• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of synchronization in a supermarket refrigeration system

    2014-12-07 08:00:17RafaelWISNIEWSKIJohnLETHJakobRASMUSSEN
    Control Theory and Technology 2014年2期

    Rafael WISNIEWSKI,John LETH,Jakob G.RASMUSSEN

    1.Department of Electronic Systems,Aalborg University,Fredrik Bajers Vej 7C,9220 Aalborg,Denmark;

    2.Department of Mathematical Sciences,Aalborg University,Fredrik Bajers Vej 7G,9220 Aalborg,Denmark

    Analysis of synchronization in a supermarket refrigeration system

    Rafael WISNIEWSKI1?,John LETH1,Jakob G.RASMUSSEN2

    1.Department of Electronic Systems,Aalborg University,Fredrik Bajers Vej 7C,9220 Aalborg,Denmark;

    2.Department of Mathematical Sciences,Aalborg University,Fredrik Bajers Vej 7G,9220 Aalborg,Denmark

    In a supermarket refrigeration,the temperature in a display case,surprisingly,influences the temperature in other display cases.This leads to a synchronous operation of all display cases,in which the expansion valves in the display cases turn on and off at exactly the same time.This behavior increases both the energy consumption and the wear of components.Besides this practical importance,from the theoretical point of view,synchronization,likewise stability,Zeno phenomenon,and chaos,is an interesting dynamical phenomenon.The study of synchronization in the supermarket refrigeration systems is the subject matter of this work.For this purpose,we model it as a hybrid system,for which synchronization corresponds to a periodic trajectory.To examine whether it is stable,we transform the hybrid system to a single dynamical system defined on a torus.Consequently,we apply a Poincar'e map to determine whether this periodic trajectory is asymptotically stable.To illustrate,this procedure is applied for a refrigeration system with two display-cases.

    Synchronization;Hybrid systems;Stability;Limit cycles;Stochastic approximation

    1 Introduction

    The foodstuffs in supermarkets are typically stored in open display cases in the sales areas.By utilizing a refrigeration cycle,heat is transported from the display cases to the outdoor surroundings[1].The refrigeration cycle is coordinated by a number of dedicated controllers,which are distributed within the refrigeration hardware such as display cases,compressors,and cold storage rooms.This concept has many practical advantages;for instance,it is flexible and yet simple.However,it neglects the cross-coupling between the subsystems,and the interplay between continuous and discrete dynamics.These effects may cause the degradation of refrigeration quality.A case in point is the synchronization of display cases.Each display case is equipped with a hysteresis controller that opens and closes an expan-sion valve.It adjusts the flow of refrigerant such that the desired temperature is reached.Practical experience shows that the temperature in one display case influences the temperature in the neighboring ones.These interactions frequently lead to a synchronous operation of the display cases in which the expansion valves in the display cases turn on at the same time.As discussed in[1],this synchronization causes high wear of the compressors,inferior control performance,and increased energy consumption.

    A number of inspiring publications have addressed the problem of synchronization in supermarket systems.In particular,references[2,3]suggest a centralized controller based on hybrid model predictive control that by design avoids synchronization.Recently,a patent has been issued that proposes to adjust the cut-in and cut-out temperatures for the refrigeration entities to desychronize them[4].

    In this article,we leave the feedback design problem and focus entirely on the synchronization dynamics as a mathematically intricate phenomenon.We assume that the hysteresis control has been designed and ask whether synchronization takes place.Although,we do not consider any implementation issues at the current stage,we stress that the work is relevant for the reduction of energy consumption in supermarkets.Indeed,detecting a tendency to synchronize will eventually lessen the energy consumed.Our standpoint is that a deep insight into synchronization is important in general for understanding dynamical systems with discrete transitions.

    The phenomenon of synchronization in dynamical systems has been studied before;the definitions of synchronizations have been formulated in[5],and numerous examples of synchronization have been analyzed in[6].As for studying any phenomena in dynamical systems,the very first challenge is to establish a convenient definition of a state space and the notion of a trajectory.What immediately follows is the examination whether the existing methods from the theory of dynamical systems can be adapted for the analysis of synchronization.This approach has been taken in this work.In the study of synchronization,we model the supermarket refrigeration system as a hybrid system.The hybrid system in this work consists of several linear subsystems and a rule that orchestrates the discrete transitions among them[7].The state space is a disjoint union of polyhedral sets,and the discrete transitions are realized by reset maps defined on the facets of the polyhedral sets.The reset maps are regarded as generators of an equivalence relation allowing 'gluing' the polyhedral sets together.The result of this construction is a quotient space.This idea has been used before in[8-10].The original contribution of this work is to show that by the process of gluing,a hybrid system is transformed to a dynamical system that is defined on a single state space,a smooth manifold with boundary.Ifnis the number of display cases,then this manifold is the product of a 2n-torus and the non-negative reals.Consequently,the trajectories are continuous,piecewise smooth paths.A novelty of the current approach is that this construction allows the application of standard method from analysis of differential equations for the study of a refrigeration system.In particular,(asymptotic)synchronization corresponds to an asymptotically stable periodic trajectory.

    The stability analysis of periodic trajectories can be completed by applying a Poincar'e map.The Poincar'e map has previously been used for the stability analysis of switched systems[11-14]and control synthesis of these[15,16].It was assumed in these works that switchings took place on a family of hyperplanes that are disjoin subsets of the state space.Thereby,small perturbations of the state contribute to small changes in system behavior.Whereas in this work,we generalize the discrete transitions to take also place at intersection points of hyperplanes.This is an important generalization as at a corner point small perturbations yield conceptually different system behavior.As mentioned above,this phenomenon cannot be captured in the concepts presented in previous works.Allowing mode switching to take place on the boundaries of polyhedral sets complicates the Poincar'e map.In particular,we explicitly calculate the Poincar'e map for a refrigeration system consisting of two display cases and a compressor.

    2 Refrigeration system

    In majority of supermarket refrigeration systems,the display cases and the compressors,which maintain the flow of refrigerant,are connected in parallel.The compressors compress refrigerant drained from the suction manifold.Subsequently,the refrigerant passes through the condenser and flows into the liquid manifold.Each display case is equipped with an expansion valve,through which the refrigerant flows into the evaporator in the display case.In the evaporator,the refrig-erant absorbs heat from the foodstuffs.As a result,it changes its phase from liquid to gass.Finally,the vaporized refrigerant flows back into the suction manifold.The process described above is called a refrigeration cycle.

    2.1 Motivation for the study

    In a typical supermarket refrigeration system,the temperature in each display case is controlled by a hysteresis controller that opens the expansion valve when the air temperatureT(measured near to the foodstuffs)reaches a predefined upper temperature limitTu.The valve stays open untilTdecreases to the lower temperature limitTl.At this point,the controller closes the valve again.Practice reveals that if the display cases are similar,the hysteresis controllers have tendency to synchronize the display cases[1].It means that the air temperaturesTifori∈{1,...,N},whereNis the number of display cases,tend to match as time progresses.

    2.2 Model for synchronization

    For simplicity of this exposition,the model of a refrigeration system consists of two identical display cases and a compressor.

    The dynamics of the air temperatureTifor display casei∈{1,2}and the suction pressurePfor the system of two display cases are governed by the following system of equations,which is further discussed in the appendix,

    wherea,b,c,d,e,α and β are constants(their specific values are provided by equations(a3)in the appendix),and δi∈ {0,1}is the switching parameter for the display casei;it indicates whether the expansion valve is closed for δi=0 or open for δi=1.The switching law is given by the hysteresis control:

    whereandare respectively the predefined upper and lower temperature limits for the display casei.By convention,δi=0 for any initial conditionof(1a)with[.Such an initial condition is assumed throughout this paper;hence,(2)is well defined.

    We write equations(1)simply as

    where

    ,andwith2={0,1}.Hence,for δ∈22,we study a Cauchy problem of the form

    Proposition 1For anys∈ {l,u},the vector field ξδ,δ∈22,is transversal toand

    ProofWith 〈.,.〉the standard inner product in R3andNi=(2-i,i-1,0),i=1,2,we find that

    We note that the sign of(1b)determines whether the coordinate functionTiofxis increasing or decreasing.For two display cases,this information is provided in Fig.1.

    Fig.1 The state space of the refrigeration system consisting of two display cases is illustrated.Here,the pressure axis is suppressed,andThe direction of the vector field ξδis indicated by the dark shaded triangles.

    3 Supermarket systems as a hybrid system

    In order to represent(2)in a mathematically satisfactory way,we will use the modeling formalism of hybrid systems on polyhedral sets with state-dependent switching.It is seen as a subclass of hybrid systems of[7];and yet,it is rich enough to model any system with multiple hysteresis control.

    3.1 Hybrid systems

    We writeF?PifFis a face of the polyhedral setP.A mapf:P→P′is polyhedral if

    1)it is a continuous injection,and

    2)for anyF?Pthere isF′?P′with dim(F)=dim(F′)such thatf(F)?F′.

    Definition 1(Hybrid systems on polyhedral sets with state-dependent switching) For finite index setsJandD,a hybrid systems on polyhedral sets with state-dependent switching(of dimensionn)is a triple(P,S,R)=(PD,S,RJ),where

    1)P={Pδ? Rn|Pδa polyhedral set,dim(Pδ)=n,δ∈D}is a family of polyhedral sets.

    2)S={ξδ:Pδ→ Rn|Pδ∈P,δ∈D}is a family of smooth vector fields.

    3)R={Rj:F→F′|F?P∈P,F′?P′∈P,dim(F)=dim(F′)=n-1,j∈J}is a family of polyhedral maps,called reset maps.

    Next,we shall refer to hybrid systems with statedependent switching simply as hybrid systems.

    Remark 1After identifyingDwith a finite subset of R,we can rewrite the hybrid system(PD,S,RJ)as

    for(x,q)∈ˉC,and

    for(x,q)∈ˉD,where

    and

    This is precisely the hybrid system in[7].

    After this remark,we will show that a refrigeration system with two display cases furnished with a hysteresis control is a hybrid system.To begin with,we consider the following scenario.Letand δ=(0,0);thereby,both display cases are initially switched off.Suppose that at timet,the air temperatureTiof theith display case reaches the upper temperature limitTui,then theith display case is switched on,and δi=1.This scenario indicates that the refrigeration system comprises four dynamical systemsdefined on the polyhedral set

    A discrete transition between these four systems takes place whenever a trajectory reaches the boundary ofQ.The polyhedral setQhas five facets;four of them will be instrumental in the sequel,

    where α ∈2and δ0[a,b]={a},δ1[a,b]=.

    To sum up,the set P consists of four copies of a polyhedral setQin(5)

    Formally,in(6),we have separated(made disjoint)each of the copies ofQ.

    The set S consists of four dynamical systems given by(3)for δ∈22.To characterize the set R,we define

    where the results of the summation are computed modulo 2.Intuitively,the mapltakes a polyhedral set enumerated by δ to the future polyhedral set.The variableiindicates that the discrete transition takes place when the temperatureTireaches its upper or lower boundary.The set R consists of eight reset maps R={Ri(δ)|(i,δ) ∈ {1,2}X22},where the mapsare defined byObserve that the reset maps are identities in the first argument.By abuse of notation,we frequently identify(x,δ)withx.

    Remark 2For a supermarket refrigeration system withNdisplay cases,the definition of the facets on the polyhedral setis generalized tofori∈ {1,...,N}and α ∈2.The facet operators commute in the following sense

    As a consequence,the set R of the reset maps is

    For the maplgiven by

    the mapsRi(δ):are defined by

    The hybrid refrigeration system with two display cases is illustrated in Fig.2.Here,each element ofPhas been(orthogonally)projected onto the(T1,T2)-space.Hence,the polyhedral setsPδare represented by cubes.The three cubesP(0,1),P(1,0),P(1,1)have been vertically and/or horizontally reflected(compare with Fig.1).The stippled lines in the drawing indicate the reset maps in R.

    Fig.2 The T1T2-state space of the refrigeration system consists of two display cases.The reset maps are indicated by the stippled lines(see Fig.1 and its caption for further explanation).The pressure axis has been suppressed;thus,each Pδ =QX{δ}is illustrated by a square.By abuse of notation,the facets of Pδare denoted by(instead of

    3.2 Trajectories of a refrigeration system

    We bring in a concept of a(hybrid)time domain[7].Letk∈N∪{∞};a subset Tk?R+XZ+will be called a time domain if there exists an increasing sequencein R+∪ {∞}such that

    where,and

    Note thatTi=[ti-1,ti]for alliifk=∞.We say that the time domain is infinite ifk=∞ortk=∞.The sequencecorresponding to a time domain will be called a switching sequence.

    Definition 2(Trajectory) A trajectory of the hybrid system(PD,S,RJ)is a pair(Tk,γ)wherek∈ N∪{∞}is fixed,and

    ?Tk? R+XZ+is a time domain with corresponding switching sequence{ti}i∈{0,...,k},

    1)For eachi∈ {1,...,k-1},there exist δ ≠ δ′∈Dsuch that γ(ti;i) ∈ bd(Pδ),and γ(ti;i+1) ∈ bd(Pδ′),where bd(P)is the boundary ofP.

    3)For eachi∈{1,...,k-1},there existsj∈Jsuch that

    A trajectory atxis a trajectory(Tk,γ)with γ(t0;1)=x.

    The next definition formalizes the notion of a periodic trajectory,which will be used in defining synchronization of the refrigeration system.

    Definition 3((T,l)-periodic trajectory) Let(T,l)∈R+XZ+.A trajectory(Tk,γ)is(T,l)-periodic(or just periodic)if 1)Tkis an infinite time domain,and 2)for anyi∈{1,...,k}andt∈p(Tk),wherep:Tk→ [t0,∞[is the projectionp(t,i)=t,we have γ(t+T;i+l)= γ(t;i).

    In particular,if(Tk,γ)is a(T,l)-periodic trajectory,andTis nonzero thenp:Tk→ [t0,∞[is surjective.

    3.3 State space of the refrigeration system

    To study any dynamical system,the starting point is a convenient definition of the state space.It was suggested in[9,10]to glue the state spaces of respective subsystems of a hybrid system together along the subsets identified by the reset maps.

    Let R-1={R-1|R∈R}.Then,the equivalence class ofx∈Xis denoted by

    In particular,for a refrigeration system with two display cases,letx=(T1,T2,P)∈X.Ifxis in the interior ofPδfor some δ ∈22,the equivalence class[x]={(T1,T2,P;δ)}.Ifxis in the interior ofthen[x]={(T1,T2,P;0,0),(T1,T2,P;1,0)},and if{(0,0)},we have[x]={(T1,T2,P;0,0),(T1,T2,P;1,0),(T1,T2,P;0,1),(T1,T2,P;1,1)}.Furthermore,X?is the product of a 2-torus with the non-negative reals,X?=T2XR+,i.e.,a smooth manifold with boundary.We note that the system consisting ofNdisplay cases will give rise toX?=TNXR+.In[18],we have explicitly constructed a differentiable structure on the state spaceX?of a system withNhystereses,thereby of a refrigeration system withNdisplay cases.Whereas,in[19],we have studied local stability of such a system.

    4 Periodic trajectory and stability

    We direct our attention to the subject matter-the synchronization of refrigeration systems.A refrigeration system is said to exhibit asymptotic synchronization if there exists a(T,l)-periodic trajectory which is asymptotically stable inX?[20,Definition 13.3].We remark that asymptotic synchronization is described in a more general setting in[5],and that the above definition is local as only trajectories sufficiently close to the periodic trajectory are considered.Using the Poincar'e map[20,Theorem 13.1],we prove the following theorem.

    Theorem 1The refrigeration system with two display cases exhibits asymptotic synchronization.

    Theorem 1 is a direct consequence of Lemmas1and 2 below.

    Lemma 1There exist initial temperatures on the diagonal,and initial pressure which give rise to a(Tp,2)-periodic trajectory.

    ProofFori∈N,the analytic expression for a trajectory

    atof the system(3)is

    forj=1,2,where

    with all constants given in the appendix.We observe from equation(8)that the projection of a trajectory on theT1T2-plane is(Tp,2)-periodic if its initial conditionx0is of the formwithand initial δ is(0,0).As a consequence,the trajectory is on the diagonalT1=T2of the polyhedral setsP(0,0)andP(1,1).Using the aboveT1T2-plan analysis as a guideline,we find an initial conditionof a(Tp,2)-periodic trajectory in the state spaceX.Indeed,by choosing,the initial pressureˉP0is determined by solving,forandt2,the system of equations

    With the notation as in the proof above,letand(T∞,γˉx0)denote the(Tp,2)-periodic trajectory atˉx0;thus,

    Lemma 2The(Tp,2)-periodic trajectory atis asymptotically stable inX?.

    ProofWe remark that stability of a periodic trajectory can be determined by a Poincar'e map.Indeed,asymptotic stability of a periodic trajectory(inX?)is equivalent to asymptotic stability of the fixed point of a corresponding Poincar'e map[20,Theorem 13.1].

    Next,we describe the Poincar'e map.For this purpose,the evolution of a trajectory starting at a point nearby the(Tp,2)-periodic trajectory γˉx0is outlined.

    Letx0denote any of the two pointsfor some ?>?′>0.Thus,whereis the max-norm.We show that for sufficiently small ?,wherex1∈P(0,0)is the point at which the trajectory γx0atx0meets the hyperplaneT1=0(inP(0,0))for the first time.From this,we will conclude that this Poincar'e map is a contraction.

    Forx=(x′;δ)andy=(y′;δ′),both inX,we writex?y(resp.x?y)wheneverFurthermore,letBelow,we describe one period of the trajectory γx0in the following four steps.

    1)From the choice of initial conditionx0,and from(8),it follows thafor someandforNote thatfor

    3)Since γx0(t1;3)∈P(1,1),we conclude that there exists asuch thatandforNote thatfo

    Having described one period of the trajectory γx0,we are now ready to prove thatSince δ=(1,1)andwe conclude by(8)thatFrom symmetry of the systems(3)for δ =(0,1)and δ =(1,0),itfollowsthatMoreover,since γx0(.;1)and γˉx0(.;1)are solutions to the stable affine linear system(3),with δ=(0,0),starting(t=t0)at a distancewe conclude thatTogether with item 1)and 2),this implies thathence,Therefore,we only need to show thatwhich follows by straightforward computations involving the explicit expression(7)ofP.The case withis conceptually the same as above and is,therefore,left to the reader.

    As shown in Section 3.3,the dynamics of the refrigeration system carries over to the manifoldX?;thus,the above procedure defines a standard Poincar'e map.Using the fact that the periodic trajectory can be covered by charts,the results in[20]applies.The Poincar'e map takes a pointx0with|x0-ˉx0|m=? to the pointx1with|x1-ˉx0|m

    We numerically investigated a subset B of the basin of attraction of the stable limit cycle corresponding to synchronization that contains the pointˉx0.We determined that

    5 Conclusions

    In this paper,we have studied the synchronization phenomenon in supermarket refrigeration systems.We have associated synchronization with a periodic trajectory in a hybrid system.To determine whether asymptotic synchronization occurs,i.e.,the periodic trajectory is asymptotically stable,we have used a Poincar'e map.This approach has been carried out for a refrigeration system with two display cases.

    [1]L.F.S.Larsen,C.Thybo,R.Wisniewski,et al.Synchronization and desynchronizing control schemes for supermarket refrigeration systems.The 16th IEEE International Conference on Control Applications.Part of IEEE Multi-conference on Systems and Control.Piscataway:IEEE,2007:1414-1419.

    [2]C.Sonntag,A.Devanathan,S.Engell.Hybrid nmpc of a supermarket refrigeration system using sequential optimization.Proceedings of the 17th IFAC World Congress.Seoul:Elsevier,2008.

    [3]D.Sarabia,F.Capraro,L.F.S.Larsen,et al.Hybrid NMPC of supermarket display cases.Control Engineering Practice,2009,17(4):428-441.

    [4]C.Thybo,L.F.S.Larsen.Method of Analysing a Refrigeration System and a Method of Controlling a Refrigeration System.US patent Application,2011:US7992396 B2.

    [5]I.Blekhman,A.Fradkov,H.Nijmeijer,et al.On selfsynchronization and controlled synchronization.Systems&Control Letters,1997,31(5):299-305.

    [6]A.Pikovsky,Y.Maistrenko,eds.Synchronization:Theory and Application.NATO Science Series II:Mathematics,Physics and Chemistry.Dordrecht:Kluwer Academic Publishers,2003.

    [7]R.Goebel,R.G.Sanfelice,A.R.Teel.Hybrid dynamical systems.IEEE Control Systems Magazine,2009,29(2):28-93.

    [8]A.Ames,S.Sastry.A homology theory for hybrid systems:Hybrid homology.Proceedings of the 8th International Workshopon Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2005:86-102.

    [9]S.Simis,K.Johansson,S.Sastry,et al.Towards a geometric theory of hybrid systems.Proceedings of the 3rd International Workshop on Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2000:421-436.

    [10]R.Wisniewski.Towards modelling of hybrid systems.Proceedings of the 45th IEEE Conference on Decision and Control.Piscataway:IEEE,2006:911-916.

    [11]T.Kousaka,T.Ueta,H.Kawakami.Bifurcation of switched nonlinear dynamical systems.IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing.New York:IEEE,1999:878-885.

    [12]I.Hiskens,P.Reddy.Switching-induced stable limit cycles.Nonlinear Dynamics,2007,50(3):575-585.

    [13]J.M.Goncalves,A.Megretski,M.Dahleh.Global stability of relay feedback systems.IEEE Transactions on Automatic Control,2001,46(4):550-562.

    [14]J.M.Goncalves,A.Megretski,M.A.Dahleh.Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions.IEEE Transactions on Automatic Control,2003,48(12):2089-2106.

    [15]A.Schild,J.Lunze.Stabilization of limit cycles of discretely controlled continuous systems by controlling switching surfaces.Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2007:515-528.

    [16]A.Schild,J.Lunze.Switcheing surface design for periodically operated discretely controlled continuous systems.Hybrid Systems:Computation and Control.Berlin:Springer-Verlag,2008:471-485.

    [17]G.E.Bredon.Topology and Geometry.Graduate Texts in Mathematics.New York:Springer-Verlag,1997.

    [18]R.Wisniewski,J.Leth.Convenient model for systems with hystereses-control.The 50th IEEE Conference on Decision and Control and European Control Conference.New York:IEEE,2011:6140-6145.

    [19]J.Leth,R.Wisniewski.On formalism and stability of switched systems.Journal of Control Theory and Application,2012,10(2):176-183.

    [20]W.M.Haddad,V.Chellaboina,S.G.Nersesov.Impulsive and Hybrid Dynamical Systems.Princeton Series in Applied Mathematics.Princeton:Princeton University Press,2006.

    [21]R.Wisniewski,L.F.S.Larsen.Method for analysis of synchronization applied to supermarket refrigeration system.Proceedings of the 17th IFAC World Congress.Seoul:IFAC,2008.

    23 May 2013;revised 29 November 2013;accepted 29 November 2013

    DOI10.1007/s11768-014-0077-2

    ?Corresponding author.

    E-mail:raf@es.aau.dk.Tel.:+45 9940 8762.

    This work was supported by the Danish Council for Technology and Innovation.

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Appendix

    Model of refrigeration systemThe mathematical model presented here is a summary of the model developed in[21].For theith display case,dynamics of the air temperatureTair,ican be formulated as

    where the process parameters are specified in Table a1,and δi∈ {0,1}is the switch parameter for theith display case.When δi=0,theith expansion valve is switched off,whereas when δi=1 it is switched on.The suction manifold dynamics is governed by the differential equation

    whereNis the number of display cases,andfor

    We denoteTi=Tair,iandP=Psucand write the dynamics of the air temperature and suction pressure in the concise form(with the process constants in(a1a)collected ina,b,c,d,e,α,β and then replaced by their numerical values)

    Table a1 Parameters for a simplified supermarket refrigeration system.

    Rafael WISNIEWSKIis a professor in the Section of Automation&Control,Department of Electronic Systems,Aalborg University.He receives his Ph.D.in Electrical Engineering in 1997,and Ph.D.in Mathematics in 2005.In 2007-2008,he was a control specialist at Danfoss A/S.His research interestis in system theory,particularly in hybrid systems.E-mail:raf@es.aau.dk.

    John LETHreceived his M.S(2003)and Ph.D.(2007)degrees from the Department of Mathematical Sciences,Aalborg University,Denmark.Currently,he is employed as Assistant Professor at the Department of Electronic Systems,Aalborg University.His research interests include mathematical control theory and(stochastic)hybrid systems.E-mail:jjl@es.aau.dk.

    Jakob Gulddahl RASMUSSENis an associate professor at the Department of Mathematical Sciences,Aalborg University,Denmark.He received his Ph.D.in Statistics in 2006 also at the Department of Mathematical Sciences.His research interests include spatial statistics and stochastic processes(including stochastic hybrid systems).E-mail:jgr@math.aau.dk.

    日韩欧美三级三区| 中文天堂在线官网| 伊人久久精品亚洲午夜| 麻豆成人av视频| 国产午夜精品论理片| 看免费成人av毛片| 超碰97精品在线观看| 非洲黑人性xxxx精品又粗又长| 免费少妇av软件| av福利片在线观看| 久久久久久伊人网av| 成人午夜高清在线视频| 国产精品伦人一区二区| 黄色一级大片看看| 亚洲美女视频黄频| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 天堂中文最新版在线下载 | 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| 亚洲精品一二三| 男女边摸边吃奶| 久久久国产一区二区| 亚洲最大成人手机在线| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 亚洲国产欧美人成| 国产成人aa在线观看| 联通29元200g的流量卡| freevideosex欧美| 视频中文字幕在线观看| 亚洲av电影不卡..在线观看| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 少妇熟女aⅴ在线视频| av免费观看日本| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 日韩欧美 国产精品| 一边亲一边摸免费视频| 人妻系列 视频| 小蜜桃在线观看免费完整版高清| 91aial.com中文字幕在线观看| 一级毛片久久久久久久久女| 狠狠精品人妻久久久久久综合| 内射极品少妇av片p| 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影| 女人被狂操c到高潮| 精品少妇黑人巨大在线播放| 精品国产三级普通话版| 毛片女人毛片| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 69人妻影院| 晚上一个人看的免费电影| 日韩国内少妇激情av| 婷婷色综合大香蕉| 婷婷色综合www| 国产日韩欧美在线精品| 蜜臀久久99精品久久宅男| 乱人视频在线观看| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 美女cb高潮喷水在线观看| 亚洲av成人精品一区久久| 1000部很黄的大片| 欧美日韩视频高清一区二区三区二| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 精品久久久久久久末码| 亚洲天堂国产精品一区在线| 永久网站在线| 欧美另类一区| 国产精品久久久久久久久免| 九九在线视频观看精品| 夫妻午夜视频| 欧美 日韩 精品 国产| 亚洲色图av天堂| 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 国产欧美日韩精品一区二区| 国产 一区精品| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 我要看日韩黄色一级片| 精品亚洲乱码少妇综合久久| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 国产美女午夜福利| www.av在线官网国产| 国产精品福利在线免费观看| 性插视频无遮挡在线免费观看| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 丝袜美腿在线中文| 大又大粗又爽又黄少妇毛片口| 久久精品人妻少妇| 少妇猛男粗大的猛烈进出视频 | 亚洲经典国产精华液单| 日韩av免费高清视频| 免费在线观看成人毛片| 三级经典国产精品| 亚洲一级一片aⅴ在线观看| 男人爽女人下面视频在线观看| 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 国产一区二区三区av在线| 色播亚洲综合网| av黄色大香蕉| 久久久午夜欧美精品| 嫩草影院新地址| 内地一区二区视频在线| 我的老师免费观看完整版| 国产高清国产精品国产三级 | 日韩 亚洲 欧美在线| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 国产人妻一区二区三区在| 97超碰精品成人国产| 美女大奶头视频| 男女视频在线观看网站免费| 联通29元200g的流量卡| 日韩欧美精品v在线| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 欧美xxxx性猛交bbbb| 99re6热这里在线精品视频| 亚洲欧美成人综合另类久久久| 国内精品宾馆在线| 搞女人的毛片| 91aial.com中文字幕在线观看| 中国国产av一级| 一级黄片播放器| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看| 国产黄片视频在线免费观看| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 天天躁日日操中文字幕| 看黄色毛片网站| 91av网一区二区| 最后的刺客免费高清国语| 久久久精品免费免费高清| 91av网一区二区| 久久久久九九精品影院| 91狼人影院| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品电影小说 | 色播亚洲综合网| 免费少妇av软件| 2021天堂中文幕一二区在线观| 天天躁日日操中文字幕| 日日摸夜夜添夜夜添av毛片| 美女黄网站色视频| 秋霞在线观看毛片| 九九在线视频观看精品| 嫩草影院精品99| 99久久人妻综合| 国产女主播在线喷水免费视频网站 | 老师上课跳d突然被开到最大视频| 99久久精品国产国产毛片| kizo精华| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 日本黄大片高清| 观看美女的网站| 观看免费一级毛片| 日韩中字成人| 亚洲人与动物交配视频| 最近中文字幕2019免费版| 精品一区在线观看国产| 男女那种视频在线观看| 精华霜和精华液先用哪个| 亚洲四区av| 亚洲,欧美,日韩| 丰满人妻一区二区三区视频av| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 如何舔出高潮| av网站免费在线观看视频 | 国产亚洲精品av在线| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 日韩精品青青久久久久久| 嫩草影院入口| 高清视频免费观看一区二区 | 日韩成人伦理影院| 国产精品人妻久久久影院| 干丝袜人妻中文字幕| 成年女人看的毛片在线观看| 少妇猛男粗大的猛烈进出视频 | 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| www.色视频.com| 久久精品夜色国产| av在线蜜桃| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 男人舔女人下体高潮全视频| 日韩一区二区三区影片| 欧美精品一区二区大全| 国产精品久久视频播放| 人妻制服诱惑在线中文字幕| 噜噜噜噜噜久久久久久91| 97精品久久久久久久久久精品| 在线播放无遮挡| 搡女人真爽免费视频火全软件| 欧美激情在线99| 国产精品麻豆人妻色哟哟久久 | 国产大屁股一区二区在线视频| av在线观看视频网站免费| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 亚洲av福利一区| 中文字幕制服av| 国产乱人视频| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 欧美另类一区| 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 成人鲁丝片一二三区免费| 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 日韩国内少妇激情av| 一级a做视频免费观看| 蜜桃亚洲精品一区二区三区| 久久久午夜欧美精品| 高清欧美精品videossex| 国产探花极品一区二区| 青春草亚洲视频在线观看| 免费少妇av软件| 亚洲欧美日韩无卡精品| 韩国av在线不卡| 永久网站在线| 婷婷色综合www| 看免费成人av毛片| 一个人免费在线观看电影| 成人欧美大片| 国产av不卡久久| 欧美高清性xxxxhd video| 蜜臀久久99精品久久宅男| 亚洲欧美清纯卡通| 欧美不卡视频在线免费观看| 一个人免费在线观看电影| 美女被艹到高潮喷水动态| 99热网站在线观看| 国产久久久一区二区三区| av播播在线观看一区| 久久久色成人| 天堂中文最新版在线下载 | 老司机影院成人| 白带黄色成豆腐渣| 一夜夜www| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 亚洲精品乱久久久久久| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 啦啦啦啦在线视频资源| 国产三级在线视频| 久久99热6这里只有精品| 成人毛片60女人毛片免费| 国产精品久久视频播放| 亚洲色图av天堂| 综合色丁香网| 亚洲无线观看免费| 欧美性感艳星| 人妻一区二区av| 一级毛片电影观看| 少妇的逼水好多| 国产av不卡久久| 丝袜喷水一区| 成人国产麻豆网| 国产精品伦人一区二区| 国产 一区精品| 日韩一区二区三区影片| 国产极品天堂在线| 国产乱来视频区| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 国产一级毛片七仙女欲春2| 精品久久久久久久末码| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| av在线天堂中文字幕| 少妇的逼水好多| 九色成人免费人妻av| 久久久a久久爽久久v久久| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 26uuu在线亚洲综合色| 又爽又黄无遮挡网站| av在线观看视频网站免费| 久久精品夜色国产| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| ponron亚洲| 五月天丁香电影| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 亚洲四区av| 一级毛片黄色毛片免费观看视频| 国产在视频线精品| 欧美三级亚洲精品| 日韩亚洲欧美综合| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 久久久色成人| 亚洲第一区二区三区不卡| 亚洲综合精品二区| 精品熟女少妇av免费看| 在现免费观看毛片| 国产免费一级a男人的天堂| 禁无遮挡网站| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| 国产有黄有色有爽视频| 国产亚洲av嫩草精品影院| 国产有黄有色有爽视频| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线 | av一本久久久久| a级一级毛片免费在线观看| 国产黄a三级三级三级人| 日韩视频在线欧美| 久久久久久国产a免费观看| 秋霞伦理黄片| 激情 狠狠 欧美| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区 | 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 99re6热这里在线精品视频| 国产综合精华液| 久久精品国产亚洲av涩爱| 欧美一区二区亚洲| 国产探花极品一区二区| 卡戴珊不雅视频在线播放| 白带黄色成豆腐渣| 一级毛片我不卡| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| 纵有疾风起免费观看全集完整版 | 九九在线视频观看精品| 亚洲四区av| 国内精品美女久久久久久| 五月天丁香电影| 91久久精品电影网| 国产精品国产三级国产专区5o| 只有这里有精品99| 18禁动态无遮挡网站| 日韩精品有码人妻一区| av黄色大香蕉| 亚洲av成人av| 免费看不卡的av| av在线天堂中文字幕| 久久久久久久久久成人| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 亚洲va在线va天堂va国产| 亚洲电影在线观看av| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 欧美3d第一页| 日韩中字成人| 日韩欧美国产在线观看| 又粗又硬又长又爽又黄的视频| 可以在线观看毛片的网站| 激情五月婷婷亚洲| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 国产亚洲精品久久久com| 永久免费av网站大全| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 又爽又黄无遮挡网站| 美女主播在线视频| 乱码一卡2卡4卡精品| 亚洲av福利一区| 久久久精品免费免费高清| 中国国产av一级| 国产成人freesex在线| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 久久久久精品性色| 亚洲欧美精品专区久久| 午夜精品国产一区二区电影 | a级毛片免费高清观看在线播放| 人人妻人人看人人澡| 免费看美女性在线毛片视频| 成人亚洲精品一区在线观看 | 亚洲av福利一区| 成人午夜精彩视频在线观看| 一个人免费在线观看电影| 久久久久久久久久久免费av| 欧美成人午夜免费资源| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 国产成人福利小说| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 三级毛片av免费| 少妇人妻一区二区三区视频| av黄色大香蕉| 亚洲国产欧美人成| 亚洲精华国产精华液的使用体验| 搡老妇女老女人老熟妇| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 街头女战士在线观看网站| 成年av动漫网址| 最近最新中文字幕免费大全7| 啦啦啦韩国在线观看视频| 中国国产av一级| 九草在线视频观看| 18禁在线无遮挡免费观看视频| 午夜福利在线观看免费完整高清在| 国产美女午夜福利| 3wmmmm亚洲av在线观看| 在线观看人妻少妇| 国产亚洲最大av| 国产一区二区三区综合在线观看 | 日本爱情动作片www.在线观看| 免费av不卡在线播放| 老司机影院成人| 久久99精品国语久久久| 亚洲av在线观看美女高潮| 欧美精品国产亚洲| 国产伦一二天堂av在线观看| 2018国产大陆天天弄谢| 联通29元200g的流量卡| 国产综合精华液| 夫妻性生交免费视频一级片| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲精品乱久久久久久| 欧美日本视频| 一区二区三区免费毛片| 日韩人妻高清精品专区| 中文字幕制服av| 亚洲av免费在线观看| 18+在线观看网站| 丝袜美腿在线中文| 1000部很黄的大片| 一级av片app| 99久久中文字幕三级久久日本| 80岁老熟妇乱子伦牲交| 色播亚洲综合网| av在线蜜桃| 久久精品久久久久久久性| 精品久久久久久电影网| 80岁老熟妇乱子伦牲交| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 国产麻豆成人av免费视频| 欧美bdsm另类| 久久精品熟女亚洲av麻豆精品 | 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 国产综合懂色| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 搡老乐熟女国产| 国产精品一区二区在线观看99 | 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 久久久久精品久久久久真实原创| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月| 永久网站在线| 免费看日本二区| 亚州av有码| 亚洲性久久影院| 国语对白做爰xxxⅹ性视频网站| 男人舔奶头视频| 亚洲精品乱码久久久v下载方式| 国产成人福利小说| 色综合色国产| 熟女人妻精品中文字幕| 成人国产麻豆网| 秋霞伦理黄片| 国产成人a∨麻豆精品| 男的添女的下面高潮视频| 欧美 日韩 精品 国产| 亚洲熟妇中文字幕五十中出| 免费看光身美女| 老司机影院成人| 亚洲成人中文字幕在线播放| 精品一区二区三卡| 国精品久久久久久国模美| 国产女主播在线喷水免费视频网站 | 国产精品综合久久久久久久免费| 欧美极品一区二区三区四区| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看 | 综合色av麻豆| 久久久久久久久久人人人人人人| 国产麻豆成人av免费视频| 亚洲美女视频黄频| 欧美高清成人免费视频www| 一个人观看的视频www高清免费观看| 中文天堂在线官网| 亚洲美女搞黄在线观看| 国产视频首页在线观看| 成人亚洲欧美一区二区av| 久久久久性生活片| 在线免费观看的www视频| 伦精品一区二区三区| 亚洲最大成人手机在线| 亚洲精品成人久久久久久| 联通29元200g的流量卡| 少妇猛男粗大的猛烈进出视频 | 国产视频首页在线观看| 美女脱内裤让男人舔精品视频| 久久99热6这里只有精品| 亚洲精品乱久久久久久| 国产成人freesex在线| 精品一区二区三区视频在线| 在线观看一区二区三区| 赤兔流量卡办理| 午夜老司机福利剧场| 亚洲乱码一区二区免费版| 亚洲av成人精品一区久久| 国产黄片视频在线免费观看| 久久久久久九九精品二区国产| 高清毛片免费看| 亚洲最大成人av| 国产熟女欧美一区二区| 一级av片app| 国产黄a三级三级三级人| 亚洲经典国产精华液单| 青春草国产在线视频| 亚洲自偷自拍三级| 少妇高潮的动态图| 秋霞在线观看毛片| 亚州av有码| 国产毛片a区久久久久| 简卡轻食公司| 国产精品久久久久久精品电影| 亚洲无线观看免费| 好男人在线观看高清免费视频| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 日韩中字成人| 久久久欧美国产精品| 午夜免费激情av| 亚洲熟女精品中文字幕| 国产伦精品一区二区三区四那| 97热精品久久久久久| 国产一区二区三区av在线| 欧美潮喷喷水| 丰满少妇做爰视频| 91aial.com中文字幕在线观看| 精品国内亚洲2022精品成人| 大片免费播放器 马上看| 亚洲真实伦在线观看| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 黄片无遮挡物在线观看| 欧美潮喷喷水| 18禁裸乳无遮挡免费网站照片| 亚洲精品日韩av片在线观看| 80岁老熟妇乱子伦牲交| 男插女下体视频免费在线播放| 五月伊人婷婷丁香| 国产午夜精品一二区理论片| 美女cb高潮喷水在线观看| 在线观看一区二区三区| 中国美白少妇内射xxxbb| 国产片特级美女逼逼视频| 国产精品久久久久久精品电影| 日韩国内少妇激情av| 免费黄色在线免费观看|