• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類變系數(shù)分數(shù)階微分方程組的數(shù)值解法

    2015-01-10 07:02:16李寶鳳王東華
    唐山師范學院學報 2015年2期
    關鍵詞:科學系唐山師范學院

    李寶鳳,王東華,宗 鵬

    (唐山師范學院 數(shù)學與信息科學系,河北 唐山 063000)

    數(shù)學與應用數(shù)學

    一類變系數(shù)分數(shù)階微分方程組的數(shù)值解法

    李寶鳳,王東華,宗 鵬

    (唐山師范學院 數(shù)學與信息科學系,河北 唐山 063000)

    給出了基于Haar小波求解變系數(shù)分數(shù)階微分方程組的數(shù)值方法。首先構造Haar小波得到分數(shù)階積分的算子矩陣,利用積分算子矩陣把分數(shù)階微分方程組轉換為代數(shù)方程組;其次解此代數(shù)方程組求得原方程組的數(shù)值解;最后舉例說明了所給出的方法的有效性和可行性。

    分數(shù)階微分方程;Haar小波;算子矩陣;Block Pulse函數(shù)

    1 Introduction

    Fractional calculus is an old mathematical concept dating back to 17th century and involves integration and differentiation of arbitrary order. In 1695, L’ Hospital wrote to Leibniz asking him:“ What if n be 1/2?”. In the following centuries fractional calculus developed significantly within pure mathematics. However the applications of fractional calculus just emerged in last few decades. During the past decades, the field of fractional differential equations has attracted the interest of researchers in several areas including physics, chemistry, engineering and even finance and social sciences[1]. Compared to integer order differential equation, fractional differential equation has the advantage that it can better describe some natural physics processes and dynamic system processes[2]. But mostly fractional differential equations don’t have analytical solutions; there has been significantly interest in developing numerical schemes for their solution. Kai Diethelm has analyzed the fractional differential equations theoretically[3]and mainly studied Volterra integral equations; Changpin Li has studied the numerical algorithm for fractional calculus[4]. All of them, Haar method is the easier one to calculate. Because Haar method can transform the fractional differential equations into a linear system of algebraic equations and there are many zero elements in the coefficient matrix. By now, most of the relevant literatures are about the numerical solution of the fractional differential equations[5-13]and the existence and uniqueness of the solutions for system of fractionaldifferential equations[14], while the research about the numerical solution of the system of fractional differential equations is relatively few.

    In the present paper, we intend to use the Haar wavelet method to solve a class of linear system of fractional differential equations as following:

    wheret∈[0,T ],0<α,β<1,a,b,canddare known constants, f1( t),f2( t),g1( t) andg2( t)is the functions in the Hilbert spaceL2[0,T ],is fractional derivative of Caputo sense.

    The paper is organized as follows. In Section 2, we introduce some necessary definitions and mathematical preliminaries of fractional calculus. In Section 3, after describing Haar wavelet, we derive Haar wavelet operational matrix of the fractional differential equation. In Section 4, the method is defined for approximate solution of the fractional problem (1). In Section 5, a numerical example is given to demonstrate the validity of Haar wavelet method in solving a class of linear system of fractional differential equation. Section 6 comments on the result.

    2 Def nitions and notations

    We give some necessary definitions and mathematical preliminaries of the fractional calculus theory which are used further in this paper.

    Definition 1 The Riemann–Liouville fractional integral operator Iαof order α>0on usual Lebesgue space L1[a,b] is given by

    and its fractional derivative of orderα>0 is normally used:

    where n is an integer. For Riemann–Liouvilles definition, one has

    The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena with fractional differential equations. Therefore, we shall introduce now a modified fractional differential operator D*αproposed by Caputo.

    Definition 2 The Caputo definition of fractional differential operator is given by

    where n is an integer.

    It has the following two basic properties for n-1<α≤n and f∈L1[a,b]

    and

    3 Haar wavelet and the related operational matrix

    3.1 Haar wavelet

    The Haar wavelet is the function defined in the Hilbert spaceL2[0,T ]

    where

    andJis a positive integer, thus i=0,1,2,…,m-1, m=2J+1.

    Any functionf(t)defined on the interval [0,T ] can be expanded into Haar wavelet by

    where

    Iff(t)is approximated as piecewise constant during each subinterval, It may be terminated after m terms, that is

    whereCmand H(t)mare m-dimensional column vectors given by

    Taking the collocation points as following

    We define

    3.2 Operational matrix of the fractional integration

    The integration of the vectorH(t)

    mdefined in Eq. (13)can be obtained as

    wherePis the m×moperational matrix for integration[15].

    Our purpose is to derive Haar wavelet operational matrix of the fractional integration. For this purpose, we rewrite Riemann–Liouville fractional integration, as following

    Now, iff(t)is expanded in Haar wavelets, as showed in Eq.(15), the Riemann–Liouville fractional integration becomes

    Thus if tα-1*f(t) can be integrated, then expanded in Haar wavelets, the Riemann–Liouville fractional integration is solved via Haar wavelets.

    wherei=0,1,2,…,m -1.

    The functionsb(t)iare disjoint and orthogonal. That is

    From the orthogonality property of BPF, it is possible to expand functions into their Block Pulse series; this means that for every f(t)∈[0,1) we can write

    where

    so that fifor i=0,1,2,…,m -1are obtained by

    Similarly, Haar wavelet may be expanded into an m-term block pulse functions (BPF) as

    We derive the Block Pulse operational matrix of the fractional integrationαFas following

    where

    with ξ=(2k+1)α-(2k-1)α,k=1,2,…,m -1.

    k

    Next, we derive Haar wavelet operational matrix of the fractional integration. Let

    where matrixαPm×mis called Haar wavelet operational matrix of the fractional integration.

    Using Eqs. (23) and (24), we have

    From Eqs. (26) and (27) we get

    Then, Haar wavelet operational matrix of the fractional integrationis given by

    4 Application of Haar wavelet in systemof fractional differential equations

    The aim of this paper is to present the numerical solution of the system of fractional differential equations as Eq.(1).

    Let

    by using Eqs.(8) and (29), we have

    Similarly,

    Substituting Eqs.(30), (31) and (1), we have

    Thus Eq.(1) has been transformed into a system of algebraic equations. Discrete Eq.(33) at the collocation points defined in Eq.(14), then we have

    where

    then Eq.(34) can be written as

    The solutions of the above system which calculated by MATLAB programs can get,. Substituting the values

    of the coefficients into Eqs.(31) and (32), we get the approximate solutions of u(t) and v(t).

    5 Numerical examples

    Consider the following system of linear fractional differential equations

    The exact solutions are u(t )=t2-t,v( t)=t2+1. The comparisons between approximate and exact solutions for J=6, T=1 are shown in Fig.1 and for different values of J are shown in Table 1. In the table we can see the accuracy improved when increasing the level of resolution J.

    Fig1. The comparison between approximate and exact solutions of Example

    Table 1 The comparisons between approximate and exact solutions for different values of J

    6 Conclusions

    This article adopts Haar wavelet method to solve a class of linear system of fractional differential equations by combining wavelet function with operational matrix of fractional integration. In order to reduce the computation, we transform the initial equations into a linear system of algebraic equations.

    Fortunately,there are many zero elements in the coefficient matrix. Efficiency of this method is demonstrated by a numerical example. It is obvious that the accuracy improves when we increase the level of resolution J. Usually, the greater J can reach the higher precision.

    [1] Garrappa R, Popolizio M. On the use of matrix functions for fractional partial differential equations[J]. Math. Comput Simulation, 2011, 81(5): 1045-1056.

    [2] W Chen, D Baleanu, J A Tenreiro Machado. Preface: Special issue of computers and mathematics with applications on fractional differentiation and its applications[J]. COMPUTMATH APPL, 2010, 59(5): 1585- 1585.

    [3] Kai Diethelm, Neville J Ford. Volterra integral equations and fractional calculus: Do neighboring solutions intersect?[J]. Journal of Integral Equations Applications, 2012, 24(1): 25-37.

    [4] A Chen, C P Li. Numerical Algorithm for Fractional Calculus Based on Chebyshev Polynomial Approxi- mation[J]. Journal of Shanghai University (Natural Science Edition), 2012, 18(1): 48-53.

    [5] Yuste S B. Weighted average finite difference methods for fractional diffusion equations[J]. Comput Phys, 2006, 216(1): 264-274.

    [6] Ford N J, Joseph Connolly A. Systems-based decom- position schemes for the approximate solution of multi-term fractional differential equations[J]. Comput Appl Math, 2009, 229(15): 382-391.

    [7] Sweilam N H, Khader M M, Al-Bar RF. Numerical studies for a multi-order fractional differential equation. Phys Lett A, 2007, 371(1-2): 26-33.

    [8] Rawashdeh E A. Numerical solution of fractional integrodifferential equations by collocation method[J]. Appl Math Comput, 2006, 176(1): 1-6.

    [9] Xiuxiu Li. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method [J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(10): 3934-3946.

    [10] Momani S, Odibat Z. Numerical approach to differential equations of fractional order[J]. Comput Appl Math, 2007, 207(1): 96-110.

    [11] S Saha ray. On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation[J]. Applied Mathematics and Computation, 2012, 218(9): 5239- 5248.

    [12] ü Lepik. Solving fractional integral equations by the Haar wavelet method[J]. Applied Mathematics and Computation, 2009, 214(2): 468- 478.

    [13] Yuanlu Li, Weiwei Zhao. Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations[J]. Applied Mathematics and Computation, 2010, 216(8): 2276-2285.

    [14] Junsheng Duan, et al. Solution for system of linear fractional differential equations with constant coefficients[J]. J. of Math, 2009, 29(5): 599-603.

    [15] Kajani M, Vencheh A. The Chebyshev wavelets operational matrix of integration and product operation matrix[J]. Int J Comput Math, 2008, 86(7): 1118–1125.

    (責任編輯、校對:趙光峰)

    A Numerical Method for a Class of Linear System of Fractional Differential Equations with Variable Coefficients

    LI Bao-feng, WANG Dong-hua, ZONG Peng

    (Department of Mathematics and Information Science, Tangshan Normal University, Tangshan 063000, China)

    Haar wavelet method is presented for solving a class of linear system of fractional differential equations with variable coefficients. We first construct Haar wavelet and then derive the operational matrix of fractional integration. The operational matrix of fractional integration is utilized to reduce the system of fractional differential equations to a system of algebraic equations. Thus, we get required numerical solutions by solving corresponding system of algebraic equations. In addition, an example is presented to demonstrate the efficiency and accuracy of the proposed method.

    fractional differential equations; Haar wavelet; operational matrix; Block Pulse Function

    O175.8

    A

    1009-9115(2015)02-0001-05

    10.3969/j.issn.1009-9115.2015.02.001

    唐山師范學院科學研究基金項目(2014D09)

    2014-03-23

    李寶鳳(1971-),女,河北唐山人,碩士,副教授,研究方向為計算數(shù)學、運籌學、概率論。 -1-

    猜你喜歡
    科學系唐山師范學院
    遵義師范學院作品
    大眾文藝(2022年21期)2022-11-16 14:49:06
    《通化師范學院報》 征稿啟事
    中國農業(yè)發(fā)展銀行唐山分行
    致力草學,推進草業(yè),共創(chuàng)輝煌
    ——慶祝湖南農業(yè)大學草業(yè)科學系建系20 周年
    作物研究(2021年2期)2021-04-26 09:34:40
    唐山香酥饹馇圈
    洛陽師范學院
    人大建設(2019年4期)2019-07-13 05:43:04
    樂在其中 研我自由——記清華大學數(shù)學科學系助理教授宗正宇
    王大根
    把唐山打造成為國家級節(jié)能環(huán)保產(chǎn)業(yè)基地
    大慶師范學院簡介
    久久久久精品人妻al黑| 伦精品一区二区三区| 少妇熟女欧美另类| 婷婷色综合www| 一级a做视频免费观看| 亚洲天堂av无毛| 国产高清不卡午夜福利| 秋霞伦理黄片| 高清在线视频一区二区三区| av女优亚洲男人天堂| 久久久久久久精品精品| 免费不卡的大黄色大毛片视频在线观看| 国产精品 国内视频| 国产精品不卡视频一区二区| 自线自在国产av| 午夜激情av网站| 精品少妇久久久久久888优播| 亚洲综合色网址| 日韩制服丝袜自拍偷拍| 9热在线视频观看99| 久久午夜福利片| 精品第一国产精品| 亚洲国产精品一区三区| 九色成人免费人妻av| 国产欧美日韩综合在线一区二区| 日韩人妻精品一区2区三区| 大陆偷拍与自拍| h视频一区二区三区| 午夜精品国产一区二区电影| 美女国产高潮福利片在线看| 国精品久久久久久国模美| 欧美精品av麻豆av| av片东京热男人的天堂| 黄片无遮挡物在线观看| 欧美xxⅹ黑人| 精品人妻在线不人妻| 久久精品国产鲁丝片午夜精品| 国产精品一二三区在线看| 国产亚洲精品久久久com| 一区二区三区四区激情视频| 日韩大片免费观看网站| 国产一区二区在线观看av| 国产精品 国内视频| 黑丝袜美女国产一区| 亚洲精品一二三| 美女中出高潮动态图| 国产精品久久久久久久久免| 又黄又粗又硬又大视频| 成人18禁高潮啪啪吃奶动态图| 日韩制服骚丝袜av| 亚洲av中文av极速乱| 国产熟女欧美一区二区| 国产毛片在线视频| 国产成人精品一,二区| 美女视频免费永久观看网站| 女性被躁到高潮视频| 日日爽夜夜爽网站| 啦啦啦在线观看免费高清www| 久久精品久久久久久噜噜老黄| 国产精品一区二区在线观看99| 久久久欧美国产精品| 精品亚洲成a人片在线观看| 亚洲精品456在线播放app| 国产在视频线精品| 最近中文字幕高清免费大全6| 久久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色麻豆天堂久久| 九九爱精品视频在线观看| 日本vs欧美在线观看视频| 亚洲精品乱码久久久久久按摩| 亚洲第一区二区三区不卡| 亚洲成人av在线免费| 不卡视频在线观看欧美| 亚洲精品一二三| 亚洲国产精品999| 两个人免费观看高清视频| 国产成人精品一,二区| 亚洲精品一区蜜桃| 另类精品久久| 国产精品99久久99久久久不卡 | 性色av一级| 建设人人有责人人尽责人人享有的| 久久久久网色| 国产亚洲精品久久久com| 国产精品久久久久成人av| av卡一久久| 看免费av毛片| 人人妻人人添人人爽欧美一区卜| 中文字幕最新亚洲高清| 大片电影免费在线观看免费| 美女国产视频在线观看| 国产麻豆69| 少妇人妻久久综合中文| 观看av在线不卡| 成人黄色视频免费在线看| 精品人妻偷拍中文字幕| 免费女性裸体啪啪无遮挡网站| 免费高清在线观看日韩| 亚洲成人av在线免费| 国产精品.久久久| 国产伦理片在线播放av一区| 免费日韩欧美在线观看| 高清不卡的av网站| 精品卡一卡二卡四卡免费| 国产视频首页在线观看| 爱豆传媒免费全集在线观看| 久久久久视频综合| 国产一区亚洲一区在线观看| 亚洲成国产人片在线观看| 一本—道久久a久久精品蜜桃钙片| 精品久久久久久电影网| 日韩不卡一区二区三区视频在线| 精品国产一区二区久久| 日本色播在线视频| 男人操女人黄网站| 中文字幕人妻熟女乱码| 国产黄色免费在线视频| 国产黄色免费在线视频| 欧美日韩成人在线一区二区| 黄片无遮挡物在线观看| 波多野结衣一区麻豆| a级毛片在线看网站| 久久99精品国语久久久| 母亲3免费完整高清在线观看 | 九色亚洲精品在线播放| 丝袜脚勾引网站| 97精品久久久久久久久久精品| 欧美精品亚洲一区二区| 国产黄色视频一区二区在线观看| 熟女人妻精品中文字幕| a级毛色黄片| 亚洲av综合色区一区| 香蕉精品网在线| 国产精品麻豆人妻色哟哟久久| 国产亚洲精品第一综合不卡 | 日韩精品有码人妻一区| av片东京热男人的天堂| 亚洲精品色激情综合| 在线观看三级黄色| 亚洲欧洲日产国产| 男女边吃奶边做爰视频| 在线观看美女被高潮喷水网站| 国产免费一区二区三区四区乱码| 午夜91福利影院| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 欧美3d第一页| 欧美亚洲日本最大视频资源| 亚洲国产成人一精品久久久| 三上悠亚av全集在线观看| 2018国产大陆天天弄谢| 99热网站在线观看| av免费在线看不卡| 日日撸夜夜添| 国产成人91sexporn| 精品一区二区三区四区五区乱码 | 国产成人av激情在线播放| 美女xxoo啪啪120秒动态图| 午夜福利视频精品| 亚洲欧美清纯卡通| 老司机亚洲免费影院| 午夜福利影视在线免费观看| 亚洲情色 制服丝袜| 久久影院123| 国产精品三级大全| 欧美少妇被猛烈插入视频| 免费av中文字幕在线| 777米奇影视久久| 免费久久久久久久精品成人欧美视频 | 久久国产亚洲av麻豆专区| 人人妻人人添人人爽欧美一区卜| 视频中文字幕在线观看| 国产片内射在线| 国产精品欧美亚洲77777| 一级片'在线观看视频| 国产成人免费观看mmmm| 久久人人爽人人爽人人片va| √禁漫天堂资源中文www| 日本猛色少妇xxxxx猛交久久| 黑人高潮一二区| 日韩中文字幕视频在线看片| 亚洲成国产人片在线观看| 日韩中文字幕视频在线看片| av又黄又爽大尺度在线免费看| 国产成人91sexporn| 大码成人一级视频| 夫妻午夜视频| 有码 亚洲区| 久久久久人妻精品一区果冻| 亚洲综合色网址| 日本av手机在线免费观看| 亚洲精品av麻豆狂野| 9191精品国产免费久久| 美国免费a级毛片| 久久国内精品自在自线图片| 亚洲国产色片| 亚洲精品日本国产第一区| 欧美 亚洲 国产 日韩一| 成年动漫av网址| 美女视频免费永久观看网站| 丝袜在线中文字幕| 欧美丝袜亚洲另类| 欧美日韩亚洲高清精品| 18禁观看日本| 另类亚洲欧美激情| 18禁国产床啪视频网站| 国产成人一区二区在线| 久久久久久久久久成人| 高清视频免费观看一区二区| 国产毛片在线视频| 99re6热这里在线精品视频| 黄色一级大片看看| av有码第一页| 精品国产露脸久久av麻豆| 日韩熟女老妇一区二区性免费视频| 久久人人97超碰香蕉20202| 亚洲av中文av极速乱| 9色porny在线观看| 色婷婷久久久亚洲欧美| 免费大片黄手机在线观看| 久久精品国产a三级三级三级| 午夜精品国产一区二区电影| 日日啪夜夜爽| 涩涩av久久男人的天堂| 日本91视频免费播放| 午夜影院在线不卡| 捣出白浆h1v1| 日本黄大片高清| 91午夜精品亚洲一区二区三区| 亚洲一区二区三区欧美精品| 久久久亚洲精品成人影院| 亚洲精品日韩在线中文字幕| 一级片免费观看大全| 欧美亚洲 丝袜 人妻 在线| 久久99蜜桃精品久久| 日日撸夜夜添| 亚洲内射少妇av| 国产亚洲午夜精品一区二区久久| 一级a做视频免费观看| av一本久久久久| 在线观看美女被高潮喷水网站| 久久97久久精品| 啦啦啦视频在线资源免费观看| av国产精品久久久久影院| 日韩欧美精品免费久久| 在线 av 中文字幕| 99热6这里只有精品| 在线亚洲精品国产二区图片欧美| 91成人精品电影| 亚洲丝袜综合中文字幕| a级片在线免费高清观看视频| 免费少妇av软件| 男女无遮挡免费网站观看| 日韩成人伦理影院| 国产在线免费精品| 免费观看在线日韩| 免费高清在线观看视频在线观看| 成人国产麻豆网| 免费久久久久久久精品成人欧美视频 | 欧美亚洲日本最大视频资源| 秋霞在线观看毛片| 久热久热在线精品观看| 亚洲少妇的诱惑av| 免费黄频网站在线观看国产| 精品一品国产午夜福利视频| 久久久久久久久久成人| 香蕉丝袜av| 亚洲色图 男人天堂 中文字幕 | 国产精品久久久久久久电影| 中文字幕人妻丝袜制服| 一级,二级,三级黄色视频| 成人国产麻豆网| 大码成人一级视频| 久久影院123| 久久精品国产综合久久久 | 日本91视频免费播放| 国产亚洲精品第一综合不卡 | 2022亚洲国产成人精品| 亚洲天堂av无毛| 国产成人精品婷婷| 国产视频首页在线观看| 精品久久久精品久久久| 另类精品久久| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| 久久精品人人爽人人爽视色| 大话2 男鬼变身卡| 免费人妻精品一区二区三区视频| 国产成人精品久久久久久| 69精品国产乱码久久久| 亚洲内射少妇av| 亚洲 欧美一区二区三区| 欧美人与性动交α欧美软件 | 免费黄色在线免费观看| 内地一区二区视频在线| h视频一区二区三区| 青青草视频在线视频观看| 成人漫画全彩无遮挡| 丰满少妇做爰视频| 99热全是精品| 国产高清三级在线| 久久精品aⅴ一区二区三区四区 | 亚洲精品视频女| 22中文网久久字幕| 精品国产一区二区久久| 一边亲一边摸免费视频| 天美传媒精品一区二区| 久久午夜综合久久蜜桃| 丰满少妇做爰视频| 在线观看www视频免费| 青春草视频在线免费观看| 尾随美女入室| 免费观看av网站的网址| 欧美日韩精品成人综合77777| 大码成人一级视频| 在线观看免费高清a一片| 国产老妇伦熟女老妇高清| 久热久热在线精品观看| 日韩精品免费视频一区二区三区 | 国产淫语在线视频| 人妻一区二区av| 免费av不卡在线播放| 亚洲精品视频女| 精品午夜福利在线看| 综合色丁香网| 春色校园在线视频观看| 亚洲精品国产av蜜桃| 少妇的逼水好多| 大陆偷拍与自拍| 又大又黄又爽视频免费| 久久热在线av| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 国产在线视频一区二区| av.在线天堂| 99热国产这里只有精品6| 黑人欧美特级aaaaaa片| 精品少妇内射三级| 国产 精品1| 老女人水多毛片| 国产精品.久久久| 成人毛片a级毛片在线播放| 久久久久久伊人网av| 日本av手机在线免费观看| av国产精品久久久久影院| 美女内射精品一级片tv| 欧美成人精品欧美一级黄| 亚洲欧美色中文字幕在线| 亚洲国产精品999| 最近最新中文字幕大全免费视频 | 校园人妻丝袜中文字幕| 丰满少妇做爰视频| 18禁观看日本| 中国美白少妇内射xxxbb| 天天操日日干夜夜撸| 亚洲天堂av无毛| 男女边吃奶边做爰视频| 最近手机中文字幕大全| 三上悠亚av全集在线观看| 国产精品不卡视频一区二区| 色94色欧美一区二区| 精品福利永久在线观看| 日韩中文字幕视频在线看片| 国产免费视频播放在线视频| 国产精品国产三级国产专区5o| 午夜福利乱码中文字幕| 男女下面插进去视频免费观看 | 亚洲国产最新在线播放| 建设人人有责人人尽责人人享有的| 国产免费又黄又爽又色| 黄色配什么色好看| 美女大奶头黄色视频| av免费在线看不卡| 一区二区三区四区激情视频| 久久99热6这里只有精品| 狠狠精品人妻久久久久久综合| 国产精品不卡视频一区二区| 成人毛片60女人毛片免费| 99久久中文字幕三级久久日本| 精品卡一卡二卡四卡免费| 中文字幕制服av| 亚洲国产日韩一区二区| 亚洲美女黄色视频免费看| 夫妻午夜视频| 国产精品熟女久久久久浪| videos熟女内射| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 婷婷色综合大香蕉| 久久热在线av| 美女国产高潮福利片在线看| 少妇精品久久久久久久| 最近中文字幕2019免费版| 日韩不卡一区二区三区视频在线| xxxhd国产人妻xxx| 国产日韩欧美视频二区| 国产精品国产av在线观看| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 99久久精品国产国产毛片| 日日啪夜夜爽| 亚洲人成77777在线视频| 免费在线观看黄色视频的| 91在线精品国自产拍蜜月| 超碰97精品在线观看| 亚洲第一av免费看| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 18禁在线无遮挡免费观看视频| 欧美最新免费一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲,一卡二卡三卡| 在线观看www视频免费| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 美女脱内裤让男人舔精品视频| 丝袜人妻中文字幕| 在线观看国产h片| 最近的中文字幕免费完整| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 97在线人人人人妻| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 自线自在国产av| 国产高清不卡午夜福利| 成人国语在线视频| 一级毛片我不卡| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 极品人妻少妇av视频| 精品少妇内射三级| 国产在线一区二区三区精| 插逼视频在线观看| 99久久中文字幕三级久久日本| 久久精品国产综合久久久 | 男女无遮挡免费网站观看| 精品福利永久在线观看| 国产精品欧美亚洲77777| 久久久久精品性色| 国产精品人妻久久久久久| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 热99国产精品久久久久久7| 日本91视频免费播放| 寂寞人妻少妇视频99o| 韩国av在线不卡| 欧美国产精品va在线观看不卡| 精品国产一区二区三区四区第35| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 亚洲高清免费不卡视频| 日本91视频免费播放| 久久久国产精品麻豆| 久久人妻熟女aⅴ| 一级片'在线观看视频| 最近的中文字幕免费完整| 久热这里只有精品99| 超色免费av| 久久久久久久精品精品| av线在线观看网站| 成人毛片60女人毛片免费| 久久热在线av| 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 永久免费av网站大全| 午夜激情久久久久久久| 老司机亚洲免费影院| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 观看美女的网站| 久久精品国产亚洲av天美| 岛国毛片在线播放| av福利片在线| 美国免费a级毛片| 国产免费又黄又爽又色| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 日韩制服丝袜自拍偷拍| 亚洲精品aⅴ在线观看| 成人漫画全彩无遮挡| 狠狠精品人妻久久久久久综合| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲日产国产| 久久久久久久国产电影| 人体艺术视频欧美日本| 七月丁香在线播放| 久久人人爽人人片av| videosex国产| 免费大片18禁| 成年女人在线观看亚洲视频| 亚洲国产精品专区欧美| 国产一级毛片在线| 男女边摸边吃奶| 女性被躁到高潮视频| 在线天堂最新版资源| 啦啦啦视频在线资源免费观看| 欧美激情 高清一区二区三区| 亚洲内射少妇av| 精品亚洲成a人片在线观看| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 成年动漫av网址| av免费观看日本| 曰老女人黄片| 亚洲国产日韩一区二区| 日韩av免费高清视频| 国产成人欧美| 全区人妻精品视频| 美女xxoo啪啪120秒动态图| 久久精品国产a三级三级三级| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 亚洲三级黄色毛片| 国产熟女午夜一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 国产精品免费大片| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 免费黄色在线免费观看| 大香蕉久久网| 亚洲精品久久午夜乱码| 国产一区二区激情短视频 | 国产男女内射视频| 国产精品国产av在线观看| 国产男人的电影天堂91| 少妇被粗大的猛进出69影院 | 欧美丝袜亚洲另类| 亚洲精品乱码久久久久久按摩| 黄网站色视频无遮挡免费观看| 久久精品国产自在天天线| av黄色大香蕉| 五月玫瑰六月丁香| 男女无遮挡免费网站观看| 男女国产视频网站| 美女国产视频在线观看| 巨乳人妻的诱惑在线观看| 男女国产视频网站| 久久久久精品人妻al黑| 99九九在线精品视频| 午夜福利在线观看免费完整高清在| 国产精品一区www在线观看| 丝袜人妻中文字幕| 一二三四在线观看免费中文在 | 亚洲 欧美一区二区三区| 国产精品一区二区在线观看99| 国产精品嫩草影院av在线观看| 超色免费av| av在线老鸭窝| 丰满乱子伦码专区| 人人妻人人爽人人添夜夜欢视频| 国产成人a∨麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| 日韩 亚洲 欧美在线| 欧美日韩视频精品一区| 十八禁高潮呻吟视频| 丰满迷人的少妇在线观看| 欧美激情极品国产一区二区三区 | 午夜影院在线不卡| 国产欧美另类精品又又久久亚洲欧美| 久热这里只有精品99| 欧美国产精品一级二级三级| 宅男免费午夜| 中文字幕av电影在线播放| 免费av不卡在线播放| 亚洲四区av| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 男人操女人黄网站| av在线老鸭窝| 一级毛片电影观看| 黄色一级大片看看| 99热全是精品| 国产麻豆69| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| av卡一久久| 侵犯人妻中文字幕一二三四区| 日本色播在线视频| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 亚洲,欧美精品.| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看| 亚洲五月色婷婷综合| 哪个播放器可以免费观看大片| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 人妻一区二区av| 丰满少妇做爰视频| 日韩一本色道免费dvd| 香蕉精品网在线| 少妇的丰满在线观看| 18禁国产床啪视频网站| 人人妻人人添人人爽欧美一区卜|