• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving type-2 fuzzy relation equations via semi-tensor product of matrices

    2014-12-07 08:00:27ongyiYANZengqiangCHENZhongxinLIU
    Control Theory and Technology 2014年2期
    關(guān)鍵詞:裂紋測(cè)量標(biāo)準(zhǔn)

    ongyi YAN,Zengqiang CHEN,Zhongxin LIU

    1.College of Computer and Control Engineering,Nankai University,Tianjin 300071,China;

    2.Tianjin Key Laboratory of Intelligent Robotics,Nankai University,Tianjin 300071,China

    Solving type-2 fuzzy relation equations via semi-tensor product of matrices

    1.College of Computer and Control Engineering,Nankai University,Tianjin 300071,China;

    2.Tianjin Key Laboratory of Intelligent Robotics,Nankai University,Tianjin 300071,China

    The problem of solving type-2 fuzzy relation equations is investigated.In order to apply semi-tensor product of matrices,a new matrix analysis method and tool,to solve type-2 fuzzy relation equations,a type-2 fuzzy relation is decomposed into two parts as principal sub-matrices and secondary sub-matrices;anr-ary symmetrical-valued type-2 fuzzy relation model and its corresponding symmetrical-valued type-2 fuzzy relation equation model are established.Then,two algorithms are developed for solving type-2 fuzzy relation equations,one of which gives a theoretical description for general type-2 fuzzy relation equations;the other one can find all the solutions to the symmetrical-valued ones.The results can improve designing type-2 fuzzy controllers,because it provides knowledge to search the optimal solutions or to find the reason if there is no solution.Finally some numerical examples verify the correctness of the results/algorithms.

    Fuzzy control system;Type-2 fuzzy logic system;Type-2 fuzzy relation;Type-2 fuzzy relation equation;Semitensor product of matrices

    1 Introduction

    The theory of semi-tensor product of matrices(STP),which was proposed by Cheng[1,2],is a powerful matrix analysis tool.STP is well established and is gaining more and more attentions.Many different areas to which STP has been successfully applied include:Boolean networks(modeling,analysis,and control)[3-5],Boolean algebra and Boolean calculus[6],nonlinear systems(analysis and control)[7,8],multi-agent systems[9],fuzzy control systems[10,11],multi-and mixed-vaulted networks[12,13],graphic theory[9],and finite automata[14],etc.

    One of the advantages of STP is that STP can represent the dynamics of networks in a discrete mode.Thus,matrices can be used to analyze and control the dynamicsof networks or systems.Take Boolean control networks for example,STP has been established as a basic analytic tool for modeling,analyzing,and controlling[5].STP's advantages also lie in abilities to constructively prove descriptive propositions.The proof itself usually provides a specific algorithm to solve the corresponding problems[9];the algorithm is easily implemented by computers.

    In the area of fuzzy logic,STP can convert logic equations to algebraic ones,thus the problem of solving logic equations is converted to solve algebraic equations.Since we have well-established methods to solve the latter,using STP we can find all the solutions to logic equations[15].However,until STP was proposed,most existing algorithms only can get some particular solutions,such as,the minimum or maximum solution[16],or only provide a theoretical description for the solutions,which is hard or unable to be carried out[17].Moreover,using STP,general logic operators(functions)can be expressed in the form of matrices,which can greatly simplify the proof of some logic propositions and can further extend logic operators to the case of multi-or mixed-valued logic.This provides a foundation for analyzing and designing a fuzzy logic system,and provides a chance for developing numerical algorithms for fuzzy logic control systems[18].

    In the field of type-2 fuzzy sets and systems,the problem of solving type-2 fuzzy relation equations(FREs)is one of the most important issues.Type-2 fuzzy sets(T2 FSs)are extensions oftype-1 and of interval valued fuzzy sets.Such sets are fuzzy sets whose membership grades themselves are type-1 fuzzy sets;they are especially useful when the membership functions of type-1 fuzzy sets are hard to determine.For example,type-1 fuzzy sets are helpless in modeling linguistic uncertainties.Type-2 fuzzy sets and fuzzy logic systems have been increasingly used in various areas[19-21].

    A type-2 fuzzy relation(T2 FR),which is essentially a type-2 fuzzy set,is one way to increase the fuzziness of a relation,and,according to Hisdal,'increased fuzziness in a description means increased ability to handle inexact information in a logically correct manner[22]'.As the role of type-1 fuzzy relation equations in the theory of type-1 fuzzy sets and fuzzy logic systems,type-2 fuzzy relation equations play a key role in the theory of type-2 ones,and have found a wide variety of practical applications,such as,the design and optimization of type-2 fuzzy controllers,type-2 fuzzy inference,image compression,medical diagnosis[23-25],etc.Therefore,solving type-2 fuzzy relation equations is of both theoretical and practical significance.

    Authors of this paper have proposed an algorithm to solve a simple kind of type-2 fuzzy relation equations,singleton type-2 fuzzy relation equations[26].However,to date,there have been no results available on solving general T2 FREs,to the best of our knowledge.In this paper,we investigate the problem by STP based on the Cheng's approach to T1 FREs.First,we decompose a type-2 fuzzy relation into two parts as principal sub-matrix and secondary sub-matrix.Then,the concept of principal sub-equation of a type-2 fuzzy relation equation,and a symmetrical-valued type-2 fuzzy relation equation model are introduced.Based on this,two algorithms are developed to solve type-2 fuzzy relation equations.One of which is for general ones,the other one is for the symmetrical-valued ones.

    Throughout this paper,we focus only on some finite universes of discourse.Particularly,we setU=Let F(UXV)and?F(UXV)denote the sets of type-1 and type-2 fuzzy set on the product spaceUXV.

    2 Preliminaries and problem formulation

    2.1 Type-2 FRs and their compositions

    2.1.1From type-1 fuzzy relations to type-2 ones

    A type-1 FR inUXVis a type-1 fuzzy subset ofUXVand a type-2 FR inUXVis a type-2 fuzzy subset ofUXV.Type-1 and type-2 fuzzy relations are usually expressed in matrix form as

    and

    where μR(ui,vj)are crisp numbers in[0,1],and μ?R(ui,vj)are fuzzy numbers(fuzzy sets)in[0,1].

    As the extension form type-1 fuzzy sets to type-2 ones,we can obtain a type-2 fuzzy relation by adding additional uncertainty information to a type-1 one.The following example demonstrates the extension.

    Example 1Consider the type-1 FRR∈F(XXY):'xis close toy',whereX={x1,x2,x3}andY={y1,y2}are set asX={5,11,17},Y={6,16}and

    Consider another type-1 FRS∈F(YXZ):'yis much smaller thanz',whereZ={z1,z2,z3}={17,20,30},and

    Adding some additional uncertainties to these two type-1 FRs,we may obtain the following membership grades(For saving space,we sometimes represent a type-2 fuzzy relation in the following form,i.e.,the solidus(/)are replaced by built-up fractions):

    and

    Both of them are standard type-2 fuzzy relations.

    2.1.2Composition of type-2 fuzzy relations

    Definition 1[27]IfRandS(orandare two T1(or T2)FRs onUXVandVXW,respectively,the membership of any(u,w),u∈U,w∈W,is non-zero iff there is at least onev∈Vso that μR(u,v) ≠ 0(orand(orin which 1/0 denotes the concept of zero membership grades in the case of type-2 fuzzy sets.An element having a zero membership in a type-2 set means it has a secondary membership equal to 1 corresponding to the primary membership of 0,and all other secondary memberships equal to 0.

    For the composition of T1 FRs,the definition is equivalent to the following sup-star composition:

    and,for that of T2 FRs,the condition is equivalent to the following 'extended' version of the sup-star composition.

    in which ∨ denotes the maximum s-norm and★denotes a t-norm.In(6),if more than one computation ofuandwgenerates the same pointthen the one with the largest membership grade is kept in the union.We do the same things for(7).In this paper,we set★as minimum t-norm,denoted as∧,and assume that the composition of type-1(or type-2)fuzzy relations are defined as(4)(or(5)-(7)).The following Example 2 shows the compositions.

    Example 2Consider the fuzzy relations in Example 1.

    It is known that the expression'xis close toyandyis much smaller thanz'indicates the compositionR?S(or).

    For the type-1 case,using equation(4),we have

    wherei=1,2,3 andj=1,2,3.We then obtain

    For the type-2 case,using equation(5),we have

    圖10為從位移場(chǎng)計(jì)算出的I型裂紋緊湊拉伸試樣4的J積分隨時(shí)間的演化數(shù)據(jù)關(guān)系,由圖可見(jiàn)J積分在初始加載時(shí)緩慢增加,約20s后開(kāi)始快速增大,88s時(shí)達(dá)到臨界載荷23kN,此時(shí)J積分約293.4kJ/m2,記為JiDic,即為光學(xué)方法測(cè)量得到的實(shí)際起裂斷裂韌度,低于標(biāo)準(zhǔn)GB/T 21143的計(jì)算值。

    wherei=1,2,3 andj=1,2,3.Using equations(10),(2),(3),(6)and(7),we obtain

    2.2 STP method of solving type-1 FREs

    2.2.1Semi-tensor product of matrices

    Definition 2[2]ForM∈MmXnandN∈MpXq,their STP,denoted byM■N,is defined as follows:

    wheresis the least common multiple ofnandp,and?is the Kronecker product.

    Remark 1The following are some basis properties of STP,which will be used in the sequel.

    1)LetA,B∈MmXn,andC∈MpXq.Then,

    2)LetA∈MmXn,B∈MpXq,andC∈MrXs.Then,

    2.2.2Algebraic expression of logical operators

    The following notations will be used in this paper.

    Whenk=2,D2:={0,1}is Boolean range;k=∞,is a fuzzy range.

    4)Letsayx=i/(k-1),we identifywith.Then,is the vector form ofx.

    5)A matrixL∈MmXnis called a logic matrix if the columns ofL,which is denoted by Col(L),are of the form ofThat is Col(L)? Δn.Let LnXrdenote the set ofnXrlogic matrices.

    6)Ifby definition,it can be expressed asFor compactness,it is briefly denoted asL=δn[i1i2...ir].

    2)Letfbe anr-aryk-valued logic operator(or function),then there is a unique logic matrixMf∈LkXkr,such that

    which is called the algebraic form off,andMfis called the structure matrix off.

    How to calculateMfand how to convert the algebraic form back to its logical form,please refer to[5].

    2.2.3Using STP to solve type-1 FREs

    This subsection summarizes an STP method of solving type-1 FREs proposed by Cheng[15],which is the basis of our proposed algorithms of solving type-2 FREs.Consider the following T1 FRE

    whereand'?'is defined as(4).

    Equation(16)can be converted into canonical linear algebraic equations

    whereXiandBiare theith andith columns ofXandB,respectively.

    Collect different values of the elements inAandB,and use them to construct a set

    Add 1 and(or 0)toSif they are(or it is)not inS,the result is an ordered set as

    Letx∈ [0,1],define mappings π?:[0,1] → Ξ and π?:[0,1]→ Ξ as[15]

    Theorem 2[15]is a solution to(16),iffandare solutions to(16).

    Theorem 2 gives a complete picture for the set of solutions.The following proposition ensures the existence of the largest solution in the set of solutions.

    Proposition 1[15] If equation(17)has a solution in Ξn,then it has a largest one in Ξn.

    To find the solutions to(16),we only need to solve equations in(17).That is,it is sufficient to develop a method to solve each equation in(17),which is simply denoted by

    wherex∈Rnandb∈Rmstand forXiandBiin(17),respectively.

    Consider thejth equation in(20),which is

    wherexiandbjare theith andjth elements ofxandb,respectively,1≤i≤n,1≤j≤m.

    Using the technique converting a logic expression into an algebraic expression,the left hand of(21)can be transformed in vector form as

    whereris described in the above Ξ,all the matrix products are the STP,is omitted for compactness,and

    Then,equation(21)becomes

    Multiplying both sides ofmequations of(23),equation(20)can be expressed as

    where,andKhatri-Rao Product of matrices[28]).Precisely,

    SinceLis a logic matrix,andb∈Δrm,x∈Δrn,equation(24)has solutions if and only if

    Now,set

    we then obtain the solution set of(24)as

    Finally,we convertxback to(x1,...,xn)∈Ξn,(x1,...,xn)Tis just the solution toequation(20).

    2.3 Problem formulation

    In practice,two sorts of T2 FREs are considered.One is commonly used in designing fuzzy controllers(the following Model 1);the other one is used for a problem similar to diagnosing diseases by symptoms(the following Model 2).

    Model 1Letandbe two known type-2 fuzzy relations,we are searching a T2 FRsuch that

    Model 2Letandbe two known type-2 fuzzy relations,we are searching a T2 FRsuch that

    Recall that the composition'?'is very similar to the usual product of matrices,making a transpose on both sides of(27),we then obtain

    whose form is the same as equation(26).

    The purpose of this paper is to solve type-2 FRE(26)with the help of the STP method which can find all the solutions to type-1 FREs(described in Subsection 2.2.3).

    3 Main results

    In this section,we investigate the problem of solving type-2 FREs,and present the main results of this paper.First,we propose the concept of symmetrical-valued type-2 fuzzy relation and explore some of its properties,which can simplify the calculation of composition of type-2 fuzzy relations and make solving type-2 FREs easier.

    3.1 Symmetrical-valued T2 FRs and their properties

    Definition 3The following discussed type-1 fuzzy sets are defined in a finite universe of discourse.

    1)In a type-1 fuzzy set,the element having membership grade equal to 1 is called a principal element of the fuzzy set.If all the membership grades are not equal to 1,we uniformly scale the membership grades such that the largest one equal to 1.That is,the principal element is the element whose membership grade is largest.Such scaling makes the solving algorithm of type-2 fuzzy relation equations proposed in Section 4 more understandable and easier to calculate.This paper only considers finite type-1 fuzzy sets having one principal element.

    2)A symmetrical-valued type-1 fuzzy set is a type-1 fuzzy set whose elements are symmetrically distributed on both sides of the principal element from small to large and followed by a difference of a constant(for example,0.1).If a type-1 fuzzy set has 0(or 1)as its element,it may also be considered as a symmetrical one,since we can think that the membership grades of the elements on the left(or right)of 0(or 1)are zero.

    3)A symmetrical-valued type-2 fuzzy relation is a type-2 fuzzy relation in whose matrix form all entries are symmetrical-valued type-1 fuzzy sets.If all the numbers of elements of these symmetrical-valued type-1 fuzzy sets are less than or equal tor(ris a positive integer),the symmetrical-valued type-2 fuzzy relation is called anr-ary symmetrical-valued type-2 fuzzy relation.

    The type-2 fuzzy relations(2)and(3)in Subsection 2.1 are both 3-ary symmetrical-valued type-2 fuzzy relations.

    Next,we define a partial order'?'on?F(UXV).

    In order to facilitate calculating the composition of type-2 fuzzy relations,we have the following results.

    Theorem 3Let}andB={b1,b2,...,bn}be two sets of real number in[0,1].Define

    then

    where|A|stands for the number of elements ofA.

    ProofProofs of(29)and(30)are very similar.We just give the proof of(29).The total number of elements ofAandBism+n.The smallest element inA∪Bwill be excluded during the process of pair-wise comparison,thus we have

    where'='holds ifaiandbj(i=1,2,...,m,j=1,2,...,n)are of derangement.For example,aiandbjare arranged as

    Next,we prove the left hand of(29).Without loss of generality,we assume thatm≤n.For eachai∈A(i=1,2,...,m),we have

    where obviously '=' holds only ifai≥bj(j=1,2,...,n),which indicates that

    Therefore,we have

    where'='holds ifai≥bj(j=1,2,...,n)for anyai∈A.The proof is completed.

    Using mathematical induction,Theorem 3 can be easily extended to the case of multiple sets.

    Corollary 1LetAi={ai1,ai2,...,aim}(i=1,2,...,n)be real number sets in[0,1].Define

    then

    Proposition 2Letxandybe two real numbers in[0,1],then

    ProofThe proof can be done by a straightforward computation.

    Proposition 3For symmetrical-valued type-1 fuzzy sets

    1)Ifa1≤b1,then the entryf1/a1will appear inand will disappear in

    2)Ifbn≥am,then the entryfn/bnwill appear inand will disappear in

    ProofWe only prove the first conclusion,the other one can be got by a similar way.

    SinceBis a symmetrical-valued type-1 fuzzy set,we have

    Becausea1≤b1,it is evident that

    based on which,we have

    According to Proposition 2,we know that

    Thus,f1/a1remains unchanged in the pair-wise comparisons,that isf1/a1will appear in

    On the other hand,since,then

    which indicatesA■Bdoes not containa1.Therefore,the conclusion follows.

    The following Proposition 4 is an immediate consequence of Proposition 3.

    Proposition 4For symmetrical-valued type-1 fuzzy sets

    Ifam≤b1,then

    Theorem 4LetAandBbe two symmetrical-valued type-1 fuzzy sets as described in(31).The principal element of(or)is determined only by the principal elements ofAandB.

    ProofThe conclusion can also be proved by α-cut decomposition theorem.Here,we provide an easier way to prove it,which is helpful for understanding the algorithm to solve type-2 FREs proposed in Subsection 3.2.

    Obviously,among the pair-wise comparisons,the membership grade 1 only occurs at(or).If(or)is unique in(orwe are done.Otherwise,saysincethe membership grade of(oris still equal to 1.The conclusion is proved.

    Remark 2Theorem 4 provides a picture how the principal elements of the intersection and union of type-2 fuzzy sets are produced,and can help us easily determine the principal elements of the intersection and union.

    3.2 Solving type-2 fuzzy relation equations

    In this subsection,we first decompose a type-2 FR into two parts as principal sub-matrix and secondary sub-matrix,where the principal sub-matrix is a type-1 FR.Then,a principal sub-equation model is established for introducing the STP method to solve type-2 FREs.

    3.2.1Decomposition of type-2 fuzzy relations

    Definition 51)A principal sub-matrix of the type-2 fuzzy relation(1),denoted asis a fuzzy matrix(type-1 fuzzy relation)whose elements are the principal elements of the entries of(1)with the original order.See Example 6 for a demonstration.

    2)A secondary sub-matrix of the type-2 fuzzy relation(1),denoted as,is the remaining part that the principal elements and their membership grades of the entries of(1)are removed.Example 6 gives a demonstration.

    3)A principal sub-equation of the type-2 fuzzy relation equation(26)is a type-1 fuzzy relation equation which is constituted by the principal sub-matrices of the corresponding parts in(26),that isSee equations(44)and(51)for an example.

    Moreover,the membership grades(or elements)of the entries of a type-2 FR,X,are generally called the membership grades(or elements)ofX.

    Example 3Consider the type-2 fuzzy relationsandin Example 1.Their principal and secondary submatrices are as follows:

    It is obvious that the solution to the type-2 fuzzy relation equation(26),is completely determined by its principal sub-matrixand secondary sub-matrix

    3.2.2Solution of type-2 fuzzy relation equations

    Consider the general type-2 fuzzy relation equation(26),

    in which

    whereaij,xijandbijare all type-1 fuzzy sets,i.e.,

    We have known that to solve equation(26)we only have to solve

    That is,we only need to consider the following equations,which are expansions of equation(35),

    Algorithm 1To find the solutions to(36),we can take the following steps.

    Step 1Expand the left hand of(36)using equation(5).The resulting expansion,equation(37),is a logical expression of the elements,and their membership grades,which are connected by the logical operatorsandwhere

    where

    According to Theorem 3,there arementries in(37),wheremsatisfies

    in whichpk=min{rik,skj},i=1,2,...,n;j=1,2,...,s.

    Step 2Collect atij-permutation of the entries in(37),and set other entries-membership grades to zero.(Note thattijis described in(34)and should be less thanm,otherwise,equation(26)has no solution).Establish equations using the entries of the chosen permutation and equation(34),that is,make the entries with the same position in the permutation and equation(34)equal,respectively.See equations(48)and(55)of Example 4 in Section 4 for an example.Here,for statement ease,we assume that the resulting equations are

    Step 3According to(15)or(24),equations(39)and(40)can be converted into their algebraic forms:

    where

    Step 4Solve the equations(41)and(42)by the STP method which is described in Subsection 2.2.3.The obtained solutions is a solution set of equation(36).

    Step 5Apply steps 1-4 to each equation in(36),their solution sets can be found.The intersection of these solution sets is just a solution set of(35).

    Remark 31)Choosing different permutations in Step 2 will produce different solution sets for equation(35).

    2)Sincemin(38)may be very large,the computation is heavier.This will exert tremendous burden on the computer memory when calculated by computers.In practical applications,to reduce the burden,we propose,according to Theorem 4,the following algorithm to solve the symmetrical-valued type-2 FREs.

    3)The method can find out all the solutions to T2 FREs theoretically,however,its computation complexity may be high,especially when a T2 FRE consists of a large number of elements.That is why we further introduce the following symmetrical-valued T2 FREs,which is a simpler kind of T2 FRE but can meet most requirements of some practical applications.

    3.3 Solving symmetrical-valued type-2 FREs

    Algorithm 2Assume that type-2 fuzzy relation equation(35)is a symmetrical-valued one.To find all the solutions,we can take the following steps.Example 5 in Section 4 is a demonstration.

    Step 1Establish the principal sub-equation of(35),and use the STP method solving type-1 FREs to find its solutions.These solutions are the elements of the principal sub-matrices of?Xj.

    Step 2Since equation(35)is a symmetrical-valued one,the elements(not the membership grades)of the secondary sub-matrix of?Xjcan be determined according to the solutions obtained in Step 1.

    Step 3Establish equations using the membership grades with the same position in the left-and right-hand sides of the expansion of(36),that is,make them equal respectively.Then,convert the equations into their algebraic forms,their solutions,the membership grades of the secondary sub-matrix of?Xj,can also be found by the STP method.

    Step 4Apply steps 1-3 to each equation in(36),we can find their solution sets.The intersection of these solution sets is just the solution set of(35).

    Remark 4The essence of Algorithms 1 and 2 is that T2 FREs are first decomposed into T1 FREs by collecting every permutation of the entries of equation(36),all the solutions to these T1 FREs can be obtained by the Cheng's method in correspondingk-valued logic range.

    4 Illustrative examples

    This section gives two examples to demonstrate the proposed method for solving type-2 fuzzy relation equations.The first example is a simple one constructed from Example 2 by assuming thatis unknown,which is used to show the solving procedure.The second one is a symmetrical-valued type-2 fuzzy relation equation,which is for showing the structure of solutions to a type-2 fuzzy relation equation.

    Example 4Consider the following type-2 fuzzy relation equation:

    where

    First,we establish the principal sub-equation of(43)as

    where

    Using the STP method of solving type-1 FREs,we can obtain the unique solution:

    which is the principal sub-matrix of?X.

    Since equation(43)is a symmetrical-valued type-2 one,other elements of?Xcan be determined as

    Next,we will look for the membership grades of?X,i.e.,thein(45).

    Consider the canonical linear algebraic equations of(43):

    The first equation in(46)is

    Expanding equation(47)by(5),Propositions 1-3 will make calculations much easier,we have

    From(48),we can obtain the following equations:

    Solving(49),then we have

    Similarly,we can obtain the solutions to the second and third equations in(45),which are

    Therefore,the solution set to equation(43)is

    where0.5≤α≤1,0≤β≤0.6,0.8≤γ≤1,0≤η≤0.5.Comparing(50)with(3),we observe thatin(3)belongs to the solution set(50).

    Example 5Consider the following symmetricalvalued type-2 fuzzy relation equation:

    where the first and second columns ofare

    The third and fourth columns are

    and

    Equation(51)is a 3-ary symmetrical-valued type-2 fuzzy relation equation.We use the algorithm proposed in sub-section 3.3 to solve it.

    Step 1We establish the principal sub-equation of(51)as

    where

    Using the STP method,we can obtain each column of the solutions to(52).The first column is

    The second column is

    The third column is

    We find totally 23X19X36=15732 solutions in the range of 9-valued logic for the principal sub-equation(52),in which the largest one is

    a minimum one is

    and an ordinary one is

    Step 2Since equation(51)is a symmetrical-valued one,for each solution to(52),we can determine the elements of the secondary sub-matrix of(51).Take the largest one,for example,can be partially determined as

    Step 3Establish equations by making the membership grades equal,which have the same position in the expansion of(51)where?Xis replaced by(53).To do this,we consider the canonical linear algebraic equations of(51):

    The first equation in(54)can be expanded by(5)as follows:

    By(55),we have the following equations

    Solving(56),we obtain

    Remark 51)It is worthwhile to note that equation(55)may have no solutions.For instance,ifb21inin(51)is 0.8/0.5+1/0.6+0.7/0.7,there is nosatisfying(55).

    2)We may have to resort to the STP method solving type-1 FREs to solve(55),when it is too complex to directly find the solution.

    Similarly,we can obtain other membership grades ofby solving the second and third equations in(54),which are

    and

    Now,for the largest principal solution,that is,the solution to the principal sub-equation,we find all the solutions for equation(51).All the other solutions can be obtained in a similar way.

    Finally,we summarize the solutions to(51)as follows.There are totally 15732 principal solutions,each of them determines some corresponding secondary submatrices of the solutions.The following are some examples,the largest solution is

    a minimum one is and an ordinary one is

    Remark 6Finding all the solutions to a type-2 fuzzy relation equation is useful for designing a type-2 fuzzy controller,because it provides knowledge to search the optimal solutions or to find the reason if there is no solution.

    5 Conclusions

    The STP method,which can find all the solutions to the type-1 FREs,is introduced to solve type-2 FREs.We first propose anr-ary symmetrical-valued type-2 fuzzy relation mode according to how a type-1 fuzzy relation is extended to a type-2 one.To facilitate the calculation of the composition of type-2 fuzzy sets,some properties of ther-ary symmetrical-valued type-2 fuzzy relation are revealed.We then put forward the concept of symmetrical-valued type-2 fuzzy relation equation.Based on this,two algorithms are developed for solving type-2 fuzzy relation equations,one may be helpful for analyzing the solutions to general type-2 FREs,the other one can programmatically find all the solutions to the symmetrical-valued type-2 FREs.The approach proposed in this paper can be helpful for designing and optimizing type-2 fuzzy controllers.

    [1]D.Cheng.Semi-tensor product of matrices and its application to Morgen-s problem.Science in China Series F:Information Sciences,2001,44(3):195-212.

    [2]D.Cheng,H.Qi,Y.Zhao.An Introduction to Semi-tensor Product of Matrices and Its Applications.Singapore:World Scientific Publishing Co.Pte.Ltd.,2012.

    [3] H.Li,Y.Wang.On reachability and controllability of switched Boolean control networks.Automatica,2012,48(11):2917-2922.

    [4]D.Cheng.Disturbance decoupling of boolean control networks.IEEE Transactions on Automatic Control,2011,56(1):2-10.

    [5]D.Cheng,H.Qi,Y.Zhao.Analysis and control of Boolean networks:a semi-tensor product approach.Acta Automatica Sinica,2011,37(5):529-540.

    [6]H.Li,Y.Wang.Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method.Automatica,2012,48(4):688-693.

    [7]Z.Li,Y.Qiao,H.Qi,et al.Stability of switched polynomial systems.Journal of Systems Science and Complexity,2008,21(3):362-377.

    [8]D.Cheng,H.Qi.Global stability and stabilization of polynomial systems.Proceedings of the 46th IEEE Conference on Decision and Control.New Orleans:IEEE,2007:1746-1751.

    [9]Y.Wang,C.Zhang,Z.Liu.A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems.Automatica,2012,48(7):1227-1236.

    [10]A.Ge,Y.Wang,A.Wei,et al.Control design for multi-variable fuzzy systems with application to parallel hybrid electric vehicles.IET Control Theory and Applications,2013,30(8):998-1004.

    [11]H.Li,Y.Wang.A matrix approach to latticized linear programming with fuzzy-relation inequality constraints.IEEE Transactions on Fuzzy Systems,2013,21(4):781-788.

    [12]F.Li,J.Sun.Stability and stabilization of multivalued logical networks.Nonlinear Analysis:Real World Applications,2011,12(6):3701-3712.

    [13]Z.Liu,Y.Wang,H.Li.Disturbance decoupling of multi-valued logical networks.Proceedings of the 30th Chinese Control Conference.Yantai:IEEE,2011:93-96.

    [14]X.Xu,Y.Hong.Matrix expression and reachability analysis of finite automata.Journal of Control Theory and Applications,2012,10(2):210-215.

    [15]D.Cheng,J.Feng,H.Lv.Solving fuzzy relational equations via semitensor product.IEEE Transactions on Fuzzy Systems,2012,20(2):390-396.

    [16]A.A.Molai,E.Khorram.An algorithm for solving fuzzy relation equations with max-T composition operator.Information Sciences,2008,178(5):1293-1308.

    [17]B.Hu.Foundation of Fuzzy Theory.Wuhan:Wuhan University Press,2010.

    [18]H.Qi,D.Cheng.Logic and logic-based control.Journal of Control Theory and Applications,2008,6(1):26-36.

    [19]T.Dereli,A.Baykasoglu,K.Altun,et al.Industrial applications of type-2 fuzzy sets and systems:A concise review.Computers in Industry,2011,62(2):125-137.

    [20]H.Li,X.Duan,Z.Liu.Three-dimensional fuzzy logic system for process modeling and control.Journal of Control Theory and Applications,2010,8(3):280-285.

    [21]Z.Liang,C.Wang.Robust exponential stabilization of nonholonomic wheeled mobile robots with unknown visual parameters.Journal of Control Theory and Applications,2011,9(2):295-301.

    [22]E.Hisdal.The IF THEN ELSE statement and interval-valued fuzzy sets of higher type.International Journal of Man-Machine Studies,1981,15(4):385-455.

    [23]T.Chen,C.Chang,J.Lu.The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making.European Journal of Operational Research,2013,226(3):615-625.

    [24]P.R.Innocent,R.I.John.Computer aided fuzzy medical diagnosis.Information Sciences,2004,162(2):81-104.

    [25]Q.Zhang,S.Jiang.A note on information entropy measures for vague sets and its applications.Information Sciences,2008,178(21):4184-4191.

    [26]Y.Yan,Z.Chen.A semi-tensor product approach to solving singleton type-2 fuzzy relation equations.Proceedings of the 32th Chinese Control Conference.Xi'an:IEEE,2013:3434-3439.

    [27]N.Karnik,J.Mendel.Operations on type-2 fuzzy sets.Fuzzy Sets and Systems,2001,122(2):327-348.

    [28]L.Ljung,T.Sderstrm.Theory andPracticeof Recursive Identification.Dordrecht:Kluwer Academic Publisher,1983.

    22 August 2013;revised 21 February 2014;accepted 24 February 2014

    DOI10.1007/s11768-014-0137-7

    ?Corresponding author.

    E-mail:yyyan@mail.nankai.edu.cn.Tel.:+86-22-23508547.

    This work was partially supported by the Natural Science Foundation of China(No.61174094),the Tianjin Natural Science Foundation of China(No.13JCYBJC17400),and the Program for New Century Excellent Talents in University of China(No.NCET-10-0506).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Yongyi YANreceived the B.S.and M.S.degrees in Mathematics from Luoyang Normal University,Luoyang,China,in2005and 2008,respectively,and is currently pursuing the Ph.D.degree in Control Theory and Engineering at Nankai University,Tianjin,China.His current research interests are in the fields of modeling and optimization of complex systems,fuzzy control,intelligent predictive control.E-mail:yyyan@mail.nankai.edu.cn.

    Zengqiang CHENwas born in Tianjin,China in 1964.He received the B.S.,M.E.and Ph.D.degrees from Nankai University,in 1987,1990,and 1997,respectively.He is currently a professor of Control Theory and Engineering of Nankai University,and Deputy Director of Institute of Robotics and Information Automation.His current research interests are in the fields of intelligent predictive control,chaotic systems and complex dynamic network,multi-agent system control.E-mail:chenzq@nankai.edu.cn.

    Zhongxin LIUreceived his B.E.and D.E.degrees in Nankai University,in 1997 and 2002,respectively.He is currently a professor of Control Theory and Engineering of Nankai University,Tianjin,China.His current research interests include Multi-agent systems,complex and dynamic networks,computer control and management.E-mail:lzhx@nankai.edu.cn.

    猜你喜歡
    裂紋測(cè)量標(biāo)準(zhǔn)
    裂紋長(zhǎng)度對(duì)焊接接頭裂紋擴(kuò)展驅(qū)動(dòng)力的影響
    2022 年3 月實(shí)施的工程建設(shè)標(biāo)準(zhǔn)
    把握四個(gè)“三” 測(cè)量變簡(jiǎn)單
    Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study
    忠誠(chéng)的標(biāo)準(zhǔn)
    滑動(dòng)摩擦力的測(cè)量和計(jì)算
    美還是丑?
    滑動(dòng)摩擦力的測(cè)量與計(jì)算
    測(cè)量
    一家之言:新標(biāo)準(zhǔn)將解決快遞業(yè)“成長(zhǎng)中的煩惱”
    女人精品久久久久毛片| 人人妻,人人澡人人爽秒播| 婷婷成人精品国产| 亚洲伊人色综图| 国产欧美日韩一区二区三| 欧美激情极品国产一区二区三区| 国产av精品麻豆| 啪啪无遮挡十八禁网站| 香蕉国产在线看| 人人妻人人澡人人看| 精品熟女少妇八av免费久了| 亚洲综合色网址| 色视频在线一区二区三区| 亚洲色图综合在线观看| 久久 成人 亚洲| 国产亚洲精品一区二区www | 日韩一区二区三区影片| 久久人人97超碰香蕉20202| 新久久久久国产一级毛片| 久久中文看片网| 欧美日韩中文字幕国产精品一区二区三区 | 日日爽夜夜爽网站| 国产成人精品久久二区二区免费| 咕卡用的链子| 国产精品久久久久久精品电影小说| 一区二区三区国产精品乱码| 在线观看免费视频网站a站| 十八禁高潮呻吟视频| 免费看a级黄色片| 国产日韩欧美在线精品| 国产一区有黄有色的免费视频| 色在线成人网| 天天影视国产精品| 国产精品香港三级国产av潘金莲| avwww免费| 亚洲视频免费观看视频| 久久中文看片网| 黄色视频不卡| 成人亚洲精品一区在线观看| 黄频高清免费视频| 男女之事视频高清在线观看| 精品国产乱码久久久久久男人| 满18在线观看网站| a在线观看视频网站| 国产色视频综合| 日韩有码中文字幕| 国产成人av教育| 久9热在线精品视频| 这个男人来自地球电影免费观看| 一区二区三区精品91| 国产熟女午夜一区二区三区| av福利片在线| 首页视频小说图片口味搜索| 一级片'在线观看视频| 午夜激情久久久久久久| √禁漫天堂资源中文www| 精品午夜福利视频在线观看一区 | 亚洲欧美日韩高清在线视频 | 国产又色又爽无遮挡免费看| av欧美777| 在线永久观看黄色视频| 宅男免费午夜| 日韩欧美一区视频在线观看| 日韩成人在线观看一区二区三区| 精品视频人人做人人爽| av欧美777| 国产伦理片在线播放av一区| 国产一区二区三区综合在线观看| 国产三级黄色录像| 99国产综合亚洲精品| 国产成人精品久久二区二区91| 交换朋友夫妻互换小说| 久久亚洲真实| 99riav亚洲国产免费| 日本一区二区免费在线视频| 18禁裸乳无遮挡动漫免费视频| 精品午夜福利视频在线观看一区 | 在线 av 中文字幕| 侵犯人妻中文字幕一二三四区| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠躁躁| 免费黄频网站在线观看国产| 久久狼人影院| 另类亚洲欧美激情| 欧美激情 高清一区二区三区| 90打野战视频偷拍视频| 久久国产精品大桥未久av| 啦啦啦 在线观看视频| 老汉色av国产亚洲站长工具| 五月开心婷婷网| 成人免费观看视频高清| 免费女性裸体啪啪无遮挡网站| 成在线人永久免费视频| 国产亚洲午夜精品一区二区久久| 久久久久久亚洲精品国产蜜桃av| 成人国语在线视频| 精品久久久久久电影网| 首页视频小说图片口味搜索| www.精华液| 欧美另类亚洲清纯唯美| 色尼玛亚洲综合影院| 热re99久久国产66热| 在线 av 中文字幕| 午夜两性在线视频| 欧美日韩黄片免| av线在线观看网站| 久久精品国产亚洲av香蕉五月 | 欧美午夜高清在线| 午夜福利,免费看| 久久久国产精品麻豆| 国产伦人伦偷精品视频| 母亲3免费完整高清在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人久久精品综合| 国产精品免费大片| 国产精品一区二区免费欧美| 中文字幕高清在线视频| 亚洲午夜精品一区,二区,三区| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线| 国产精品久久久av美女十八| 久久天堂一区二区三区四区| 啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 日韩人妻精品一区2区三区| 这个男人来自地球电影免费观看| 国产成人av教育| 男女高潮啪啪啪动态图| 淫妇啪啪啪对白视频| 99国产精品99久久久久| 九色亚洲精品在线播放| 欧美亚洲日本最大视频资源| 丁香六月天网| 无遮挡黄片免费观看| 免费少妇av软件| kizo精华| 99精国产麻豆久久婷婷| 精品国产乱码久久久久久男人| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 最黄视频免费看| 最近最新中文字幕大全电影3 | 国产伦理片在线播放av一区| 午夜免费成人在线视频| 少妇猛男粗大的猛烈进出视频| 色婷婷久久久亚洲欧美| 亚洲精品国产区一区二| 精品亚洲成a人片在线观看| 十八禁网站免费在线| 国内毛片毛片毛片毛片毛片| 啪啪无遮挡十八禁网站| 极品人妻少妇av视频| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 国产成+人综合+亚洲专区| 在线观看免费视频日本深夜| 三上悠亚av全集在线观看| tube8黄色片| 性高湖久久久久久久久免费观看| 久久人妻熟女aⅴ| 在线观看免费日韩欧美大片| 菩萨蛮人人尽说江南好唐韦庄| 国产高清videossex| 少妇猛男粗大的猛烈进出视频| av免费在线观看网站| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 人人妻人人澡人人爽人人夜夜| 久久免费观看电影| 极品人妻少妇av视频| 免费av中文字幕在线| 精品卡一卡二卡四卡免费| 国产精品久久久久久精品电影小说| 飞空精品影院首页| 丁香六月天网| 亚洲av美国av| 久久99一区二区三区| 热99re8久久精品国产| av一本久久久久| 国产成+人综合+亚洲专区| 国产亚洲一区二区精品| 精品一区二区三区视频在线观看免费 | 欧美日韩福利视频一区二区| 亚洲avbb在线观看| 男男h啪啪无遮挡| 不卡一级毛片| 日韩 欧美 亚洲 中文字幕| 高清视频免费观看一区二区| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 欧美乱妇无乱码| 女人精品久久久久毛片| 国产精品一区二区免费欧美| a级毛片黄视频| 午夜两性在线视频| 男女免费视频国产| 一级片免费观看大全| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 一区二区三区国产精品乱码| 午夜两性在线视频| 国产精品久久久av美女十八| 国产精品二区激情视频| 51午夜福利影视在线观看| 久久九九热精品免费| 国产精品 欧美亚洲| 久久青草综合色| 在线观看66精品国产| 国产一区有黄有色的免费视频| 久久亚洲精品不卡| 一个人免费在线观看的高清视频| 国产黄色免费在线视频| 夜夜夜夜夜久久久久| 久久热在线av| 精品福利观看| 啦啦啦免费观看视频1| 成人免费观看视频高清| 一边摸一边抽搐一进一小说 | 国产熟女午夜一区二区三区| www.精华液| 搡老熟女国产l中国老女人| 亚洲成人免费电影在线观看| 国产成人系列免费观看| 大香蕉久久网| 日韩人妻精品一区2区三区| 一区二区av电影网| 欧美大码av| 老司机深夜福利视频在线观看| 亚洲伊人色综图| 少妇裸体淫交视频免费看高清 | 国产精品二区激情视频| 51午夜福利影视在线观看| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 免费日韩欧美在线观看| 男人舔女人的私密视频| 人人妻人人爽人人添夜夜欢视频| 天堂中文最新版在线下载| 午夜精品久久久久久毛片777| www.熟女人妻精品国产| 9热在线视频观看99| 国产又色又爽无遮挡免费看| 国产伦人伦偷精品视频| 日韩大片免费观看网站| 亚洲成人手机| 另类精品久久| 人妻一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 99香蕉大伊视频| 夫妻午夜视频| 9热在线视频观看99| 精品一区二区三卡| 成在线人永久免费视频| 在线观看免费日韩欧美大片| 国产精品免费大片| 啦啦啦中文免费视频观看日本| 国产精品99久久99久久久不卡| 精品人妻1区二区| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 老司机午夜十八禁免费视频| 狂野欧美激情性xxxx| 丝袜美足系列| 纯流量卡能插随身wifi吗| 国产在线视频一区二区| 亚洲五月婷婷丁香| 国产激情久久老熟女| 不卡av一区二区三区| 日本欧美视频一区| 黑丝袜美女国产一区| 超色免费av| 亚洲精品国产色婷婷电影| 国产精品98久久久久久宅男小说| avwww免费| 欧美在线一区亚洲| 美女扒开内裤让男人捅视频| 成人永久免费在线观看视频 | 又大又爽又粗| 正在播放国产对白刺激| 欧美国产精品va在线观看不卡| 丝袜喷水一区| 日韩视频一区二区在线观看| 99久久国产精品久久久| 黄片播放在线免费| 在线观看免费视频日本深夜| 久久天堂一区二区三区四区| 色精品久久人妻99蜜桃| 欧美大码av| 欧美日韩精品网址| 一进一出好大好爽视频| 中文欧美无线码| 欧美精品av麻豆av| 亚洲欧美日韩另类电影网站| 高清视频免费观看一区二区| 嫁个100分男人电影在线观看| 正在播放国产对白刺激| 91精品国产国语对白视频| 亚洲专区国产一区二区| 精品亚洲乱码少妇综合久久| 18禁国产床啪视频网站| 91国产中文字幕| 久久影院123| 欧美日韩黄片免| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到| 黑人操中国人逼视频| 99re在线观看精品视频| 国产福利在线免费观看视频| 高清av免费在线| 黄色成人免费大全| 91麻豆精品激情在线观看国产 | 欧美精品人与动牲交sv欧美| 老司机福利观看| 黑人巨大精品欧美一区二区mp4| 久久av网站| 亚洲天堂av无毛| 国产免费视频播放在线视频| 99国产极品粉嫩在线观看| 99国产精品免费福利视频| 青草久久国产| av天堂久久9| 免费在线观看影片大全网站| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 久久热在线av| 老熟妇仑乱视频hdxx| 肉色欧美久久久久久久蜜桃| 777米奇影视久久| 欧美国产精品va在线观看不卡| 日韩欧美一区视频在线观看| 亚洲一区二区三区欧美精品| 亚洲欧美日韩高清在线视频 | 日韩大码丰满熟妇| 人人澡人人妻人| 乱人伦中国视频| 欧美激情高清一区二区三区| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 国产一卡二卡三卡精品| 这个男人来自地球电影免费观看| 国产成人av激情在线播放| 国产成人欧美| 老司机影院毛片| 精品久久蜜臀av无| 黄色视频在线播放观看不卡| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 交换朋友夫妻互换小说| 人人澡人人妻人| 乱人伦中国视频| 狠狠狠狠99中文字幕| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| kizo精华| 欧美精品一区二区免费开放| 99精品在免费线老司机午夜| 日本五十路高清| 男女下面插进去视频免费观看| 成人影院久久| 美女视频免费永久观看网站| 国内毛片毛片毛片毛片毛片| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 国产一区有黄有色的免费视频| 人成视频在线观看免费观看| 在线播放国产精品三级| 999久久久精品免费观看国产| 女性生殖器流出的白浆| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 超色免费av| 中文字幕av电影在线播放| 午夜福利欧美成人| 91国产中文字幕| 精品卡一卡二卡四卡免费| 国产淫语在线视频| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 亚洲欧美精品综合一区二区三区| 99精品欧美一区二区三区四区| 久9热在线精品视频| 亚洲国产欧美网| 考比视频在线观看| 国产欧美日韩综合在线一区二区| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 成人手机av| 亚洲av成人一区二区三| 一区福利在线观看| 两性夫妻黄色片| 色播在线永久视频| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 久久久久网色| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 啦啦啦 在线观看视频| 国产激情久久老熟女| 久久婷婷成人综合色麻豆| 免费观看人在逋| 在线播放国产精品三级| 欧美+亚洲+日韩+国产| 69av精品久久久久久 | 丁香欧美五月| 汤姆久久久久久久影院中文字幕| 一区二区三区国产精品乱码| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 国产日韩欧美视频二区| 51午夜福利影视在线观看| 午夜日韩欧美国产| 精品亚洲乱码少妇综合久久| 国产高清视频在线播放一区| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 亚洲第一青青草原| 人妻久久中文字幕网| 新久久久久国产一级毛片| 麻豆国产av国片精品| 少妇 在线观看| 亚洲av第一区精品v没综合| 亚洲成人手机| 精品少妇黑人巨大在线播放| 国产一区二区 视频在线| 久久精品aⅴ一区二区三区四区| 日韩中文字幕视频在线看片| 日韩欧美国产一区二区入口| 这个男人来自地球电影免费观看| 757午夜福利合集在线观看| 久久久国产精品麻豆| 天堂8中文在线网| 美女主播在线视频| 精品国内亚洲2022精品成人 | 国产成人欧美在线观看 | 变态另类成人亚洲欧美熟女 | 人人妻人人澡人人爽人人夜夜| 亚洲综合色网址| 好男人电影高清在线观看| 最近最新免费中文字幕在线| 激情在线观看视频在线高清 | 韩国精品一区二区三区| 男女边摸边吃奶| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 国产精品一区二区免费欧美| 国产不卡一卡二| 日韩一卡2卡3卡4卡2021年| 老汉色∧v一级毛片| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 国产黄频视频在线观看| 激情在线观看视频在线高清 | 少妇裸体淫交视频免费看高清 | 热re99久久国产66热| 国产不卡av网站在线观看| 首页视频小说图片口味搜索| 丝袜在线中文字幕| 超色免费av| 黄色视频在线播放观看不卡| 香蕉丝袜av| 看免费av毛片| 久久久久精品人妻al黑| 国产亚洲欧美精品永久| 日韩成人在线观看一区二区三区| 久久久国产成人免费| 少妇 在线观看| 久久99一区二区三区| av电影中文网址| 女人久久www免费人成看片| 国产精品久久电影中文字幕 | 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 国产一区二区三区视频了| 久久久久国内视频| 国产亚洲av高清不卡| 国产黄色免费在线视频| 亚洲欧美激情在线| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 国产成人精品在线电影| 久久99热这里只频精品6学生| 国产免费av片在线观看野外av| 婷婷丁香在线五月| 在线观看人妻少妇| 女警被强在线播放| 动漫黄色视频在线观看| 男女边摸边吃奶| 欧美激情久久久久久爽电影 | 国产精品 国内视频| 中文字幕精品免费在线观看视频| 国产午夜精品久久久久久| www.精华液| 午夜免费成人在线视频| 亚洲国产欧美一区二区综合| 丰满迷人的少妇在线观看| 欧美精品啪啪一区二区三区| 久久精品国产a三级三级三级| 性高湖久久久久久久久免费观看| 精品熟女少妇八av免费久了| 国产99久久九九免费精品| 中文亚洲av片在线观看爽 | 国产一区二区三区综合在线观看| www.精华液| 欧美黑人精品巨大| 国产男女内射视频| 少妇精品久久久久久久| 99香蕉大伊视频| 国产亚洲av高清不卡| 91av网站免费观看| 美国免费a级毛片| 国产精品自产拍在线观看55亚洲 | 久久青草综合色| 午夜福利,免费看| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 精品久久蜜臀av无| 日韩成人在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 国产无遮挡羞羞视频在线观看| 青草久久国产| 精品一区二区三区视频在线观看免费 | 99国产综合亚洲精品| 啦啦啦视频在线资源免费观看| 十八禁网站免费在线| 青青草视频在线视频观看| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| av欧美777| www.精华液| 极品少妇高潮喷水抽搐| 操出白浆在线播放| 午夜视频精品福利| 一进一出抽搐动态| 12—13女人毛片做爰片一| 久久性视频一级片| 亚洲中文字幕日韩| 国产色视频综合| 国产精品久久久久久精品古装| 欧美乱妇无乱码| 亚洲国产欧美日韩在线播放| 精品熟女少妇八av免费久了| 悠悠久久av| av福利片在线| 好男人电影高清在线观看| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 三级毛片av免费| 丁香六月天网| 精品久久蜜臀av无| 啦啦啦免费观看视频1| 一本色道久久久久久精品综合| 亚洲美女黄片视频| 久久精品国产99精品国产亚洲性色 | 久久久久国产一级毛片高清牌| 亚洲欧美色中文字幕在线| 久久久久国产一级毛片高清牌| 日韩视频在线欧美| 成人18禁在线播放| 久久毛片免费看一区二区三区| 精品第一国产精品| 天堂动漫精品| 亚洲精品av麻豆狂野| 国产精品九九99| 丁香六月欧美| 国产av精品麻豆| 黑人操中国人逼视频| 丝袜美腿诱惑在线| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| av网站免费在线观看视频| 男女边摸边吃奶| 国产精品98久久久久久宅男小说| 欧美精品一区二区大全| 国产精品98久久久久久宅男小说| 又大又爽又粗| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o| 在线观看66精品国产| 亚洲五月婷婷丁香| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 亚洲全国av大片| 久久这里只有精品19| 99国产极品粉嫩在线观看| 大码成人一级视频| 国产免费av片在线观看野外av| 久久久久久久久免费视频了| 欧美激情极品国产一区二区三区| 9191精品国产免费久久| 天天操日日干夜夜撸| 国产视频一区二区在线看| 久9热在线精品视频| 久久人人97超碰香蕉20202| 成人国语在线视频| 欧美黑人精品巨大| 亚洲情色 制服丝袜|