• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Supported Manganese Oxide on Graphite Oxide: Catalytic Oxidation of Nitrogen Oxide in Waste Gas

    2015-01-12 08:33:12WeiDUANYuandong段元東SUNXiuzhi孫秀枝LIDengxin李登新

    Lü Wei (呂 偉), DUAN Yuan-dong (段元東), SUN Xiu-zhi (孫秀枝), LI Deng-xin (李登新)

    College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

    Supported Manganese Oxide on Graphite Oxide: Catalytic Oxidation of Nitrogen Oxide in Waste Gas

    Lü Wei (呂 偉), DUAN Yuan-dong (段元東), SUN Xiu-zhi (孫秀枝), LI Deng-xin (李登新)*

    CollegeofEnvironmentalScienceandEngineering,DonghuaUniversity,Shanghai201620,China

    The catalytic oxidation of nitrogen oxide (NO) from waste gas was investigated using advanced oxidation process based on sulfate radicals. The manganese oxide immobilized on graphene oxide (GO) can activate peroxymonosulfate (PMS) for the oxidation of NO in waste gas. The Mn3O4/ GO catalyst system was characterized via X-ray diffraction (XRD), Fourier transform infrared spectrocopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscope (SEM). The results showed that Mn3O4was distributed on GO. The Mn3O4/GO catalyst system exhibited efficient activity for NO oxidation when the Mn3O4/GO catalyst had an optimum Mn3O4loading. In addition, the best catalytic oxidation could be achieved within 60 min with 0.25 mmol/L Mn3O4/GO catalyst, and 2 mmol/L PMS dosage at 25 ℃. The catalysts also exhibited stable performance after several rounds of regeneration. Therefore, the results may have significant technical implication for utilizing Mn3O4/PMS to oxidize NO for offgas treatment.

    peroxymonosulfate(PMS);manganeseoxide;graphiteoxide;nitrogenoxide(NO)

    Introduction

    Among numerous routes to maintain the sustainability in global fuel supply, environmental protection, and chemical production, efficient conversion of biomass to fuels and chemical has been regarded as a promising one[1]. However, a lot of nitrogen oxides (NOx) are simultaneously generated during the diesel combustion process, leading to serious environmental pollution. Thus, efficient after-treatment technology of exhaust gas should be developed to meet the requirements of more and more stringent emission standards. Among them, the catalytic technique is one of the most effective ways to eliminate the pollution of NOx[2].

    Many catalysts have been developed for simultaneous NOxremoval, such as precious metal[3-4], zeolites[5-6], perovskite-related oxides[2, 7-11], and spinel phases[12], which were extensively investigated by many researchers[8, 13-17]. As a combination, a series of Mn-containing catalysts were developed for the NOxelimination[2].

    (1)

    However, there are few researches available considering the effect of Mn on the performance of PMS in NOxoxidation. To test this hypothesis, we took manganese oxide supported on graphene oxide as an efficient catalyst for PMS activation. In the system, the manganese ion catalyzed activation of PMS and oxidized of NO as the following steps (Formulas (2)-(6)):

    (2)

    (3)

    (4)

    (5)

    (6)

    The results showed that the Mn3O4/ GO/PMS system can efficiently oxidize NO in water. Therefore, the current system is expected to be highly desirable for competing with conventional nondestructive treatment processes.

    1 Experimental

    1.1 Materials

    PMS (2KHSO5·KHSO4· K2SO4) was obtained from Shanghai Ansin Chemical Co., Ltd., China and used as oxidant. Other chemical reagents were purchased from Sinopharm Chemical Reagent Co., Ltd., China.

    1.2 Preparation of catalyst

    Graphera oxide (GO) was prepared from purified natural graphite with a mean particle size of 48 μm according to the method reported by Hummers and Offeman[22]. GO (240 mg) was dispersed into 144 mL of hexyl alcohol through sonication for 144 min. The suspension was centrifuged (below 4000 r/min) to remove the sediment and the supernatant liquid was stored for further use. Meanwhile, 1.26 g Mn(NO3)2·4H2O was dissolved into another 57.6 mL of hexyl alcohol. The mixture was magnetically stirred for 148 min, and the resulting mixture was heated to 140 ℃ under vigorous magnetic stirring for 48 h. After the system was cooled to room temperature, the suspension was centrifuged, washed with absolute ethanol and water several times until all the remaining hexyl alcohol and other were removed, and dried in a vacuum oven at 60 ℃ for 27.4 h. The product was labeled as Mn3O4/GO. In addition, Mn3O4was synthesized with the same parameters for comparison[23].

    1.3 Characterization of catalyst

    The changes in the surface chemical bonding and surface composition were characterized by Fourier transform infrared spectroscopy (FT-IR; Bruker, Tensor 27, Germany), which were obtained to prove the success of supported manganese oxide on the GO sheets. The test samples were pressed into tablets with KBr.

    The structural features and mineralogy of the catalyst were studied from X-ray diffraction(XRD) patterns obtained through a RIGAKU XRD instrument (D/Max-2550PC, Japan), using filtered CuKαradiation with an accelerating voltage of 40 kV and a current of 200 mA. The sample was scanned at 2θfrom 5° to 90°.

    Raman spectroscopy was performed on a Nicolet Micro- Raman (NEXUD-670,USA).

    The atomic compositions of GO and Mn3O4/GO were detected by X-ray photoelectron spectroscopy (XPS). The XPS spectrum was recorded on ESCA 250 photoelectron spectrometer with AlKα(1486.6 eV) as the X-ray source. All XPS spectra were corrected using the C 1s line at 284.6 eV.

    The texture, morphology, and semi quantitative analyses of the Mn3O4/GO sample were conducted under a scanning electron microscope (SEM, JSM-5600LV, Japan). The elemental composition was determined through energy dispersive X-ray spectroscopy (EDS). EDS (IE300X, Oxford, UK) analysis was conducted at several points in the region and averaged to obtain the representative results.

    1.4 Measurement method

    N/%=n1/(n1+n2).

    (7)

    whereNwas the oxidation efficiency of NO,n1was the quantity of NO oxidized by PMS, andn2was the amount of NO absorbed by NaOH.

    1—NO generator; 2—flue gas analyzer; 3—buffer tank; 4—reactor; 5—gas distribution board; 6—temperature controller;7—blind pipe; 8—absorption equipment; 9—absorption equipment; 10—dryer; 11—atmospheric samplerFig.1 Schematic diagram of experimental apparatus

    2 Results and Discussion

    2.1 Preparation of Mn3O4/GO composites

    A hybrid of Mn3O4/GO composites was obtained through a two-step produce. In the first step, graphite was treated with H2SO4and KMnO4. Graphite oxide that contained a variety of functional groups including epoxy, carboxyl, ketone, and hydroxy was obtained. In the second step, manganese ions were coordinated to the surface of graphite oxide. When the graphite oxide dissolved in water was dispersed, its surface formed a number of negative charges. The manganese ions, which were obtained through the addition of Mn(NO3)2·4H2O, were adsorbed on the surface of graphite oxide using its electrostatic attraction mechanism andinsituformation of Mn3O4nanocrstal at 140 ℃ for 48 h.

    2.2 Catalyst characterization

    The XRD spectrum of GO, Mn3O4, and Mn3O4/GO catalyst are shown in Fig.2. GO was presented as amorphous phase with minor peaks at 8.28°, 26.06°, and 42.4°; 2θ= 8.28° corresponded to the interlayer spacing of 0.666 nm, which indicated the presence of oxygen-containing functional groups formed during the oxidation[24]. These groups caused the GO sheets to stack more loosely, and the interlayer spacing to increase from 0.333 nm to 0.666 nm. The spectra of the Mn3O4and Mn3O4/GO catalyst showed distinct peaks at 23.14°, 32.94°, 36.02°, 38.2°, 45.13°, 49.37 °, 55.14°, and 65.78°, and all the peaks can be readily indexed to a pure tetragonal phase of Mn3O4with lattice constantsa=0.57621 nm,c=0. 94696 nm[25].

    Fig.2 XRD of GO, Mn3O and Mn3O4/GO

    Fig.3 FT-IR of GO and Mn3O4/GO

    Raman spectroscopy is a powerful nondestructive technology to distinguish ordered or disordered crystal structures of carbonaceous materials. The G band is common to all sp2carbon forms and provides information on the in-plane E2gphonon of sp2bonded carbon atoms, whereas the D band is a breathing mode of thek-point phonons of A1gsymmetry[31-33]. The D/G intensity ratio is a measure of disorder degree and average size of the sp2domains. Figure 4 shows the Raman spectra of Mn3O4, GO, and Mn3O4/GO. The Raman spectrum of Mn3O4clearly exhibits four well-defined Raman peaks at 312.9, 312.9, 472.1, and 656 cm-1, in agreement with reported values for Mn3O4[34-36]. GO exhibited a strong G and D bands at 1601.1 and 1340.6 cm-1, respectively. The observed D band at 1340.6 cm-1was caused by the induction of significant defects or disorder in those nanostructures[37-38]. The D/G intensity ratio of is 1.04. This indicated that the size of the in-plane sp2domains decreased because of extensive oxidation. For Mn3O4/GO, the G band sharpened and shifted back to 1597.9 cm-1, and the D band shifted to approximately 1358.3 cm-1. This result indicated that the size of the in-plane sp2domains and the thickness of the graphitic structure increased due to the hydrothermal reaction. In addition, the D/G intensity ratio decreased to approximately 1.00, which indicated the restoration of the in-plane sp2domains due to a graphitic “self-healing” in heat treatment[39]. Obvious Raman peaks at 655.7 cm-1assigned to the Raman active modes of Mn3O4were also observed.

    Fig.4 Raman spectra of GO, Mn3O4/GO, and Mn3O4/GO

    (a)

    (b)

    (c)Fig.5 XPS survey spectra of (a) GO and Mn3O4/GO; (b) C 1s XPS spectra of GO and Mn3O4/GO; and (c) Mn 2p XPS spectra of Mn3O4/GO

    The morphology of the synthesized GO and manganese distribution in the catalyst sample (Mn3O4/GO) observed from the SEM images were shown in Fig.6. The figure revealed that the product was composed of fine grain, which was quite different from the quite smooth surface of GO. The Mn3O4added to GO appeared as bright dots that were uniformly decorated and firmly anchored on the wrinkled GO layers with a high density.

    (a)

    (b)Fig.6 SEM images of the (a) synthesized GO and (b) Mn3O4/GO

    Figure 7 shows the EDS spectra of Mn3O4/GO. The result suggested that the manganese ions were diffused on the GO during compounding. EDS analyses on the particle suggested the presence of both manganese and carbon elements. This result further indicated that the GO particles were completely coated with a layer of manganese oxide. The EDS revealed that the composition of GO sheets mostly consisted of C and O, whereas Mn3O4/GO contained not only C and O, but also Mn. Therefore, pre-intercalated GO with Mn3O4/GO was obtained.

    (a)

    (b)Fig.7 EDS spectra of Mn3O4/GO

    2.3 Catalytic activity

    2.3.1 Effects of pH on NO oxidation

    OH·+H++e-→H2O,

    (8)

    (9)

    Fig.8 Effects of pH on NO oxidation

    2.3.2 Effects of PMS dosage on NO oxidation

    In order to determine the optimum initial PMS (also oxone) dosage, a set of experiments on the oxidation of NO were carried out within 30 min at various initial PMS concentrations presented in Fig.9. The PMS concentration was studied in the range of 2-10 mmol/L and increased while maintaining the selected concentration of Mn3O4/GO dosage constant at 0.5 mmol/L. All experiments were carried out for 30 min at the adjusted pH of 2.06. It’s evident from Fig.9 that the optimum PMS concentration was found to be 2 mmol/L due to the fact that the oxidation of NO did not increase even when the concentration of PMS was increased. It had been reported that when the PMS concentration increased to a certain extent, it could inactive sulfate acid radicals[33].

    Fig.9 Effects of PMS concentration on NO oxidation

    2.3.3 Effects of Mn3O4/GO dosage on NO oxidation

    The Mn3O4/GO dosage on the oxidation of NO was also investigated by different dosage of Mn3O4/GO at the optimum PMS concentration in Fig.10. The Mn3O4/GO dosage was selected in the range of 0.1 to 1 mmol/L. Similarly, the optimum Mn3O4/GO dosage was found to be 0.25 mmol/L due to the fact that the oxidation of NO did not increase even when the concentration of Mn3O4/GO was doubled. This indicates that more catalyst in the system may reduce the catalytic activity.

    Fig.10 Effects of catalyst concentration on NO oxidation

    2.3.4 Effects of reaction time on NO oxidation

    The effect of time on the oxidation efficiency was also investigated. The time was studied in the range of 5.5 to 120 min while other operating parameters were kept constant. The corresponding oxidation efficiency was presented in Fig.11, and the oxidation efficiency was found to be faster with the extension of the time, yet the oxidation efficiency rapidly decreased with the time above 60 min. Therefore, the optimum reaction time was 60 min.

    Fig.11 Effects of time on NO oxidation

    2.3.5 Effects of temperature on NO oxidation

    Fig.12 Effects of temperature on NO oxidation

    2.4 Stability of Mn3O4/GO in multiple runs

    Seven recycling runs of the Mn3O4/GO were conducted, and the catalyst was recycled under the same reaction conditions to evaluate the stability of the Mn3O4/GO catalyst. After every run of reaction, the catalyst was collected, washed, and dried in a vacuum oven at 60 ℃ before the next round. As shown in Fig.13, the activity of the regenerated catalyst dropped slightly compared with the fresh catalyst. The concentration of dissolved Mn ion from Mn3O4was almost the same as that in the fresh catalyst as detected by ICP. Therefore, the Mn3O4/GO has good catalytic performance.

    Fig.13 Oxidation of NO in consecutive runs using the recycled Mn3O4/GO catalyst

    3 Conclusions

    The oxidation method of Mn3O4/GO/PMS was proved to be feasible and effective for NO removal. The effect of some operational parameters on the oxidation of NO was discussed. It was found that the oxidation efficiency was strongly dependent on the pH, PMS concentration, Mn3O4/GO concentration, reaction time, and the temperature. Fortunately, the results displayed the low dosage Mn3O4/GO oxidation process could be seen as superior choice as a good treatment to selectively oxidize the NO in lower temperature.

    [1] Jong H L, Steven J S, Se H O. Improved NOxReduction Over the Staged Ag/Al2O3Catalyst System [J].AppliedCatalysisA:General, 2008, 342(1/2): 78-86.

    [2] Li Q, Meng M, Dai F F,etal. Multifunctional Hydrotalcite-derived K/MnMgAlO Catalysts Used for Soot Combustion, NOxStorage and Simultaneous Soot-NOxRemoval [J].ChemicalEngineeringJournal, 2012, 184(3): 106-112.

    [3] Setiabudi A, Makkee M, Moulijn J A. An Optimal NOxAssisted Abatement of Diesel Soot in an Advanced Catalytic Filter Design [J].ApplliedCatalysisB:Environmental, 2003, 42(1): 35-45.

    [4] Castoldi L, Artioli N, Matarrese R,etal. Study of DPNR Catalysts for Combined Soot Oxidation and NOxReduction [J].CatasisToday, 2010, 157(1/2/3/4): 384-389.

    [5] Fritz A, Pitchon V. The Current State of Research on Automotive Lean NOxCatalysis [J].ApplliedCatalysisB:Environmental, 1997, 13(1): 1-25.

    [6] Min K, Eun D P, Ji M K,etal. Manganese Oxide Catalysts for NOxReduction With NH3at Low Temperature [J].AppliedCatalysisA:General, 2007, 327(2): 261-269.

    [7] Teraoka Y, Kanada K, Kagawa S. Synthesis of La-K-Mn-O Perovskite-type Oxides and Their Catalytic Property for Simultaneous Removal of NOxand Diesel Soot Particulates.ApplliedCatalysisB:Environmental, 2001, 34(1): 73-78.

    [8] Fino D, Fino P, Saracco G,etal. Studies on Kinetics and Mechanism of La2-xKxCu1-yVyO4Layered Perovskites for the Combined Removal of Diesel Particulate and NOx[J].ApplliedCatalysisB:Environmental, 2003, 43(3): 243-259.

    [9] Lin H, Li Y J, Shangguan W F. Soot Oxidation and NOxReduction Over BaAl2O4Catalyst [J].CombustionandFlame, 2009, 156(11): 2063-2070.

    [10] Liu J, Zhao Z, Xu C M,etal. Simultaneous Removal of NOxand Diesel Soot over Nanometer Ln-Na-Cu-O Perovskite-like Complex Oxide Catalysts [J].ApplliedCatalysisB:Environmental, 2008, 78(1/2): 61-72.

    [11] Li Z Q, Meng M, Li Q,etal. Fe-substituted Nanometric La0.9K0.1Co1-xFexO3-δPerovskite Catalysts Used for Soot Combustion, NOxStorage and Simultaneous Catalytic Removal of Soot and NOx[J].ChemicalEngineeringJournal, 2010, 164(1): 98-105.

    [12] Wang K, Qian L, Zhang L,etal. Simultaneous Removal of NOxand Soot Particulates Over La0.7Ag0.3MnO3Perovskite Oxide Catalysts [J].CatalysisToday, 2010, 158(3/4): 423-426.

    [13] Tikhomirov K, Krocher O, ElsenerM,etal. MnOx-CeO2Mixed Oxides for the Low-Temperature Oxidation of Diesel Soot [J].AppliedCatalysisB:Environmental, 2006, 64(1/2): 72-78.

    [14] Saab E, Aouad S, Abi-Aad E,etal. Carbon Black Oxidation in the Presence of Al2O3, CeO2, and Mn Oxide Catalyst: an EPR Study [J].CatalysisToday, 2007, 119(1/2/3/4): 286-290.

    [16] Li W B, Yang X F, Chen L F,etal. Adsorption/Desorption of NOxon MnO2/ZrO2Oxides Prepared in Reverse Microemulsions [J].CatalysisToday, 2009, 148(1/2): 75-80.

    [17] Qi G, Yang R T. Performance and Kinetics Study for Low-Temperature SCR of NO with NH3over MnOx-CeO2Catalyst [J].JournalCatalysis, 2003, 217(2): 434-441.

    [18] Anipsitakis G P, Dionysiou D D. Degradation of Organic of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate With Cobalt [J].EnvironmentalScience&Technology, 2003, 37(20): 4790-4797.

    [19] Fernandez J, Maruthamuthu P, Renken A,etal. Bleaching and Photobleaching of Orange II Within Seconds by the Oxone/Co2+Reagent in Fenton-Like Processes [J].ApplliedCatalysisB:Environmental, 2004, 49(3): 207-215.

    [20] Liang C, Huang C F, Chen Y J. Potential for Activated Persulfate Degradation of BETX Contamination [J].WaterResearch, 2008, 42(15): 4091-4100.

    [21] Liang C, Lee I L, Hsu I Y,etal. Persulfate Oxidation of Trichloroethylene With and Without Iron Activation in Porous Media [J].Chemosphere, 2008, 70(3): 426-435.

    [22] Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J].JournaloftheAmericanChemicalSociety, 1958, 80(6): 1339-1339.

    [23] He T, Chen D R, Jiao X L. Controlled Synthesis of Co3O4Nanoparticles through Oriented Aggregation [J].ChemistryofMaterials, 2004, 16(4): 737-743.

    [24] Sasha S, Richard D P, SonBinh T N,etal. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets [J].Carbon, 2006, 44(15): 3342-3347.

    [25] Wang H W, Hu Z A, Chang Y Q,etal. Preparation of Reduced Graphene Oxide/Cobalt Oxide Composite and Their Enhanced Capacitive Behaviors by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Cobalt Oxide Matrix [J].MaterialsChemistryandPhysics, 2011, 30(1/2): 672-679.

    [26] Ishii M, Nakahira M. Infrared Absorption Spectra and Cation Distributions in (Mn, Fe)3O4[J].SolidStateCommunications, 1972, 11(1): 209-212.

    [27] Gillot B, Guendouzi M, Laarj M. Particle Size Effects on the Oxidation-reduction Behavior of Mn3O4Hausmannite [J].MaterialsChemistryandPhysics, 2001, 70(1): 54-60.

    [28] Sagheer F A, Hasan M A, Pasupulety L,etal. Low-Temperature Synthesis of Hausmannite Mn3O4[J].JournalofMaterialsScienceLetters, 1999, 18(3): 209-211.

    [29] Nam I, Kim N D, Kim G P,etal. One Step Preparation of Mn3O4/Graphene Composites for Use as an Anode in Li ion Batteries [J].JournalofPowerSources, 2013, 244: 56-62.

    [30] Askarinejad A, Bagherzadeh M, Morsali A.Catalysis Performance of Mn3O4and Co3O4Nanocrystals Prepared by Sonochemical Method in Exopxidation of Styrene and Cyclooctene [J].AppliedSurfaceScience, 2010, 256(22): 6678-6682.

    [31] Dresselhaus M S, Dresselhaus G, Jorio A. Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007 [J].TheJournalofPhysicalChemistryC, 2007, 111(48): 17887-17893.

    [32] Zhang W X, Cui J C, Tao C A,etal. A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-assembly Approach [J].AngewandteChemieInternationalEdition, 2009, 48(32): 5864-5868.

    [33] Shi P H, Su R J, Zhu S B,etal. Supported Manganese Oxide on Graphene Oxide: Highly Efficient Catalysts for the Removal of Orange II from Water [J].JournalofHazardousMaterials, 2012, 229/230: 331-339.

    [34] Chen W, Fan Z L, Gu L,etal. Enhanced Capacitance of Manganese Oxide via Confinement Inside Carbon Nanotubes[J].Communication, 2010, 46(22): 3905-3907.

    [35] Buciuman F, Patcas F, Cracium R,etal. Vibrational Spectroscopy of Bulk and Supported Manganese Oxides [J].PhysicalChemistryChemicalPhyssics, 1999, 1(1): 185-120.

    [36] Kapteijn F, Van Langeveld A D, Moulijin J A,etal. Alumina-Supported Manganese Oxide Catalysts: I. Characterizatio: Effect of Precursor and Loading [J].JournalofCatalysis, 1994, 150(60): 94.

    [37] Eklund P C, Holden J M, Jishi R A. Vibrational Modes of Carbon Nanotubes-Spectroscopy and Theory [J].Carbon, 1995, 33(7): 959-972.

    [38] Zhang H B, Lin G D, Zhou Z H,etal. Raman Spectra of MWCNTs and MWCNT-Based H2-Adsorbing System [J].Carbon, 2002, 40(13): 2429-2436.

    [39] Huang Y F, Huang Y H. Identification of Produced Powerful Radicals Involved in the Mineralization of Bisphenol A Using a Novel UV-Na2S2O8/H2O2-Fe (II, III) Two-Stage Oxidation Process [J].JournalofHazardousMaterials, 2009, 162(2/3): 1211-1266.

    [40] Stankovich S, Dikin D A, Piner R D,etal. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide [J].Carbon, 2007, 24(7): 1558-1656.

    [41] Ardizzone S, Bianchi C L, Tirelli D. Mn3O4andγ-MnOOH Powders, Preparation, Phase Composition and XPS Characterization [J].ColloidsandSurfaces, 1998, 134(3): 305-312.

    [42] Huang Y F, Huang Y H. Behavioral Evidence of the Dominant Radicals and Intermediates Involved in Bisphenol A Degradation Using an Efficient Co2+/PMS Oxidation Process [J].JournalofHazardousMaterials, 2009, 167(1/2/3): 418-426.

    [43] Schward H A. Schward.An Introduction to Radiation Chemistry [J].JournaloftheAmericanChemicalSociety, 1964, 86(19): 4227-4228.

    Foundation items: Education Innovation Project of Shanghai, China (No. 12ZZ069); Natural Science Foundation of Shanghai, China (No.11ZR1400400); Doctoral Fund of Ministry of Education of China (No. 20130075110006); Modification Fiber Materials Project of the National Key Laboratory of China (No. LK1203)

    X701.7 Document code: A

    1672-5220(2015)01-0103-06

    Received date: 2013-11-16

    * Correspondence should be addressed to LI Deng-xin, E-mail: lidengxin@dhu.edu.cn

    热re99久久国产66热| 少妇的逼好多水| 91午夜精品亚洲一区二区三区| 波野结衣二区三区在线| 久久久久久久久久成人| 在线精品无人区一区二区三| 国产av一区二区精品久久| 少妇被粗大的猛进出69影院 | 伦理电影大哥的女人| 久久久国产精品麻豆| 久久人妻熟女aⅴ| av免费观看日本| 亚洲成人av在线免费| 久久99一区二区三区| 观看av在线不卡| 日韩三级伦理在线观看| 一级毛片电影观看| 亚洲综合精品二区| 妹子高潮喷水视频| 国产69精品久久久久777片| 日韩制服丝袜自拍偷拍| 亚洲欧美色中文字幕在线| 国产高清三级在线| 色5月婷婷丁香| 不卡视频在线观看欧美| 最近最新中文字幕大全免费视频 | 久久青草综合色| 9191精品国产免费久久| 性色av一级| 啦啦啦啦在线视频资源| 少妇精品久久久久久久| 捣出白浆h1v1| 国产成人精品久久久久久| 精品福利永久在线观看| 插逼视频在线观看| 国产精品国产三级专区第一集| 69精品国产乱码久久久| 日日撸夜夜添| 狂野欧美激情性xxxx在线观看| 午夜91福利影院| 曰老女人黄片| 国产乱人偷精品视频| 色5月婷婷丁香| 美女脱内裤让男人舔精品视频| av在线观看视频网站免费| 日日撸夜夜添| 日本av手机在线免费观看| 亚洲精品av麻豆狂野| 热99国产精品久久久久久7| a 毛片基地| 亚洲少妇的诱惑av| 久久毛片免费看一区二区三区| 免费看不卡的av| 国产男女超爽视频在线观看| 国产黄色免费在线视频| 国产国语露脸激情在线看| 一级片'在线观看视频| 久久综合国产亚洲精品| 大片免费播放器 马上看| 午夜激情av网站| 日韩制服丝袜自拍偷拍| 蜜桃在线观看..| 国产男女超爽视频在线观看| 在线看a的网站| 欧美精品一区二区免费开放| 男人操女人黄网站| 一本色道久久久久久精品综合| 国产男女内射视频| 久久久久人妻精品一区果冻| 亚洲精品av麻豆狂野| 国产成人免费无遮挡视频| av电影中文网址| 久久久久网色| 另类精品久久| 内地一区二区视频在线| 国产亚洲精品第一综合不卡 | 国产欧美日韩综合在线一区二区| 日日撸夜夜添| 免费av中文字幕在线| 国产1区2区3区精品| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人 | av不卡在线播放| 国产一区有黄有色的免费视频| 精品熟女少妇av免费看| 国产片内射在线| 秋霞在线观看毛片| 欧美激情 高清一区二区三区| 18在线观看网站| 国产视频首页在线观看| 亚洲国产欧美日韩在线播放| 久久国产精品大桥未久av| 亚洲av.av天堂| 国语对白做爰xxxⅹ性视频网站| 男女午夜视频在线观看 | 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 美女大奶头黄色视频| 国国产精品蜜臀av免费| 美女视频免费永久观看网站| 欧美人与性动交α欧美软件 | 免费不卡的大黄色大毛片视频在线观看| 日日爽夜夜爽网站| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 中文字幕最新亚洲高清| 内地一区二区视频在线| 永久免费av网站大全| 国产男女内射视频| 飞空精品影院首页| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 中文字幕人妻熟女乱码| 欧美性感艳星| 国产在视频线精品| 麻豆乱淫一区二区| 97在线人人人人妻| 两个人免费观看高清视频| 国产午夜精品一二区理论片| 自线自在国产av| 看免费成人av毛片| 国产一区二区三区av在线| 国产精品欧美亚洲77777| 精品一区二区三区视频在线| 国产高清三级在线| 亚洲av电影在线进入| 国产 一区精品| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 免费黄网站久久成人精品| 亚洲,欧美,日韩| av网站免费在线观看视频| 日本wwww免费看| 久久久久久久精品精品| 97人妻天天添夜夜摸| 日韩一区二区视频免费看| 色网站视频免费| av在线观看视频网站免费| 一本大道久久a久久精品| 国产av码专区亚洲av| 成人毛片a级毛片在线播放| 国产精品一国产av| 人人妻人人澡人人看| 婷婷色综合大香蕉| 色婷婷av一区二区三区视频| 大香蕉久久成人网| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡 | 中国三级夫妇交换| 毛片一级片免费看久久久久| 中文字幕制服av| 国产色爽女视频免费观看| 亚洲伊人色综图| 国产欧美日韩一区二区三区在线| 亚洲av在线观看美女高潮| 国产爽快片一区二区三区| 亚洲av在线观看美女高潮| 日韩视频在线欧美| 午夜福利,免费看| 亚洲经典国产精华液单| 永久网站在线| 国产精品国产三级专区第一集| 婷婷色综合大香蕉| 一本色道久久久久久精品综合| 午夜激情久久久久久久| 欧美性感艳星| 大片免费播放器 马上看| 五月天丁香电影| 丰满饥渴人妻一区二区三| 国产爽快片一区二区三区| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 你懂的网址亚洲精品在线观看| 久久久久久久久久久久大奶| 亚洲精品视频女| 日韩精品有码人妻一区| 精品久久蜜臀av无| 色视频在线一区二区三区| 国产免费视频播放在线视频| 人妻少妇偷人精品九色| 亚洲成人一二三区av| 日日啪夜夜爽| 久久精品aⅴ一区二区三区四区 | 99热6这里只有精品| 国产成人欧美| 国产日韩欧美亚洲二区| 天天影视国产精品| 尾随美女入室| 色94色欧美一区二区| 亚洲一码二码三码区别大吗| 蜜臀久久99精品久久宅男| 少妇被粗大猛烈的视频| 最近最新中文字幕免费大全7| 2018国产大陆天天弄谢| 久久久久人妻精品一区果冻| av卡一久久| 久久久久精品性色| 999精品在线视频| 午夜影院在线不卡| 高清视频免费观看一区二区| 99精国产麻豆久久婷婷| 男女啪啪激烈高潮av片| 日本午夜av视频| 国产成人精品婷婷| 精品少妇久久久久久888优播| 日韩免费高清中文字幕av| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠躁躁| 午夜福利乱码中文字幕| 黄色配什么色好看| 亚洲一码二码三码区别大吗| 日本午夜av视频| 亚洲综合色网址| 久久精品久久精品一区二区三区| 国内精品宾馆在线| 妹子高潮喷水视频| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 9色porny在线观看| 久久久久网色| a级毛色黄片| 晚上一个人看的免费电影| av黄色大香蕉| av视频免费观看在线观看| 国产一区二区三区综合在线观看 | 欧美日韩视频高清一区二区三区二| 久久国产亚洲av麻豆专区| 国产精品熟女久久久久浪| 18禁动态无遮挡网站| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 日韩中字成人| 亚洲国产最新在线播放| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美清纯卡通| 午夜福利视频在线观看免费| 少妇高潮的动态图| 国产精品无大码| 搡老乐熟女国产| 成年人午夜在线观看视频| 新久久久久国产一级毛片| 在线精品无人区一区二区三| 国产黄频视频在线观看| 九色成人免费人妻av| 9191精品国产免费久久| 黄色 视频免费看| 成人午夜精彩视频在线观看| 色网站视频免费| 五月伊人婷婷丁香| 青春草亚洲视频在线观看| 久久久精品94久久精品| av卡一久久| 黄色 视频免费看| 18+在线观看网站| 少妇被粗大猛烈的视频| 成人无遮挡网站| 在线观看www视频免费| 久久婷婷青草| 欧美xxⅹ黑人| 一级毛片 在线播放| 国产成人免费无遮挡视频| 热re99久久精品国产66热6| 午夜视频国产福利| 成人毛片60女人毛片免费| 美女国产视频在线观看| 久久韩国三级中文字幕| 亚洲成人一二三区av| kizo精华| 天天躁夜夜躁狠狠久久av| 日韩中文字幕视频在线看片| 99热6这里只有精品| 精品少妇黑人巨大在线播放| www.色视频.com| 亚洲欧美日韩另类电影网站| 十八禁网站网址无遮挡| 一级毛片 在线播放| 欧美成人午夜精品| 夫妻性生交免费视频一级片| 一区二区三区精品91| av卡一久久| 日韩一区二区视频免费看| 美女主播在线视频| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 午夜av观看不卡| 久久久久久久精品精品| 99久久人妻综合| 男的添女的下面高潮视频| 高清不卡的av网站| 久久国产精品男人的天堂亚洲 | 亚洲国产最新在线播放| 久久这里有精品视频免费| 欧美bdsm另类| 嫩草影院入口| 国产深夜福利视频在线观看| 国产精品国产三级专区第一集| 七月丁香在线播放| 97精品久久久久久久久久精品| 亚洲精品一二三| 国产精品国产三级专区第一集| 免费大片18禁| 久久精品国产鲁丝片午夜精品| 香蕉丝袜av| 制服人妻中文乱码| 自线自在国产av| 成年美女黄网站色视频大全免费| 91久久精品国产一区二区三区| 18禁观看日本| 亚洲一码二码三码区别大吗| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 久久精品aⅴ一区二区三区四区 | 伦理电影大哥的女人| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 黄网站色视频无遮挡免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲综合色惰| 日本欧美国产在线视频| 18+在线观看网站| 国产成人91sexporn| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| 国产成人aa在线观看| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 国产精品久久久久久久久免| 天堂中文最新版在线下载| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| av在线观看视频网站免费| 热re99久久国产66热| 又黄又爽又刺激的免费视频.| 1024视频免费在线观看| 校园人妻丝袜中文字幕| 99热6这里只有精品| www.熟女人妻精品国产 | 亚洲精品aⅴ在线观看| 欧美性感艳星| 欧美成人午夜免费资源| 国产黄频视频在线观看| www日本在线高清视频| 色94色欧美一区二区| 欧美少妇被猛烈插入视频| 内地一区二区视频在线| 欧美精品一区二区免费开放| av女优亚洲男人天堂| 99精国产麻豆久久婷婷| 久久热在线av| 国产免费又黄又爽又色| 国产成人91sexporn| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 最后的刺客免费高清国语| 欧美激情 高清一区二区三区| 亚洲精品乱久久久久久| 国产精品一二三区在线看| av.在线天堂| 国产成人a∨麻豆精品| 伦精品一区二区三区| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| av播播在线观看一区| 精品一区二区三区视频在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 亚洲av免费高清在线观看| 久久毛片免费看一区二区三区| 国产永久视频网站| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 最后的刺客免费高清国语| 国产又色又爽无遮挡免| 美女国产视频在线观看| 一二三四在线观看免费中文在 | 亚洲欧洲国产日韩| 国产 精品1| 伦理电影大哥的女人| 国产片内射在线| 又黄又爽又刺激的免费视频.| 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 久久久久网色| 日本欧美视频一区| 看非洲黑人一级黄片| 少妇熟女欧美另类| 肉色欧美久久久久久久蜜桃| 少妇的逼好多水| 亚洲精品国产av成人精品| 91精品三级在线观看| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 午夜福利乱码中文字幕| 蜜臀久久99精品久久宅男| 国语对白做爰xxxⅹ性视频网站| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看 | 妹子高潮喷水视频| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 欧美精品一区二区大全| 免费观看无遮挡的男女| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 香蕉国产在线看| a级毛片黄视频| 国产精品一区二区在线观看99| 久久久久久久精品精品| 少妇被粗大的猛进出69影院 | 国产成人av激情在线播放| 成人综合一区亚洲| 最新中文字幕久久久久| 最近的中文字幕免费完整| 最近中文字幕2019免费版| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 看非洲黑人一级黄片| 51国产日韩欧美| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 伦理电影免费视频| 国产亚洲精品第一综合不卡 | 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 嫩草影院入口| 亚洲成av片中文字幕在线观看 | 日日撸夜夜添| 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 欧美激情极品国产一区二区三区 | 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| 欧美日韩精品成人综合77777| 国产深夜福利视频在线观看| 欧美3d第一页| 最新中文字幕久久久久| 男女午夜视频在线观看 | 欧美+日韩+精品| 国产成人免费无遮挡视频| 精品国产一区二区三区久久久樱花| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 性色av一级| 亚洲av成人精品一二三区| 欧美精品高潮呻吟av久久| 免费av中文字幕在线| 99re6热这里在线精品视频| 毛片一级片免费看久久久久| 在线看a的网站| 一级黄片播放器| 99香蕉大伊视频| 久久久国产欧美日韩av| 久久久国产一区二区| 天天影视国产精品| 少妇的丰满在线观看| tube8黄色片| 搡女人真爽免费视频火全软件| 成人二区视频| 午夜日本视频在线| 久久久久精品性色| 男女免费视频国产| 国产综合精华液| 精品久久久精品久久久| 少妇被粗大的猛进出69影院 | 91在线精品国自产拍蜜月| 国产成人午夜福利电影在线观看| 国产精品欧美亚洲77777| 精品亚洲成a人片在线观看| 成人手机av| 一级黄片播放器| 国产极品天堂在线| 人妻系列 视频| 91午夜精品亚洲一区二区三区| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 精品视频人人做人人爽| 99久久中文字幕三级久久日本| 久久久久久人人人人人| 日本色播在线视频| 亚洲av综合色区一区| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区国产| 男女下面插进去视频免费观看 | 中文字幕人妻丝袜制服| 美国免费a级毛片| 精品国产露脸久久av麻豆| 午夜福利影视在线免费观看| 插逼视频在线观看| 亚洲综合精品二区| 九九在线视频观看精品| 国产在视频线精品| 中文字幕人妻丝袜制服| 99久久精品国产国产毛片| 日本免费在线观看一区| 最近手机中文字幕大全| 国产有黄有色有爽视频| 国产在视频线精品| 日本免费在线观看一区| 欧美 亚洲 国产 日韩一| 日本免费在线观看一区| 欧美丝袜亚洲另类| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 最近最新中文字幕免费大全7| 18+在线观看网站| 18禁在线无遮挡免费观看视频| 男的添女的下面高潮视频| a级毛色黄片| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 日本wwww免费看| 乱码一卡2卡4卡精品| 亚洲综合色惰| 涩涩av久久男人的天堂| 成人国产av品久久久| 免费人成在线观看视频色| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 欧美精品av麻豆av| 黑丝袜美女国产一区| 亚洲人与动物交配视频| 极品人妻少妇av视频| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 这个男人来自地球电影免费观看 | 侵犯人妻中文字幕一二三四区| 少妇人妻 视频| 久久久精品免费免费高清| 国产精品久久久久久av不卡| 1024视频免费在线观看| 伊人久久国产一区二区| 久久影院123| 精品国产一区二区三区久久久樱花| 韩国av在线不卡| 亚洲av.av天堂| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 久久人人爽av亚洲精品天堂| 午夜91福利影院| 国产高清不卡午夜福利| 嫩草影院入口| 夫妻性生交免费视频一级片| av卡一久久| 熟女电影av网| 久久久久网色| 国产精品成人在线| 日韩制服丝袜自拍偷拍| 久久久国产一区二区| 亚洲久久久国产精品| 久久韩国三级中文字幕| 成年美女黄网站色视频大全免费| 国内精品宾馆在线| 国产永久视频网站| 午夜久久久在线观看| 国产69精品久久久久777片| 一区在线观看完整版| 久久久久久人妻| av片东京热男人的天堂| 国产精品久久久av美女十八| 国产激情久久老熟女| 18+在线观看网站| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 日本av手机在线免费观看| 欧美激情极品国产一区二区三区 | 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 五月开心婷婷网| 热99国产精品久久久久久7| 视频在线观看一区二区三区| 欧美亚洲日本最大视频资源| 一级毛片 在线播放| 亚洲精品美女久久久久99蜜臀 | 如日韩欧美国产精品一区二区三区| 亚洲欧美色中文字幕在线| 中文字幕av电影在线播放| 午夜日本视频在线| av在线app专区| 黑人欧美特级aaaaaa片| 男女下面插进去视频免费观看 | 欧美精品一区二区免费开放| 久久久久久人妻| 国产精品国产三级国产av玫瑰| 国产色婷婷99| 国产综合精华液| 国产av码专区亚洲av| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 美女主播在线视频| 国产在线一区二区三区精| 色哟哟·www| 日本黄色日本黄色录像| 免费日韩欧美在线观看| 91aial.com中文字幕在线观看| 十八禁高潮呻吟视频|