)

    The WAXD diffraction patterns from PPTA fibers before and after heat treatment under tension are shown in Fig.5. The (110) and (200) reflections show a small spread along the azimuthal direction indicating that the fiber has a high degree of crystal orientation. And the spread became narrower after heat treatment indicating the increase of orientation, which could also be proved by the decrease of full width at half maximum (FWHM)[17]values in the azimuthal profile curves as illustrated in Fig.6. In Fig.6, full line represents as received fiber and dash line represents fiber heat-treated at 400 ℃ with a tension of 2.4 cN/dtex.

    Fig.5 2D WAXD diffraction patterns for PPTA fibers: (a) as received and (b) heat-treated at 400 ℃ with a tension of 2.4 cN/dtex

    Fig.6 Azimuthal profile curves for PPTA fibers

    The (200) orientation factors, calculated from the equation, are shown in Fig.7. Figure 7 (a) shows the change in crystal orientation at different temperatures with a tension of 0.6 cN/dtex. Figure 7 (b) shows the change in orientation at different levels of tension, all at 400 ℃. The as received fiber shows a high degree of crystal orientation (fc=0.757), which can be responsible for its liquid crystal spinning process. The orientation is found to increase with the increasing temperature and starts to decrease when the temperature is above 400 ℃. Meanwhile, the higher the tension is, the more effective it is in improving its crystal orientation. This is due to the fact that the molecular chains get more extended under higher tension and realign along the fiber axis to improve the regularity in crystal region. At the same time, the higher tension can prevent the orientated molecular chains from shrinking caused by the internal stress from PPTA fiber under higher temperature.

    Fig.7 Change of crystal orientation in PPTA fibers: (a) heat-treated at different temperatures with a tension of 0.6 cN/dtex; (b) heat-treated at 400 ℃ with different tensions

    2.2.3 Lattice parameterc

    The lattice constants of PPTA crystal have been examined by WAXD. Northolt and van Aartsen[18-19]studied that the crystal structure of PPTA was preudo-orthorhombic. In this paper, we assumed it as an orthorhombic for ease of calculation. For a set ofhklplanes, the crystal interplanar spacing, expressed asdhkl, can be calculated using the following equation:

    (3)

    where, thec-dimension can be determined from the slope of the plot ofdhklversus 1/l. Thec-dimension can be calculated from the regression of three orders of meridional diffraction of PPTA fibers as illustrated in Figs.8 and 9.

    Figure 8 is the meridional scan of PPTA fibers integrated from 2D diffraction pattern. Three obvious diffraction peaks are shown at 11.07°, 22.39° and 34.46°, corresponding to the (002), (004) and (006) planes. Figure 9 shows thec-dimension difference before and after heat treatment. In Fig.9, full line represents as received fiber and dash line represents fiber heat-treated at 400 ℃ with a tension of 2.4 cN/dtex. It is found that the slope of dotted line is slightly larger than that of full line, indicating the increase ofc-dimension.

    Fig.8 Meridional diffractogram for PPTA fiber

    Fig.9 The c-dimension difference for PPTA fibers

    Thec-dimension in the unit of PPTA fibers heat-treated under different conditions, calculated from the fitted plot, are summarized in Table 2. Thec-dimension increases until the temperature is above 400 ℃. When the tension is increasing, thec-dimension is increasing. It exhibits similar tendencies as in the case of both crystallinity and crystal orientation. This states that the crystal structure of PPTA is not thermally stable. It is not difficult to understand, because PPTA fibers are spun from lyotropic liquid crystalline state. And this ordered structure is probably frozen via coagulation under non-equilibrium state. Therefore the heat treatment is applied to following an evolution in the crystal’s metastable state. Raoetal.[10]presented an explanation that when the strong intramolecular interaction overcame the weaker intermolecular forces, namely hydrogen bonding and van der Waals force in the case of PPTA, a polymer crystal was merely the packing of chains. Hence, the external tension can apply directly to the chain and crystal dimension is changed due to the deformation of a single chain. Haraguchietal. also observed this instable structure on the PPTA film in their research[20]. Moreover, original conformation in PPTA could transform to the more stretched conformation to promote the formation of hydrogen bonds between chains withinbcplane. The symmetry of the structure became more perfect, which would contribute to the change ofc-dimension too.

    Table 2 Changes inc-dimension in the unit cell of PPTA fibers heat-treated under different conditions

    T/℃Tension/(cN·dtex-1)Time/minc-dimension/(10-10m)Asreceived0.0012.793500.6512.833800.6512.854000.6512.884200.6512.874500.6512.864000.6512.884001.2512.894001.8512.924002.4512.94

    From our observation, the big change in the crystal structure parameters at 400 ℃ indicates that the rearrangement happens within the crystalline region. To further study the relaxations in PPTA fiber, DMA measurement is performed. Figure 10 is the DMA spectra of as received PPTA fiber. Two obvious peaks appear at 231.98 ℃ and 392.23 ℃ in its tanδcure. The transition at 392.23 ℃ may be attributed toα-relaxation in the crystalline region. The peak at 231.98 ℃ corresponds to theβ-relaxation peak proposed by Kunugietal.[21]

    Fig.10 Temperature dependence of the dynamic loss modulus E″ and tan δ

    3 Conclusions

    Simultaneous WAXD method had been used to study the crystal structure of PPTA fiber during heat treatment under tension. Meanwhile, the mechanical properties of PPTA fiber under different heat treatment conditions were also studied. It was found that the tensile modulus was largely improved and was sensitive to temperature and tension. The crystal size and crystal orientation evolved similarly to the modulus change, indicating that both parameters were responsible for modulus improvement during the heat treatment. However, the tensile strength slightly decreased due to the increment of the latticec-dimension. Thec-dimension was greatly affected by the tension. It seemed that an optimal temperature could be found around 400 ℃, where big change happened in the crystal structure parameters. That could be due to theα-relaxation in the crystal region as supported in the DMA.

    [1] Kwolek S L, Morgan P W, Schaefgen J R,etal. Synthesis, Anisotropic Solutions, and Fibers of Poly (1,4-benzamide) [J].Macromolecules, 1977, 10(6): 1390-1396.

    [2] Chae H G, Kumar S. Rigid-Rod Polymeric Fibers [J].JournalofAppliedPolymerScience, 2006, 100(1): 791-802.

    [3] Kwolek S L. Optically Anisotropic Aromatic Polyamide Dopes: US, 3671542[P]. 1972.

    [4] Yang H H. Kevlar Aramid Fiber [M]. New York: John Wiley, 1993.

    [5] Pauw B R, Vigild M E, Mortensen K,etal. Analysing the Nanoporous Structure of Aramid Fibers [J].JournalofAppliedCrystallography, 2010, 43(4): 837-849.

    [6] Li C S, Zhan M S, Huang X C,etal. Hydrothermal Aging Mechanisms of Aramid Fibers via Synchrotron Small-Angle X-Ray Scattering and Dynamic Thermal Mechanical Analysis [J].JournalofAppliedPolymerScience, 2013, 128(2): 1291-1296.

    [7] Rao Y, Waddon A J, Farris R J. Structure-Property Relation in Poly(p-phenylene terephthalamide) (PPTA) Fibers [J].Polymer, 2001, 42(13): 5937-5946.

    [8] Gardener K H, English A D, Forsyth V T. New Insights into the Structure of Poly(p-phenylene terephthalamide) from Neutron Fiber Diffraction Studies [J].Macromolecules, 2004, 37(25): 9654-9656.

    [9] Ran S, Fang D, Zong X,etal. Structural Changes during Deformation of Kevlar Fibers via On-line Synchrotron SAXS/WAXD Techniques [J].Polymer, 2001, 42(4): 1601-1612.

    [10] Rao Y, Waddon A J, Farris R J. The Evolution of Structure and Properties in Poly (p-phenylene terephthalamide) Fibers [J].Polymer, 2001, 42(13): 5925-5935.

    [11] Davies R J, Koenig C, Burghammer M,etal. On-axis Microbeam Wide- and Small-Angle Scattering Experiments of a Sectioned Poly(p-phenylene terephthalamide) Fiber [J].AppliedPhysicsLetters, 2008, 92(10): 101903-101903-3.

    [12] Jain A, Abhishek S, Sangappa,etal. Crystallite Size and Shape in Twaron Fibers Heat Treated at Different Temperatures Using WAXS [J].JournalofAppliedPolymerScience, 2006, 100(6): 4910-4916.

    [13] Riekel C, Davies R J. Applications of Synchrotron Radiation Micro-focus Techniques to the Study of Polymer and Biopolymer fibers [J].CurrentOptioninColloid&InterfaceScience, 2005, 9(6): 396-403.

    [14] Feldman A Y, Wachtel E, Zafeiropoulos N E,etal.InsituSynchrotron Microbeam Analysis of the Stiffness of Transcrystallinity in Aramid Fiber Reinforced Nylon 66 Composites [J].CompositesScienceandTechnology, 2006, 66(13): 2009-2015.

    [15] Jain A, Vijayan K. Forbidden Reflection from the Aramid PPTA — a Novel Correlation with Stacking Faults [J].BulletinofMaterialsScience, 2004, 27(1): 47-50.

    [16] Alexander L E. X-Ray Diffraction Methods in Polymer Science [M]. New York: Wiley, 1969: 582.

    [17] Riekel C, Dieing T, Engstrom P,etal. X-Ray Microdiffraction Study of Chain Orientation in Poly(p-phenylene terephthalamide) [J].Macromolecules, 1999, 32(23): 7859-7865.

    [18] Northolt M G, van Aartsen J J. On the Crystal and Molecular Structure of Poly(p-phenylene terephthalamide) [J].JournalofPolymerScience:PolymerLetterEdition, 1973, 11(5): 333-337.

    [19] Northolt M G. X-Ray Diffraction Study of Poly(p-phenylene terephthalamide) Fibers [J].EuropeanPolymerJournal, 1974, 10(9): 799-804.

    [20] Haraguchi K, Kajiyama T, Takayanagi M. Uniplanar Orientation of Poly(p-phenylene terephthalamide) Crystal in Thin Film and Its Effect on Mechanical Properties [J].JournalofAppliedPolymerScience, 1979, 23(3): 903-914.

    [21] Kunugi T, Watanabe H, Hashimoto M. Dynamic Mechanical Properties of Poly(p-phenylene terephthalamide) Fiber [J].JournalofAppliedPolymerScience, 1979, 24(4): 1039-1051.

    Foundation items:National Basic Research Program of China (973 Program) (No. 2011CB606103); National High-Tech Research and Development Program of China (863 Program) (No. 2012AA03212); the Fundamental Research Funds for the Central Universities, China (No. 11D10625)

    TQ342+.72 Document code: A

    1672-5220(2015)01-0001-06

    Received date: 2013-09-16

    * Correspondence should be addressed to HU Zu-ming, E-mail: hzm@dhu.edu.cn

    猜你喜歡
    嚴(yán)冬
    決戰(zhàn)嚴(yán)冬
    A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL*
    嚴(yán)冬過(guò)盡綻春蕾——致公黨連云港市委會(huì)齊心協(xié)力戰(zhàn)疫情
    嚴(yán)冬海獵
    二則 暖閣熏香雪未晴
    嚴(yán)冬
    胡旭光
    魚(yú)價(jià)嚴(yán)冬期仍推膨化料?澳華模式引導(dǎo)養(yǎng)殖戶突圍,華中區(qū)水產(chǎn)料將迎來(lái)爆發(fā)年
    祈求嚴(yán)冬到來(lái)阿拉斯加北極熊雙掌合十虔誠(chéng)禱告
    女金剛的溫柔歲月
    意林繪閱讀(2016年3期)2016-04-13 09:33:36
    中文乱码字字幕精品一区二区三区| 欧美变态另类bdsm刘玥| 久久影院123| 国产亚洲最大av| 午夜激情久久久久久久| 69精品国产乱码久久久| 亚洲,一卡二卡三卡| 少妇人妻 视频| 日韩熟女老妇一区二区性免费视频| 欧美成人精品欧美一级黄| 色哟哟·www| 欧美 日韩 精品 国产| 久久99热这里只频精品6学生| 亚洲av日韩在线播放| 精品人妻在线不人妻| a级毛色黄片| 丰满乱子伦码专区| 亚洲美女黄色视频免费看| 久久鲁丝午夜福利片| 晚上一个人看的免费电影| videossex国产| 国产一区亚洲一区在线观看| 男的添女的下面高潮视频| 日韩在线高清观看一区二区三区| 建设人人有责人人尽责人人享有的| 精品少妇久久久久久888优播| 免费播放大片免费观看视频在线观看| 亚洲av电影在线进入| 在线观看一区二区三区激情| 国产成人aa在线观看| 视频中文字幕在线观看| 国产一区二区在线观看日韩| 国产男女超爽视频在线观看| 日韩电影二区| 免费看av在线观看网站| 成人无遮挡网站| 亚洲精品乱久久久久久| 一级片免费观看大全| 97超碰精品成人国产| 久久久久久人妻| 黄色毛片三级朝国网站| 亚洲欧美成人综合另类久久久| 免费女性裸体啪啪无遮挡网站| 精品人妻在线不人妻| 超碰97精品在线观看| 99九九在线精品视频| 日本猛色少妇xxxxx猛交久久| av播播在线观看一区| 波野结衣二区三区在线| 亚洲第一av免费看| 亚洲 欧美一区二区三区| 日韩中字成人| 熟女电影av网| 伦理电影免费视频| 日韩人妻精品一区2区三区| 18禁国产床啪视频网站| 亚洲成人一二三区av| 久久久久久伊人网av| 人妻一区二区av| 丝瓜视频免费看黄片| 曰老女人黄片| 卡戴珊不雅视频在线播放| av又黄又爽大尺度在线免费看| av在线观看视频网站免费| 99视频精品全部免费 在线| av视频免费观看在线观看| 狠狠精品人妻久久久久久综合| 又黄又粗又硬又大视频| 久久ye,这里只有精品| 26uuu在线亚洲综合色| 午夜福利网站1000一区二区三区| 亚洲性久久影院| 久久久久久久亚洲中文字幕| 少妇熟女欧美另类| av国产久精品久网站免费入址| 成人影院久久| av免费在线看不卡| 只有这里有精品99| 全区人妻精品视频| 91精品三级在线观看| 国产xxxxx性猛交| av一本久久久久| 美女国产视频在线观看| 母亲3免费完整高清在线观看 | 欧美精品av麻豆av| 女人精品久久久久毛片| 日本与韩国留学比较| 国产男女超爽视频在线观看| kizo精华| 国产一区有黄有色的免费视频| 另类精品久久| 日韩免费高清中文字幕av| 久久ye,这里只有精品| 爱豆传媒免费全集在线观看| 国产极品天堂在线| 肉色欧美久久久久久久蜜桃| 免费看光身美女| 免费人成在线观看视频色| 欧美日本中文国产一区发布| 欧美变态另类bdsm刘玥| 午夜影院在线不卡| 在线观看www视频免费| 中文乱码字字幕精品一区二区三区| 最后的刺客免费高清国语| 啦啦啦视频在线资源免费观看| 国产精品女同一区二区软件| 狂野欧美激情性xxxx在线观看| 有码 亚洲区| 少妇的逼好多水| xxx大片免费视频| 高清av免费在线| 一级毛片电影观看| 最新的欧美精品一区二区| 国产成人精品久久久久久| 插逼视频在线观看| 汤姆久久久久久久影院中文字幕| av播播在线观看一区| 最近最新中文字幕免费大全7| 天堂8中文在线网| 亚洲精品第二区| av线在线观看网站| 日韩在线高清观看一区二区三区| 美女脱内裤让男人舔精品视频| 1024视频免费在线观看| 中国三级夫妇交换| 丰满迷人的少妇在线观看| 中国国产av一级| 久久精品国产综合久久久 | 高清毛片免费看| 18禁动态无遮挡网站| 好男人视频免费观看在线| av国产久精品久网站免费入址| 丝袜美足系列| 午夜福利视频精品| 人人妻人人添人人爽欧美一区卜| 国产亚洲欧美精品永久| 国产国语露脸激情在线看| 男女边摸边吃奶| av.在线天堂| 国产免费现黄频在线看| 久久久久久久久久成人| 国产av一区二区精品久久| 国产xxxxx性猛交| 天天影视国产精品| 久久久a久久爽久久v久久| 亚洲少妇的诱惑av| 乱码一卡2卡4卡精品| 自线自在国产av| 如何舔出高潮| 丰满饥渴人妻一区二区三| 亚洲av免费高清在线观看| 亚洲成人手机| 色视频在线一区二区三区| 王馨瑶露胸无遮挡在线观看| 成年人午夜在线观看视频| 春色校园在线视频观看| 亚洲综合精品二区| 午夜福利影视在线免费观看| 咕卡用的链子| 日韩免费高清中文字幕av| 一级毛片我不卡| 嫩草影院入口| 久久精品久久精品一区二区三区| 亚洲精品国产色婷婷电影| 人妻人人澡人人爽人人| 日韩免费高清中文字幕av| 日韩免费高清中文字幕av| 亚洲欧美清纯卡通| av不卡在线播放| 色婷婷久久久亚洲欧美| 高清欧美精品videossex| 欧美 亚洲 国产 日韩一| 美国免费a级毛片| 精品久久久精品久久久| 黄色毛片三级朝国网站| 日本爱情动作片www.在线观看| 日本黄大片高清| 波野结衣二区三区在线| 亚洲成av片中文字幕在线观看 | 午夜91福利影院| 久久久久久人人人人人| 日韩不卡一区二区三区视频在线| 国产 一区精品| 亚洲成人av在线免费| 日韩人妻精品一区2区三区| 天天躁夜夜躁狠狠久久av| 边亲边吃奶的免费视频| 国产免费福利视频在线观看| 插逼视频在线观看| 久久国产精品大桥未久av| 五月开心婷婷网| 久久久久国产网址| 国产在线视频一区二区| 亚洲精品美女久久久久99蜜臀 | 女人被躁到高潮嗷嗷叫费观| 国产亚洲av片在线观看秒播厂| 国产高清三级在线| 尾随美女入室| 久久久久久久久久久久大奶| 亚洲综合色惰| 久久人人爽av亚洲精品天堂| 在线观看美女被高潮喷水网站| 亚洲国产最新在线播放| 国产精品久久久久成人av| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 亚洲五月色婷婷综合| 免费黄色在线免费观看| 亚洲人与动物交配视频| 一二三四在线观看免费中文在 | av在线app专区| 久久久a久久爽久久v久久| 日本欧美视频一区| 久久这里有精品视频免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 97在线视频观看| 啦啦啦视频在线资源免费观看| 免费黄色在线免费观看| 99久久人妻综合| 亚洲国产看品久久| 少妇的逼水好多| 国产不卡av网站在线观看| 国产精品不卡视频一区二区| 日韩,欧美,国产一区二区三区| 国产一区二区三区综合在线观看 | 精品一区在线观看国产| 人人澡人人妻人| 亚洲色图综合在线观看| 嫩草影院入口| 中文字幕精品免费在线观看视频 | 九九在线视频观看精品| 寂寞人妻少妇视频99o| 欧美亚洲 丝袜 人妻 在线| av福利片在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲综合色惰| 爱豆传媒免费全集在线观看| 一边亲一边摸免费视频| 男女高潮啪啪啪动态图| 国产精品女同一区二区软件| 高清不卡的av网站| 高清欧美精品videossex| 麻豆乱淫一区二区| 中文字幕免费在线视频6| 久久精品熟女亚洲av麻豆精品| 18+在线观看网站| 日韩熟女老妇一区二区性免费视频| 看十八女毛片水多多多| 丝袜人妻中文字幕| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| 欧美+日韩+精品| 观看av在线不卡| 精品少妇久久久久久888优播| 成人二区视频| 五月开心婷婷网| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 80岁老熟妇乱子伦牲交| 亚洲久久久国产精品| 亚洲精品自拍成人| 黑人高潮一二区| 精品第一国产精品| 久久午夜福利片| 精品亚洲成国产av| 成人毛片60女人毛片免费| 国产男女内射视频| 黑人欧美特级aaaaaa片| 午夜福利视频精品| 国产精品嫩草影院av在线观看| 久久久久久久久久久久大奶| 国产一区二区在线观看日韩| 日韩中文字幕视频在线看片| 黄片播放在线免费| 亚洲综合精品二区| 三级国产精品片| 久久精品国产a三级三级三级| 国产淫语在线视频| 九草在线视频观看| 中文天堂在线官网| 日本wwww免费看| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 最近2019中文字幕mv第一页| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 亚洲,欧美精品.| 国产精品久久久久久久电影| av在线观看视频网站免费| 国产成人免费观看mmmm| 在线观看美女被高潮喷水网站| 曰老女人黄片| 日日啪夜夜爽| 宅男免费午夜| 99国产综合亚洲精品| 国产精品国产三级专区第一集| 十分钟在线观看高清视频www| 狂野欧美激情性xxxx在线观看| 丰满少妇做爰视频| 国产 精品1| 婷婷成人精品国产| 国产免费又黄又爽又色| 岛国毛片在线播放| 亚洲av国产av综合av卡| 99热网站在线观看| 国产精品一区二区在线不卡| 久久精品国产综合久久久 | 一级毛片黄色毛片免费观看视频| 亚洲色图 男人天堂 中文字幕 | 91精品国产国语对白视频| 精品一区二区三区视频在线| 晚上一个人看的免费电影| 两个人免费观看高清视频| 大陆偷拍与自拍| 午夜日本视频在线| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 午夜激情av网站| videos熟女内射| 免费看不卡的av| 国产成人精品在线电影| 亚洲色图 男人天堂 中文字幕 | 久久ye,这里只有精品| 久久国内精品自在自线图片| 18禁动态无遮挡网站| 色5月婷婷丁香| 91午夜精品亚洲一区二区三区| www.色视频.com| 免费大片18禁| 一区二区三区乱码不卡18| 飞空精品影院首页| 国产精品国产av在线观看| 成人亚洲欧美一区二区av| 少妇被粗大猛烈的视频| 大片免费播放器 马上看| 韩国高清视频一区二区三区| 久久久久久久亚洲中文字幕| 亚洲成色77777| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 狂野欧美激情性bbbbbb| 又黄又爽又刺激的免费视频.| 久久久久国产网址| 男女边摸边吃奶| 在线观看三级黄色| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 亚洲精华国产精华液的使用体验| 亚洲av日韩在线播放| 日韩大片免费观看网站| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 精品国产一区二区三区四区第35| 精品国产一区二区三区久久久樱花| 国产欧美日韩综合在线一区二区| 黄片播放在线免费| 丰满饥渴人妻一区二区三| 成人午夜精彩视频在线观看| 午夜福利在线观看免费完整高清在| av免费观看日本| 亚洲欧洲精品一区二区精品久久久 | 伊人亚洲综合成人网| 黑人高潮一二区| 热99国产精品久久久久久7| 亚洲伊人色综图| 日韩熟女老妇一区二区性免费视频| 最新的欧美精品一区二区| 免费久久久久久久精品成人欧美视频 | 精品午夜福利在线看| 久久午夜福利片| 国产精品麻豆人妻色哟哟久久| 天堂中文最新版在线下载| 久久久久久伊人网av| 黄色毛片三级朝国网站| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 老女人水多毛片| 精品国产露脸久久av麻豆| av在线观看视频网站免费| 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 18在线观看网站| 伦理电影免费视频| 国产成人aa在线观看| 一区二区日韩欧美中文字幕 | 日韩中字成人| 久久 成人 亚洲| av线在线观看网站| 老司机影院毛片| 精品一区二区免费观看| av国产久精品久网站免费入址| 成年av动漫网址| 九九在线视频观看精品| 成人国语在线视频| 亚洲精品国产av成人精品| 国产乱人偷精品视频| 99精国产麻豆久久婷婷| 七月丁香在线播放| 精品国产国语对白av| 十八禁高潮呻吟视频| 免费高清在线观看日韩| 草草在线视频免费看| 美女福利国产在线| 涩涩av久久男人的天堂| 中文字幕人妻丝袜制服| 国产精品免费大片| 亚洲精品成人av观看孕妇| 18禁国产床啪视频网站| 超色免费av| 两个人看的免费小视频| 国产欧美日韩一区二区三区在线| 久久鲁丝午夜福利片| 亚洲伊人久久精品综合| 春色校园在线视频观看| 成人综合一区亚洲| 久久精品人人爽人人爽视色| 国产成人91sexporn| av电影中文网址| 国产淫语在线视频| 午夜日本视频在线| 校园人妻丝袜中文字幕| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 极品人妻少妇av视频| 一本久久精品| 一区二区日韩欧美中文字幕 | 日韩制服骚丝袜av| 亚洲人与动物交配视频| 久久久久久久久久久免费av| 各种免费的搞黄视频| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 国产精品久久久久久av不卡| 国产日韩欧美亚洲二区| 伊人亚洲综合成人网| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美| 90打野战视频偷拍视频| 18在线观看网站| 亚洲国产欧美在线一区| 最近手机中文字幕大全| 性色av一级| 国产欧美亚洲国产| 99久久中文字幕三级久久日本| 日韩av免费高清视频| 老司机亚洲免费影院| 亚洲精华国产精华液的使用体验| 制服诱惑二区| 好男人视频免费观看在线| 日本91视频免费播放| 美女大奶头黄色视频| 制服人妻中文乱码| 丝瓜视频免费看黄片| 满18在线观看网站| 久久午夜综合久久蜜桃| 如何舔出高潮| 久久久久久久久久人人人人人人| 久久久国产一区二区| 黄网站色视频无遮挡免费观看| 国产免费现黄频在线看| 亚洲国产欧美在线一区| 国产乱来视频区| 国产欧美亚洲国产| 成人国语在线视频| 麻豆乱淫一区二区| 成人免费观看视频高清| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 大香蕉久久网| 成人国产av品久久久| 十分钟在线观看高清视频www| 9热在线视频观看99| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 久久久久视频综合| 99热这里只有是精品在线观看| 九草在线视频观看| 2018国产大陆天天弄谢| 18禁观看日本| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 十分钟在线观看高清视频www| 18禁动态无遮挡网站| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 精品国产一区二区三区四区第35| 91国产中文字幕| 亚洲综合精品二区| 国产探花极品一区二区| 国产亚洲欧美精品永久| 18禁观看日本| 日韩av不卡免费在线播放| 热re99久久国产66热| 宅男免费午夜| 精品久久蜜臀av无| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 在线观看免费视频网站a站| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看| 捣出白浆h1v1| 国产精品三级大全| 亚洲图色成人| 最新的欧美精品一区二区| 性色avwww在线观看| 免费在线观看完整版高清| 日韩中文字幕视频在线看片| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 欧美日韩国产mv在线观看视频| 久久精品aⅴ一区二区三区四区 | 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 在线亚洲精品国产二区图片欧美| 伊人亚洲综合成人网| 美女内射精品一级片tv| 十八禁网站网址无遮挡| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 亚洲色图 男人天堂 中文字幕 | 亚洲美女搞黄在线观看| 免费人妻精品一区二区三区视频| 女性被躁到高潮视频| 老司机影院毛片| 久久久久久久精品精品| 午夜福利乱码中文字幕| 五月玫瑰六月丁香| 99久久人妻综合| 国产 一区精品| a级毛片黄视频| 国产熟女欧美一区二区| 9191精品国产免费久久| 国产在线视频一区二区| 多毛熟女@视频| 老女人水多毛片| 亚洲国产av新网站| 国产精品蜜桃在线观看| 国产精品国产三级专区第一集| 在线 av 中文字幕| 永久网站在线| 日韩欧美精品免费久久| 免费大片黄手机在线观看| 亚洲精品国产色婷婷电影| 在线观看免费视频网站a站| 少妇的丰满在线观看| 九九爱精品视频在线观看| av播播在线观看一区| 九色亚洲精品在线播放| 人成视频在线观看免费观看| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 综合色丁香网| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | 中文乱码字字幕精品一区二区三区| 99国产综合亚洲精品| 18禁在线无遮挡免费观看视频| 久久鲁丝午夜福利片| 中国国产av一级| 国产又色又爽无遮挡免| 亚洲欧洲精品一区二区精品久久久 | 青春草国产在线视频| 国产永久视频网站| av不卡在线播放| 大陆偷拍与自拍| 性色avwww在线观看| 亚洲人成77777在线视频| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 亚洲内射少妇av| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 少妇人妻 视频| 久久精品国产a三级三级三级| 最新中文字幕久久久久| 如何舔出高潮| 欧美人与性动交α欧美精品济南到 | 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 免费看光身美女| 国产av国产精品国产| 久久久久精品人妻al黑| 欧美日韩视频高清一区二区三区二| 宅男免费午夜| 久久热在线av| 久久亚洲国产成人精品v| 精品一区在线观看国产| 亚洲,欧美精品.| 久久综合国产亚洲精品| 亚洲国产精品999| 亚洲国产精品一区三区| 久久亚洲国产成人精品v| 欧美性感艳星| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美激情国产日韩精品一区| 9色porny在线观看|