曹慧+王靜
【摘 要】 運用葡萄酒行業(yè)個股的周收益率數(shù)據(jù),考察葡萄酒行業(yè)個股?茁系數(shù)的穩(wěn)定性。以單因素模型(SIM)為基礎(chǔ),運用一元線性回歸法估計?茁系數(shù)并運用SPSS軟件對回歸過程進行顯著性檢驗。通過對?茁系數(shù)時間序列的描述性統(tǒng)計分析及ADF檢驗得出:第一,從長期來看,自上市以來葡萄酒行業(yè)個股的?茁系數(shù)較為穩(wěn)定,長期投資者可以將?茁系數(shù)作為投資決策的依據(jù);第二,從短期來看,近5年葡萄酒行業(yè)個股的?茁系數(shù)不太穩(wěn)定且其波動趨勢也不盡相同,?茁系數(shù)對短期投資者而言參考價值不是特別大;第三,葡萄酒行業(yè)各個股票的?茁系數(shù)時間序列是平穩(wěn)的,這為投資者進行個股?茁系數(shù)的預測提供了可靠依據(jù)。
【關(guān)鍵詞】 ?茁系數(shù); 葡萄酒行業(yè); 穩(wěn)定性; ADF檢驗
中圖分類號:F832.48 ?文獻標識碼:A ?文章編號:1004-5937(2014)34-0102-06
?茁系數(shù)也稱為貝塔系數(shù)(Beta Coefficient),用以度量一種證券或一個投資證券組合相對總體市場的波動性,是一種風險指數(shù)。從20世紀70年代開始,國內(nèi)外許多學者對貝塔系數(shù)的穩(wěn)定性進行了研究。對于單只股票的貝塔系數(shù)是否穩(wěn)定,或者有哪些時變規(guī)律,眾多學者的研究表述不一。國外有學者認為,在一定條件下,?茁系數(shù)穩(wěn)定性提高,如Marshall E.Blume(1971)(1975),但國外大部分學者認為?茁系數(shù)呈現(xiàn)不穩(wěn)定性,如Fabozzi和Francis(1978),Robert D.Brooks等(1998)。國內(nèi)絕大多數(shù)研究者認為?茁系數(shù)呈現(xiàn)不穩(wěn)定:有些研究者認為無論是單只股票還是股票組合,貝塔系數(shù)都不具穩(wěn)定性,如沈藝峰、洪錫熙(1999);有些研究者則認為隨著上市時間的加長,股票貝塔系數(shù)越來越不穩(wěn)定,如靳云匯、李學(2000);還有些研究者認為從長期來講,大多數(shù)股票的貝塔系數(shù)不穩(wěn)定,其穩(wěn)定性在證券法實施以后變低了,而股票組合可以增加貝塔系數(shù)的穩(wěn)定性,如蘇衛(wèi)東、張世英(2002)。有些學者研究認為?茁系數(shù)呈現(xiàn)穩(wěn)定性,如高鴻禎、郭濟敏(1999);還有一些學者則認為?茁系數(shù)在短期內(nèi)呈現(xiàn)穩(wěn)定性,如趙景文(2005)。本文旨在對葡萄酒行業(yè)單只股票的?茁系數(shù)穩(wěn)定性進行研究分析。
一、?茁系數(shù)的計算依據(jù)
(一)模型的選取
資本資產(chǎn)定價模型(Capital Asset Pricing Model 簡稱CAPM)是由美國學者夏普(William Sharpe,1964)、林特勒(John Lintner,1965)和莫辛(Jan Mossin,1966)等人在投資組合理論的基礎(chǔ)上提出的,在投資學中占有很重要的地位,并在投資決策和公司理財中得到了廣泛運用。但在實證研究中,通常不用資本資產(chǎn)定價模型來估計證券的?茁值,而是用單因素模型。這是因為CAPM的假設(shè)條件太多,模型過于理想化,并且對市場的有效性有很高的要求,而我國證券市場尚不能滿足CAPM的假設(shè)條件。宋曉杰(2003)在《夏普單指數(shù)模型對我國股票市場的適用性分析》中,通過理論評估和事后檢驗,得出結(jié)論:單因素模型的應(yīng)用效果比較好。因此本文以單因素模型為基礎(chǔ)。
單因素模型為:Ri t=ai+?茁iRm ?t+ei t ? (1)
其中:Ri t表示股票i在時間t時的實際收益率;Rm t表示市場組合在時間t時的實際收益率;ai表示截距項;?茁i表示股票i貝塔系數(shù),它衡量的是系統(tǒng)性風險;ei t表示隨機誤差項,該隨機誤差項的期望值為0。
雖然從嚴格意義上講,資本資產(chǎn)定價模型中的?茁值與單因素模型中的?茁值是有區(qū)別的,前者相對于整個市場組合而言,后者相對于某個市場指數(shù)而言,但是在實際操作中,由于不能確切知道市場組合的構(gòu)成,所以一般用市場指數(shù)來代替,因此可以用單因素模型所得出的?茁值來代替資本資產(chǎn)定價模型中的?茁值。又因為不知道投資者的預測值,所以只能根據(jù)歷史數(shù)據(jù)對一定時期內(nèi)的?茁值進行估算,并把它當作CAPM中的?茁的預測值來使用。
(二)研究對象及數(shù)據(jù)來源
本文的研究對象為葡萄酒行業(yè)單只股票,分別是:中葡股份(600084)、張裕A(000865)、通葡股份(600365)和莫高股份(600543)。
在實證研究中,通常使用股票市場指數(shù)代替市場組合,又由于本文研究對象中的4只股票均為中國股市A股股票,有3只股票(中葡股份、通葡股份、莫高股份)屬于上海A股,1只股票(張裕A)屬于深圳A股,故選取A股指數(shù)作為市場組合。
本文所用的原始數(shù)據(jù)取自南京證券鑫易通綜合服務(wù)平臺。
(三)數(shù)據(jù)的截取區(qū)間
在計算?茁值的過程中,涉及到數(shù)據(jù)時間段的截取。其遵循的原則是該時間段所計算的?茁值應(yīng)該是最能反映現(xiàn)存風險的?茁值,在這段時間里,公司的杠桿和業(yè)務(wù)結(jié)構(gòu)應(yīng)該相對穩(wěn)定。因此,本文在計算?茁值時選擇一年(12個月或48周)為時間段,分別計算4只股票自上市以來到2012年各年度的?茁值。其有效年份的?茁個數(shù)分別為:中葡股份(600084)15個、張裕A(000865)12個、通葡股份(600365)12個和莫高股份(600543)9個。
(四)收益率計算頻率的選取及計算
理論上,計算頻率越短,計算的收益率結(jié)果越精確,也更能反映真實情況。目前,許多大型投資公司采用月數(shù)據(jù)來計算?茁值,也采用周數(shù)據(jù)。因此,本文將抽樣選取一只股票,分別采用周數(shù)據(jù)和月數(shù)據(jù)計算?茁值,結(jié)合回歸直線對數(shù)據(jù)的擬合優(yōu)度進行比較,選擇更合適的收益率計算頻率。
個股及市場組合的收益率計算公式:
本期收益率=(本期收盤價-上期收盤價)/上期收盤價 (2)
(五)?茁值的計算方法:回歸分析法
利用證券特征線,采用回歸分析法,擬合葡萄酒行業(yè)單只股票收益率與以A股指數(shù)為依據(jù)的市場組合收益率的回歸方程:
yi=ai+bix ? (3)
其中:yi為股票i月(或周)收益率;x為市場組合月(或周)收益率;ai為回歸方程截距;bi為回歸系數(shù),也是特征線的斜率,即單只股票的?茁值。
二、?茁系數(shù)的估算和檢驗
(一)收益率計算頻率的確定
以中葡股份為例,剔除1997年以前以及2006年、2007年和2008年的無效時間后,分別采用有效的周數(shù)據(jù)和月數(shù)據(jù)計算?茁值,比較回歸直線對數(shù)據(jù)的擬合優(yōu)度,擬合優(yōu)度的判定系數(shù)為R2(如表1)。
一般情況下,某一回歸直線對所觀測數(shù)據(jù)的擬合程度用判定系數(shù)R2來衡量。由表1可以看出,以周數(shù)據(jù)為依據(jù)的回歸直線對觀測數(shù)據(jù)的擬合程度,15年中有10年優(yōu)于以月數(shù)據(jù)為依據(jù)的回歸直線對觀測數(shù)據(jù)的擬合程度,因此,在接下來的?茁系數(shù)估算過程中,收益率的計算頻率定為“周”。
(二)葡萄酒行業(yè)單只股票?茁系數(shù)的估算結(jié)果及顯著性檢驗
利用葡萄酒行業(yè)單只股票自上市以來的有效周收益率和A股指數(shù)的周收益率,運用SPSS軟件進行線性回歸分析,并在0.05的顯著性水平下進行顯著性檢驗,得出葡萄酒行業(yè)單只股票自上市以來每年的?茁系數(shù)及顯著性檢驗的計量值(見表2)。
運用F統(tǒng)計量檢驗回歸方程的顯著性。F的觀測值對應(yīng)顯著性的概率P值(Sig.)<?琢(0.05)時,回歸方程高度顯著。由表2可知,葡萄酒行業(yè)單只股票的回歸方程中,高度顯著的回歸方程占比分別為:中葡股份86.7%、張裕A83.3%、通葡股份91.7%和莫高股份100%。運用t統(tǒng)計量檢驗回歸系數(shù)的顯著性。由表2可知,葡萄酒行業(yè)單只股票的回歸方程中,t的觀測值對應(yīng)顯著性概率P值(sig)<?琢(0.05),即回歸系數(shù)高度顯著的占比分別為:中葡股份86.7%、張裕A83.3%、通葡股份91.7%和莫高股份100%。運用判定系數(shù)R2檢驗回歸方程的擬合優(yōu)度。由表2可以看出回歸方程擬合優(yōu)度尚可接受。
三、?茁系數(shù)的穩(wěn)定性
(一)?茁系數(shù)的描述統(tǒng)計分析
通過SPSS對葡萄酒行業(yè)每只股票自上市以來每年的?茁系數(shù)進行描述統(tǒng)計分析。4只股票?茁系數(shù)的方差分別為中葡股份(600084)0.117、張裕A(000869)0.168、通葡股份(600365)0.070和莫高股份(600543)0.074,表明葡萄酒行業(yè)單只股票?茁系數(shù)穩(wěn)定性不是很顯著。相對而言,4只股票?茁系數(shù)的穩(wěn)定性由高到低依次是通葡股份、莫高股份、中葡股份和張裕A。4只股票?茁系數(shù)的均值分別為中葡股份0.786、張裕A0.756、通葡股份1.051和莫高股份0.981。從均值可以看出,莫高股份(600543)和通葡股份(600365)的?茁系數(shù)均值接近于1,表明莫高股份(600543)和通葡股份(600365)的風險收益率和風險接近于市場組合平均水平。而中葡股份(600084)和張裕A(000869)的?茁系數(shù)均值在0.75左右,表明中葡股份(600084)和張裕A(000869)的風險收益率偏小于市場組合平均風險收益率,也意味著中葡股份(600084)和張裕A(000869)的風險程度略小于整個市場投資組合的風險。
從長期來看,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定,這與蘇衛(wèi)東、張世英(2002)的觀點較為一致。葡萄酒行業(yè)中有3只股票的?茁系數(shù)較為穩(wěn)定,分別是中葡股份(600084)、通葡股份(600365)、莫高股份(600543)(如圖1)。中葡股份歷年?茁系數(shù)直方圖中,雖有三個高點0.4~0.6區(qū)間、0.8~1.0區(qū)間和1.2~1.4區(qū)間,但最高的高點仍是0.8~1.0區(qū)間。通葡股份(600365)和莫高股份(600543)?茁系數(shù)直方圖中都只有一個高點,分別是1.0~1.2區(qū)間和0.8~1.0區(qū)間。理論上?茁系數(shù)是趨于1的,因此可以看出這3只股票的?茁系數(shù)較為穩(wěn)定。相對而言,張裕(000869)?茁系數(shù)直方圖中有三個高點,且最高點在0.25~0.5區(qū)間,其?茁系數(shù)穩(wěn)定性不高。總的來說,長期葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定。
從短期來看,近5年葡萄酒行業(yè)單只股票的?茁系數(shù)不穩(wěn)定且其波動趨勢也不盡相同,這與趙景文(2005)的觀點截然相反。觀察葡萄酒行業(yè)個股?茁系數(shù)的時間序列圖(見圖2),近5年中葡股份(600084)2008年、2010年和2012年的?茁系數(shù)水平基本趨于一致,2009年達到最小值,2011年達到最大值;張裕A(000869)的?茁系數(shù)2008—2011年基本處于同一水平,在2012年大幅上揚。從圖2中可以更直觀的看出,中葡股份(600084)和張裕A(000869)?茁系數(shù)的變化方向截然相反。而通葡股份(600365)和莫高股份(600543)的?茁系數(shù)近5年變化趨勢大致相同,2008—2011年變化方向及幅度基本一致,2012年變化方向卻相反。總之,同行業(yè)中個股的?茁系數(shù)變化是不同的。
(二)?茁系數(shù)的時間序列分析
通過自上市以來中葡股份(600084)、張裕A(000869)、通葡股份(600365)和莫高股份(600543)的?茁系數(shù)(如表2),并根據(jù)圖2可判斷葡萄酒行業(yè)個股的?茁系數(shù)序列的變化形態(tài)以及隨時間的變化趨勢。
從圖2中可以看出,中葡股份(600084)的?茁系數(shù)最大值和最小值分別出現(xiàn)于2011年和2006年;張裕A(000869)的?茁系數(shù)最大值和最小值分別出現(xiàn)于2012年和2010年;通葡股份(600365)的?茁系數(shù)最大值和最小值分貝出現(xiàn)于2001年和2005年;莫高股份(600543)的?茁系數(shù)最大值和最小值分別出現(xiàn)于2012年和2010年。單娟、劉濤(2011)在《?茁系數(shù)的影響因素研究綜述》中指出,?茁系數(shù)差異的影響因素主要有三大類:宏觀經(jīng)濟因素(如經(jīng)濟周期、利率、通貨膨脹等)、公司的基本特征(如公司的規(guī)模、財務(wù)結(jié)構(gòu)等)和公司的行業(yè)類別及所歸屬的經(jīng)濟部門。葡萄酒行業(yè)4只股票?茁系數(shù)的最小值出現(xiàn)在2008年的前后兩年。究其原因,可能是2008年金融危機對股市的影響,葡萄酒行業(yè)個股對各類經(jīng)濟變量的反應(yīng)程度降低,其?茁系數(shù)也隨之減小。最大值的出現(xiàn),可能是由于公司本身規(guī)模和財務(wù)結(jié)構(gòu)的改善,提高了該公司對各類經(jīng)濟變量的反應(yīng)程度,從而?茁系數(shù)也隨之增大。正是由于各類因素對?茁系數(shù)的影響,?茁系數(shù)折疊時間序列圖中所體現(xiàn)的葡萄酒行業(yè)個股的?茁系數(shù)循環(huán)波動并沒有趨同,且其周期性也不太明顯,更多顯示波動的隨機性。所以,由散點圖可以粗略判斷葡萄酒行業(yè)個股?茁系數(shù)的時間序列是平穩(wěn)的。
考慮到對下一年?茁系數(shù)發(fā)展趨勢的預測,接下來需要對葡萄酒行業(yè)個股?茁系數(shù)的時間序列平穩(wěn)性進行ADF檢驗。
檢驗假設(shè):
零假設(shè)H0:d=0,即存在一單位根,則序列非平穩(wěn)。備擇假設(shè)H1:d<0,則序列平穩(wěn)。
檢驗式形式:
模型1:?駐Xt=?啄Xt-1+■λi?駐Xt-i+?著t
模型2:?駐Xt=?琢+?啄Xt-1+■λi?駐Xt-i+?著t
模型3:?駐Xt=?琢+?漬t+?啄Xt-1+■λi?駐Xt-i+?著t
其中?駐Xt表示序列Xt的一階差分,t表示時間,?著t為白噪聲過程,?琢、?漬、?啄和λ均為參數(shù)。模型1不包含常數(shù)項和趨勢項,模型2僅包含常數(shù)項,模型3包含常數(shù)項和趨勢項。實際檢驗時從模型3開始,然后模型2、模型1。何時檢驗拒絕零假設(shè),即原序列不存在單位根,為平穩(wěn)序列,何時檢驗停止;否則,就要繼續(xù)檢驗,直到檢驗完模型1為止。檢驗結(jié)果如表3。
從表3可以看出,中葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-3.618017小于10%顯著水平臨界值-3.342253,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;張裕A ?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-2.738410小于10%顯著水平臨界值-2.728985,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;通葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF= -4.249256小于5%顯著水平臨界值-3.933364,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;莫高股份?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-4.012580小于5%顯著水平臨界值-3.403313,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的。所以,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)時間序列是較平穩(wěn)的。這對?茁系數(shù)的預測有很重要的意義。
四、結(jié)束語
本文運用Excel、SPSS、EViews等統(tǒng)計軟件,根據(jù)葡萄酒行業(yè)單只股票自上市以來的周收益率,估算了個股的?茁系數(shù)并通過對?茁系數(shù)時間序列進行描述統(tǒng)計分析和ADF檢驗判斷其穩(wěn)定性,結(jié)果顯示:
1.從長期來看,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定。雖然有個別股票?茁系數(shù)穩(wěn)定性不是很高,但總的來說,長期葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定,因此長期投資者可以將?茁系數(shù)作為投資決策的依據(jù)。
2.從短期來看,近5年葡萄酒行業(yè)單只股票的?茁系數(shù)不太穩(wěn)定且其波動趨勢也不盡相同,因此?茁系數(shù)對短期投資者而言參考的價值不是特別大。研究者在接下來的研究中可以對短期葡萄酒行業(yè)單只股票的?茁系數(shù)不穩(wěn)定的影響因素作進一步分析。
3.經(jīng)過對葡萄酒行業(yè)各個股票的?茁系數(shù)時間序列的ADF檢驗,得知?茁系數(shù)時間序列是平穩(wěn)的,這為投資者進行個股?茁系數(shù)的預測以及研究者對?茁系數(shù)預測的研究都提供了可靠的依據(jù)。●
【參考文獻】
[1] Blume ?M ?E. ?On ?the assessment of risk[J]. The Journal of Finance,1971,26(1):1-10.
[2] Blume M E. Betas and their regression tendencies[J]. The Journal of Finance, 1975, 30(3):785-795.
[3] Fabozzi,F(xiàn).J.,F(xiàn)rancis,J.C. Beta as a random coefficient[J].Journal Financial and Quantitative Analysis,1978,13(l):101-116.
[4] Robert ?D.Brooks, Robert W. Faff, Mohamed Ariff. An investigation into the extent of Beta instability in the Singapore stock market[J]. Pacific-Basin Finance Journal,1998(6):87-101.
[5] 沈藝峰,洪錫熙.我國股票市場貝塔系數(shù)的穩(wěn)定性檢驗[J].廈門大學學報(哲學社會科學版),1999 (4): 62-68.
[6] 靳云匯,李學.中國股市?茁系數(shù)的實證研究[J].數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究,2000(1):18-23.
[7] 蘇衛(wèi)東,張世英.上海股市?茁系數(shù)的穩(wěn)定性檢驗[J].預測,2002,21(2):44-46.
[8] 高鴻楨,郭濟敏.上海股票市場?茁系數(shù)穩(wěn)定性的實證研究[J].中國經(jīng)濟問題,1999(2):29-33.
[9] 趙景文. 中國 A 股股票相鄰兩期?茁系數(shù)穩(wěn)定性的 Chow 檢驗[J].數(shù)理統(tǒng)計與管理,2005,24(6):107-112.
[10] 宋曉杰.夏普單指數(shù)模型對我國股票市場的適用性分析[J].吉林工程技術(shù)師范學院學報,2003(8):61-64.
[11] 單娟,劉濤.?茁系數(shù)的影響因素研究綜述[J].中國證券期貨,2011(6):157-158.
考慮到對下一年?茁系數(shù)發(fā)展趨勢的預測,接下來需要對葡萄酒行業(yè)個股?茁系數(shù)的時間序列平穩(wěn)性進行ADF檢驗。
檢驗假設(shè):
零假設(shè)H0:d=0,即存在一單位根,則序列非平穩(wěn)。備擇假設(shè)H1:d<0,則序列平穩(wěn)。
檢驗式形式:
模型1:?駐Xt=?啄Xt-1+■λi?駐Xt-i+?著t
模型2:?駐Xt=?琢+?啄Xt-1+■λi?駐Xt-i+?著t
模型3:?駐Xt=?琢+?漬t+?啄Xt-1+■λi?駐Xt-i+?著t
其中?駐Xt表示序列Xt的一階差分,t表示時間,?著t為白噪聲過程,?琢、?漬、?啄和λ均為參數(shù)。模型1不包含常數(shù)項和趨勢項,模型2僅包含常數(shù)項,模型3包含常數(shù)項和趨勢項。實際檢驗時從模型3開始,然后模型2、模型1。何時檢驗拒絕零假設(shè),即原序列不存在單位根,為平穩(wěn)序列,何時檢驗停止;否則,就要繼續(xù)檢驗,直到檢驗完模型1為止。檢驗結(jié)果如表3。
從表3可以看出,中葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-3.618017小于10%顯著水平臨界值-3.342253,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;張裕A ?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-2.738410小于10%顯著水平臨界值-2.728985,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;通葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF= -4.249256小于5%顯著水平臨界值-3.933364,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;莫高股份?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-4.012580小于5%顯著水平臨界值-3.403313,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的。所以,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)時間序列是較平穩(wěn)的。這對?茁系數(shù)的預測有很重要的意義。
四、結(jié)束語
本文運用Excel、SPSS、EViews等統(tǒng)計軟件,根據(jù)葡萄酒行業(yè)單只股票自上市以來的周收益率,估算了個股的?茁系數(shù)并通過對?茁系數(shù)時間序列進行描述統(tǒng)計分析和ADF檢驗判斷其穩(wěn)定性,結(jié)果顯示:
1.從長期來看,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定。雖然有個別股票?茁系數(shù)穩(wěn)定性不是很高,但總的來說,長期葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定,因此長期投資者可以將?茁系數(shù)作為投資決策的依據(jù)。
2.從短期來看,近5年葡萄酒行業(yè)單只股票的?茁系數(shù)不太穩(wěn)定且其波動趨勢也不盡相同,因此?茁系數(shù)對短期投資者而言參考的價值不是特別大。研究者在接下來的研究中可以對短期葡萄酒行業(yè)單只股票的?茁系數(shù)不穩(wěn)定的影響因素作進一步分析。
3.經(jīng)過對葡萄酒行業(yè)各個股票的?茁系數(shù)時間序列的ADF檢驗,得知?茁系數(shù)時間序列是平穩(wěn)的,這為投資者進行個股?茁系數(shù)的預測以及研究者對?茁系數(shù)預測的研究都提供了可靠的依據(jù)。●
【參考文獻】
[1] Blume ?M ?E. ?On ?the assessment of risk[J]. The Journal of Finance,1971,26(1):1-10.
[2] Blume M E. Betas and their regression tendencies[J]. The Journal of Finance, 1975, 30(3):785-795.
[3] Fabozzi,F(xiàn).J.,F(xiàn)rancis,J.C. Beta as a random coefficient[J].Journal Financial and Quantitative Analysis,1978,13(l):101-116.
[4] Robert ?D.Brooks, Robert W. Faff, Mohamed Ariff. An investigation into the extent of Beta instability in the Singapore stock market[J]. Pacific-Basin Finance Journal,1998(6):87-101.
[5] 沈藝峰,洪錫熙.我國股票市場貝塔系數(shù)的穩(wěn)定性檢驗[J].廈門大學學報(哲學社會科學版),1999 (4): 62-68.
[6] 靳云匯,李學.中國股市?茁系數(shù)的實證研究[J].數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究,2000(1):18-23.
[7] 蘇衛(wèi)東,張世英.上海股市?茁系數(shù)的穩(wěn)定性檢驗[J].預測,2002,21(2):44-46.
[8] 高鴻楨,郭濟敏.上海股票市場?茁系數(shù)穩(wěn)定性的實證研究[J].中國經(jīng)濟問題,1999(2):29-33.
[9] 趙景文. 中國 A 股股票相鄰兩期?茁系數(shù)穩(wěn)定性的 Chow 檢驗[J].數(shù)理統(tǒng)計與管理,2005,24(6):107-112.
[10] 宋曉杰.夏普單指數(shù)模型對我國股票市場的適用性分析[J].吉林工程技術(shù)師范學院學報,2003(8):61-64.
[11] 單娟,劉濤.?茁系數(shù)的影響因素研究綜述[J].中國證券期貨,2011(6):157-158.
考慮到對下一年?茁系數(shù)發(fā)展趨勢的預測,接下來需要對葡萄酒行業(yè)個股?茁系數(shù)的時間序列平穩(wěn)性進行ADF檢驗。
檢驗假設(shè):
零假設(shè)H0:d=0,即存在一單位根,則序列非平穩(wěn)。備擇假設(shè)H1:d<0,則序列平穩(wěn)。
檢驗式形式:
模型1:?駐Xt=?啄Xt-1+■λi?駐Xt-i+?著t
模型2:?駐Xt=?琢+?啄Xt-1+■λi?駐Xt-i+?著t
模型3:?駐Xt=?琢+?漬t+?啄Xt-1+■λi?駐Xt-i+?著t
其中?駐Xt表示序列Xt的一階差分,t表示時間,?著t為白噪聲過程,?琢、?漬、?啄和λ均為參數(shù)。模型1不包含常數(shù)項和趨勢項,模型2僅包含常數(shù)項,模型3包含常數(shù)項和趨勢項。實際檢驗時從模型3開始,然后模型2、模型1。何時檢驗拒絕零假設(shè),即原序列不存在單位根,為平穩(wěn)序列,何時檢驗停止;否則,就要繼續(xù)檢驗,直到檢驗完模型1為止。檢驗結(jié)果如表3。
從表3可以看出,中葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-3.618017小于10%顯著水平臨界值-3.342253,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;張裕A ?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-2.738410小于10%顯著水平臨界值-2.728985,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;通葡股份?茁系數(shù)序列與模型3檢驗式對應(yīng)的單位根統(tǒng)計量ADF= -4.249256小于5%顯著水平臨界值-3.933364,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的;莫高股份?茁系數(shù)序列與模型2檢驗式對應(yīng)的單位根統(tǒng)計量ADF=-4.012580小于5%顯著水平臨界值-3.403313,因此拒絕原假設(shè),即沒有單位根,該序列式是平穩(wěn)的。所以,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)時間序列是較平穩(wěn)的。這對?茁系數(shù)的預測有很重要的意義。
四、結(jié)束語
本文運用Excel、SPSS、EViews等統(tǒng)計軟件,根據(jù)葡萄酒行業(yè)單只股票自上市以來的周收益率,估算了個股的?茁系數(shù)并通過對?茁系數(shù)時間序列進行描述統(tǒng)計分析和ADF檢驗判斷其穩(wěn)定性,結(jié)果顯示:
1.從長期來看,自上市以來葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定。雖然有個別股票?茁系數(shù)穩(wěn)定性不是很高,但總的來說,長期葡萄酒行業(yè)單只股票的?茁系數(shù)較為穩(wěn)定,因此長期投資者可以將?茁系數(shù)作為投資決策的依據(jù)。
2.從短期來看,近5年葡萄酒行業(yè)單只股票的?茁系數(shù)不太穩(wěn)定且其波動趨勢也不盡相同,因此?茁系數(shù)對短期投資者而言參考的價值不是特別大。研究者在接下來的研究中可以對短期葡萄酒行業(yè)單只股票的?茁系數(shù)不穩(wěn)定的影響因素作進一步分析。
3.經(jīng)過對葡萄酒行業(yè)各個股票的?茁系數(shù)時間序列的ADF檢驗,得知?茁系數(shù)時間序列是平穩(wěn)的,這為投資者進行個股?茁系數(shù)的預測以及研究者對?茁系數(shù)預測的研究都提供了可靠的依據(jù)?!?/p>
【參考文獻】
[1] Blume ?M ?E. ?On ?the assessment of risk[J]. The Journal of Finance,1971,26(1):1-10.
[2] Blume M E. Betas and their regression tendencies[J]. The Journal of Finance, 1975, 30(3):785-795.
[3] Fabozzi,F(xiàn).J.,F(xiàn)rancis,J.C. Beta as a random coefficient[J].Journal Financial and Quantitative Analysis,1978,13(l):101-116.
[4] Robert ?D.Brooks, Robert W. Faff, Mohamed Ariff. An investigation into the extent of Beta instability in the Singapore stock market[J]. Pacific-Basin Finance Journal,1998(6):87-101.
[5] 沈藝峰,洪錫熙.我國股票市場貝塔系數(shù)的穩(wěn)定性檢驗[J].廈門大學學報(哲學社會科學版),1999 (4): 62-68.
[6] 靳云匯,李學.中國股市?茁系數(shù)的實證研究[J].數(shù)量經(jīng)濟技術(shù)經(jīng)濟研究,2000(1):18-23.
[7] 蘇衛(wèi)東,張世英.上海股市?茁系數(shù)的穩(wěn)定性檢驗[J].預測,2002,21(2):44-46.
[8] 高鴻楨,郭濟敏.上海股票市場?茁系數(shù)穩(wěn)定性的實證研究[J].中國經(jīng)濟問題,1999(2):29-33.
[9] 趙景文. 中國 A 股股票相鄰兩期?茁系數(shù)穩(wěn)定性的 Chow 檢驗[J].數(shù)理統(tǒng)計與管理,2005,24(6):107-112.
[10] 宋曉杰.夏普單指數(shù)模型對我國股票市場的適用性分析[J].吉林工程技術(shù)師范學院學報,2003(8):61-64.
[11] 單娟,劉濤.?茁系數(shù)的影響因素研究綜述[J].中國證券期貨,2011(6):157-158.