• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integral sliding mode based optimal composite nonlinear feedback control for a class of systems

    2014-12-07 08:00:12ZhouZHENGWeijieSUNHuiCHENJohnYEOW
    Control Theory and Technology 2014年2期

    Zhou ZHENG,Weijie SUN,Hui CHEN,John T.W.YEOW

    College of Automation Science and Engineering,South China University of Technology,Guangzhou Guangdong 510640,China

    Integral sliding mode based optimal composite nonlinear feedback control for a class of systems

    Zhou ZHENG,Weijie SUN,Hui CHEN,John T.W.YEOW?

    College of Automation Science and Engineering,South China University of Technology,Guangzhou Guangdong 510640,China

    This paper presents an optimization method of designing the integral sliding mode(ISM)based composite nonlinear feedback(CNF)controller for a class of low order linear systems with input saturation.The optimal CNF control is first designed as a nominal control to yield high tracking speed and low overshoot.The selection of all the tuning parameters for the CNF control law is turned into a minimization problem and solved automatically by particle swarm optimization(PSO)algorithm.Subsequently,the discontinuous control law is introduced to reject matched disturbances.Then,the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the discontinuous control law.The effectiveness of the optimal ISM-CNF controller is verified by comparing with a step by step designed one.High tracking performance is achieved by applying the optimal ISM-CNF controller to the tracking control of the micromirror.

    Composite nonlinear feedback;Integral sliding mode;Input saturation;PSO;Micromirror

    1 Introduction

    Settling time and overshoot are two important transient performance indices.Most of nonlinear techniques for improving transient performance often make a tradeoff between them.Lin et al.[1]proposed the composite nonlinear feedback(CNF)technique to improve the tracking performance for a class of second order linear system with input saturation.The CNF control law is composed of a linear feedback law and a nonlinear feedback law,and it takes advantage of varying damping ratio.Chen et al.[2]developed the CNF control to a more general class of systems with measurement feedback and it was extended to multivariable systems in[3].A MATLAB toolkit is presented in[4]for the CNF control system design.In absence of disturbances,the CNF control technique has been successfully applied to the hard disk driver(HDD)system[2,5],the DC motorsystem[6],the gantry crane system[7]and the active suspension system[8].However,disturbances are inevitable in practical plant environment.

    Sliding mode control is a robust control technique for linear and nonlinear systems[9].In the conventional sliding mode control,the system is not robust during the reaching phase.Integral sliding mode(ISM)concept is proposed in[10]to solve the reaching phase problem.The main idea of the ISM control is to define the control law as the sum of a continuous nominal control and a discontinuous control[11].The nominal control law achieves desired tracking properties for the nominal plant,while the discontinuous control law takes care of disturbances.LQR(linear quadratic regulator)control is taken as a nominal control in[12].Bandyopadhyay et al.[13]proposed integral sliding mode based composite nonlinear feedback(ISM-CNF)control,which combined advantages of the CNF control like quick response with negligible overshoot and robustness of the ISM control.The ISM-CNF control has been successfully applied to the servo position control system[14].

    The performance of the ISM-CNF controller relies on the design procedure,especially on the design of the CNF control.However,it is always a big problem to select appropriate parameters for a CNF control law.Lan et al.[15]proposed a new nonlinear function and an auto-tuning method for the CNF control law and they have been successfully applied to the HDD system[5]and the DC motor system[6].However,the selection of the linear feedback gain is not addressed.Simple guidelines on selecting linear feedback gain are mentioned in[2,3].In[7],the particle swarm optimization(PSO)algorithm[16]is employed to solve the optimal control problem for the gantry crane system.However,the selection of the positive definite matrixWof Lyapunov equation which would affect the performance of the nonlinear part of the CNF control is not discussed.This motivates us to develop a completely auto-tuning method to simplify the design of the CNF control law,then combine it with the discontinuous control law to gain the ISM-CNF control law,which could track a reference target robustly with desired transient performance.In this paper,we fully take into account all the parameters to be adjusted of both the linear part and nonlinear part of the CNF control law,including the matrixW.The parameter tuning problem is converted into a performance criteria minimization problem.The integral of time multiplied absolute-value of error(ITAE)[17]is chosen as the criteria to evaluate the transient performance of the closed-loop system.The optimal CNF control law is designed by solving the minimization problem with the PSO algorithm.Then,the integral sliding surface and the discontinuous control law is designed following the design procedure presented in[11].The optimal ISMCNF control law is computed by adding up the optimal CNF control law and the discontinuous control law.Simulation results show that the optimal ISM-CNF control law achieves robustness,quick response and negligible overshoot.

    2 Composite nonlinear feedback control

    The CNF control law for a single input single output linear system will be reviewed in this section to show the concept in a simple way.The control objective is to drive the controlled output to track the target reference with high transient performance,in the presence of matched uncertainty and disturbance.

    Consider a linear system with input saturation and matched uncertainty

    wherex∈Rn,u∈R,y∈R are respectively the state,the control input and the controlled output of the system.A,BandCare constant matrixs with appropriate dimensions.d(x,t)is bounded matched uncertainty or disturbance and only bounds are known,and the maximum bound isdmax.Function sat:R→R represents the actuator saturation defined as

    whereumaxis the saturation level of the input.Assumptions are made as follows:

    A1:(A,B)is stabilizable;

    A2:(A,B,C)is invertible and has no zeros ats=0.

    The linear feedback law is first designed as

    whereris the tracking target,Fis the linear feedback gain and required to make(A+BF)asymptotically stable,andGis given as

    The desired statexeis calculated by

    Let?xbe the error between actual state and desired state

    Then,the nonlinear feedback law is designed as

    where ρ(r,y)is a nonpositive nonlinear function and locally Lipschitz iny.Pis the positive definite solution to the Lyapunov equation

    for a given positive definite matrixW.

    The CNF control law is derived as the sum of the linear feedback law and the nonlinear feedback law

    Remark 1The nonlinear function ρ(r,y)is used to change the damping ratio of the closed-loop system as the controlled output approaches the tracking target.One choice of ρ(r,y)is given in[2]as

    wherey0=y(0)and β>0 is a tuning parameter.

    Function(10)works well with a given reference target,but it can't adapt the variation of tracking targets.In order to solve this problem,Lan et al.[15]developed the nonlinear function to the form of

    where α >0 and β>0 are tuning parameters,and

    The new nonlinear function is invariant to the tracking targets and has been successfully used in[5]and[6].Its effectiveness will be shown in Section 5.

    Remark 2For any δ∈ (0,1),letcδ>0 be the largest positive scalar meeting the condition that for allthere exists

    In presence of matched disturbances,both the linear control law(3)and the CNF control law(9)can drive the controlled output to asymptotically track the command input under the condition that the initial statex0andrsatisfy[13]

    whereand|(δ-

    3 Integral sliding mode control

    For system(1),the integral sliding mode control law[11]is given in the form of

    The nominal controlu0is responsible for tracking properties of the nominal plant and it can be of any form such as PID control,LQR control[12]and so on.In this paper,the CNF control law(9)is designed as the nominal control.The discontinuous controlu1takes care of the matched uncertainty and disturbance by ensuring the sliding motion.The integral sliding surface proposed in[11]is

    whereG1is selected asso as to avoid amplification of unmatched perturbation.In(16),x(t)is the actual trajectory,andis the desired trajectory caused by nominal control in absence of uncertainty and disturbance.Therefore,s(x,t)can be considered as the difference between the actual and the desired trajectory projected onG1.It is observed that the system always starts at the sliding manifold,which means the reaching phase is eliminated.The objective is to find an appropriate discontinuous controlu1to keep the sliding motion ons(x,t)=0.The usual choice for the discontinuous control is[11]

    whereM(x,t)≥dmaxis a gain related to the maximum bound of disturbances.In order to reduce chattering,the discontinuous control is approximated by

    where θ is a very small positive number and set as 0.001 in this paper.Thus,the ISM-CNF control law can be derived from equation(9),(18)and(15)

    Fig.1 shows the block diagram of the ISM-CNF control law.By defining Lyapunov function asV=?xTP?x,stability of closed-loop system(1)with control input(15)is proved for three cases in[13].

    Fig.1 The block diagram of the ISM-CNF based control law.

    4 Optimal control problem

    In order to obtain desired tracking performance and robustness of the closed-loop system,parameters and feedback gains in the ISM-CNF control law need to be selected properly.The design of the discontinuous control law is relatively simple,because the only parameter needs to be tuned isM(x,t),which is determined by the maximum bound of disturbances.Therefore,the main problem is to design the linear feedback gainF,the positive definite matrixWof the Lyapunov equation and the nonlinear function ρ(r,y).

    4.1 Minimization problem

    There are several ways to determineF,such as H2and H∞approaches,pole placement method,LQR method and so on.Chen et al.[2]presents a guideline for the selection ofWby defining a auxiliary system.But the guideline is not operational in the design procedure.Generally,the matrixWas well as the parameters of the nonlinear function ρ(r,y)are tuned by trial and error method.The tracking performance of the closed-loop system mainly relies on the designer's experience.In order to obtain the desired tracking performance,Yu et al.[7]investigated the optimal CNF control problem.In[7],both the linear feedback gainFand the nonlinear function ρ(r,y)are determined automatically by solving the minimization problem with PSO algorithm.However,the selection of the positive definite matrixWof the Lyapunov equation is still not discussed,and disturbance is not considered either.This motivates us to develop a new optimal problem,which takesWand disturbance into account.Select properF,α,β andWsuch that

    with the restrictions that

    R1:A+BFis Hurwitz,

    R2:α >0,β>0,

    R3:initial damping ratio 0<ζ0<1,and

    R4:for any δ ∈ (0,1),letcδ>0 be the largest positive scalar meeting the condition that

    where 0 ≤ δ1< δ and|(δ-δ1)umax|=dmax.

    Note that other restrictions can be extended easily according to practical situations.For example,|y|<|r|should be a restriction for systems that do not allow overshoot,and the state trajectory can be restricted in a given space.Moreover,we only take ITAE as the performance criteria in this paper,it could be replaced by other criteria such as IAE as well[17].PSO algorithm is employed to solve the minimization problem.After the optimal CNF control law is tuned,combine it with the discontinuous control law to form the optimal ISM-CNF control law so as to achieve the desired properties.

    4.2 PSO algorithm

    Particle swarm optimization(PSO)is a population based stochastic optimization technique which simulates the behaviors of bird flocking.In the basic PSO algorithm,the particle swarm consists ofnparticles,and the position of each particle stands for the potential solution in theD-dimensional space.In every iteration,each particle is updated by following two 'best' values.The first one is the best solution it has achieved so far,called personal best fitness.Another one is global best fitness,the best value obtained so far by any particle in the population.

    Each particle can be shown by its current velocity and position,the personal best fitness and the global best fitness.The position and velocity of each particle are calculated as follows:

    wherei=1,2,...,n,nis the particle number of the particle swarm andDis the dimension number of the searching space,tis the iteration time step,ω is the inertia weight,c1andc2are acceleration constants,xiD(t)andviD(t)are respectively the position and velocity of theith particle in iterationt,piDrepresents the best position in dimensionDachieved so far by theith particle,pgDis the best position in dimensionDachieved by the neighbours of theith particle,andr1andr2are random values uniformly distributed in[0,1].

    PSO is easy to implement and there are few parameters to adjust.It has been successfully applied in many areas:function optimization,artificial neural network training,fuzzy system control,and other areas.In this paper,PSO is used to solve the minimization problem(20).

    Consider the second-order linear system,then the linear feedback gainFand the positive definite matrixWare respectively set as

    Therefore,there are six parameters to be tuned:f1,f2,w1,w2,α and β.We would like to point out that the order of systems in our research is no more than four.

    5 Simulation results

    Two examples are demonstrated in this section.Example 1 verifies the validity of the optimal ISM-CNF controller by comparing with the ISM-CNF controllerin[14].Example 2 shows application of the optimal controller in the tracking control of the micromirror.

    5.1 Example 1

    Consider the servo position control system with disturbance presented in[14]

    wherex1,x2,uare respectively the angular position of the load disc,the angular velocity of the load disc and the input voltage.The maximum available input voltage isumax=4.9V,dis the disturbance and taken as

    To design the optimal ISM-CNF controller for system(25),an optimal CNF controller should be designed first for the nominal system(d=0)by solving the minimization problem(20)with PSO algorithm.The reference step signal to be tracked is 50.The linear feedback gainFand the positive definite matrixWare respectively set as(23)and(24).By makingw1=w2,Wcan be expressed as

    where η∈[-8,8]is a parameter to be tuned.Therefore,the tuning parameters are reduced tof1,f2,η,α and β.The conditions of the particle swarm in(21)are initialized as follows:n=1000,ω=0.9,c1=c2=1.2,the iteration is 30.

    The tuning parameters are achieved as

    Thus,

    where the positive definite matrixP?is obtained as the solution to the Lyapunov equation(8).The optimal CNF controller can be achieved by putting the tuned parameters into equation(9).

    Then,the discontinuous control lawu1is designed as follows:G1is computed byG1=B+=[0 0.0022]and the sliding surface is obtained by(16).Then,Mis chosen as 0.21 according to the maximum value of the disturbance.

    The optimal ISM-CNF control is expressed as equation(19)with the designed parameters.

    Fig.2 shows comparison of the controllers in[14]and the optimal controllers when the reference signal is set asr=50.It can be observed that the optimal controllers achieve much higher tracking performance in the presence of disturbance.

    Fig.2 Comparison of the controllers in[14]and the optimal controllers when r=50.

    The nonlinear function(10)is applied in the CNF control law and the ISM-CNF control law in[14].In this paper,we employ the nonlinear function(11)to adapt to the variation of the tracking target.Its effectiveness is tested by changing the tracking target intor=10 and still using the optimal ISM-CNF control law(19).

    It is observed in Table 1 that the optimal controllers yield quicker response with smaller overshoot in all cases.Fig.3 shows that the CNF control law in[14]causes large oscillation and fails to ensure the stability of the perturbed system,while the optimal CNF control law takes advantage of the nonlinear function(11)and achieves high tracking performance.It can also be seen that the optimal ISM-CNF control law achieves robustness,quick response and negligible overshoot,while the ISM-CNF control law in[14]only attenuates the disturbance and still gives large overshoot.

    Table 1 Comparison of the control law in[14]and the optimal control law.

    Fig.3 Comparison of the controllers in[14]and the optimal controllers when r=10.

    5.2 Example 2

    The optimal ISM-CNF control can be applied to the tracking control of the 2D torsional micromirror with sidewall electrodes,which has been widely adopted in imaging systems,optical switches and adaptive optics.The dynamic equations of the electrostatically actuated micromirror system are expressed as[18]

    where the parameters are given asR1=0.16,R2=0.15,λαβ=0.2251,Gα=3.0827X106,Gβ=1.7894X107,and the initial values isx(0)=(0;0;0;0).The control objective is to drive the scan angles α and β to track the target references with desired dynamic performance.TαandTβare electrostatic torques determined by the driving voltages.The simulation is simplified with approximate treatment by defining the control inputsuα=106TαandThe maximum available inputs are.Thus,the dynamic equations of the system can be seen as two independent systems:system(28)is for the control of α and system(29)is for the control of β.In the simulation,the disturbance is defined asd=0.3sin(10t).

    Consider system(28),the target reference of the scan angle α isrα=1?.The parameters of the CNF control law are tuned by PSO algorithm and achieved asThe discontinuous control law is designed withMα=0.31 andGα1=[0 0.3244].Hence,the optimal ISM-CNF control lawis derived as equation(19)with

    The optimal ISM-CNF controllers are tested in simulations.Fig.4 shows the tracking performance of the closed-loop system for the scan angle α and β respectively.It is observed that both the optimal ISM-CNF controllers suppress the effect of the disturbance and give desired tracking performance.More precisely,under the designed controllers,the overshoot is 0.49% and settling time is 0.32ms for the tracking of α,for β,there is no overshoot while the settling time is 0.69ms.The plot of control inputs with the optimal ISM-CNF control law are shown in Fig.5.The inputs are sinusoidally varying due to sinusoidal disturbance.

    Fig.4 Tracking performance with the optimal ISM-CNF controllers.

    Fig.5 Inputs with the optimal ISM-CNF controllers.

    6 Conclusions

    In this paper,a systematic method is proposed to design the integral sliding mode based optimal composite nonlinear feedback control law.First,the design of the optimal CNF control law is turned into a minimization problem with some restrictions and solved by PSO algorithm.Subsequently,the discontinuous control law is substituted by a continuous control law so as to reduce chattering.Then,the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the approximate continuous control law.Simulation results show that the optimal ISM-CNF control law yields much better tracking performance in comparison with the ISM-CNF control law in[14].The optimal controller is applied to the tracking control of the micromirror and achieves high tracking speed and negligible overshoot in presence of disturbance.

    [1]Z.Lin,M.Pachter,S.Banda.Toward improvement of tracking performance nonlinear feedback for linear systems.International Journal of Control,1998,70(1):1-11.

    [2]B.M.Chen,T.H.Lee,K.Peng,et al.Composite nonlinear feedback control for linear systems with input saturation:theory and an application.IEEE Transactions on Automatic Control,2003,48(3):427-439.

    [3]Y.He,B.M.Chen,C.Wu.Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation.Systems&Control Letters,2005,54(5):455-469.

    [4]G.Cheng,B.M.Chen,K.Peng,et al.A MATLAB toolkit for composite nonlinear feedback control.Proceedings of the IEEE Control,Automation,Robotics and Vision Conference.Kunming:IEEE,2004:878-883.

    [5]W.Lan,C.K.Thum,B.M.Chen.A hard-disk-drive servo system design using composite nonlinear-feedback control with optimal nonlinear gain tuning methods.IEEE Transactions on Industrial Electronics,2010,57(5):1735-1745.

    [6]W.Lan,Q.Zhou.Speed control of DC motor using composite nonlinear feedback control.Proceedings of the IEEE International Conference on Control and Automation.Christchurch:IEEE,2009:2160-2164.

    [7]Y.Xiao,W.Lan.Optimal composite nonlinear feedback control for a gantry crane system.Chinese Control Conference.Hefei:IEEE,2012:601-606.

    [8]M.F.Ismail,K.Peng,N.Hamzah,et al.A linear model of quarter car active suspension system using composite nonlinear feedback control.IEEE Student Conference on Research and Development(SCOReD).Penang:IEEE,2012:98-103.

    [9]A.Pisano,E.Usai.Sliding mode control:a survey with applications in math.Mathematics and Computers in Simulation,2011,81(5):954-979.

    [10]V.Utkin,J.Shi.Integral sliding mode in systems operating under uncertainty conditions.Proceedings of the 35th IEEE Conference on Decision and Control.Kobe:IEEE,1996:4591-4596.

    [11]F.Castanos,L.Fridman.Analysis and design of integral sliding manifolds for systems with unmatched perturbations.IEEE Transactions on Automatic Control,2006,51(5):853-858.

    [12]P.Bhavsar,V.Kumar.Trajectory tracking of linear inverted pendulum using integral sliding mode control.International Journal of Intelligent Systems and Applications,2012,4(6):31.

    [13]B.Bandyopadhyay,D.Fulwani,Y.J.Park.A robust algorithm against actuator saturation using integral sliding mode and composite nonlinear feedback.Proceedings of the17th International Fe-dration of Automatic Control World Congress.Seoul:IFAC,2008:14174-14179.

    [14]B.Bandyopadhyay,F.Deepak,K.Kim.Integral sliding mode based composite nonlinear feedback control.Sliding Mode Control Using Novel Sliding Surfaces.Heidelberg:Springer,2009:83-95.

    [15]W.Lan,B.M.Chen.On selection of nonlinear gain in composite nonlinear feedback control for a class of linear systems.Proceedings of the 46th IEEE Conference on Decision and Control.New Orleans:IEEE,2007:1198-1203.

    [16]Y.Del Valle,G.K.Venayagamoorthy,S.Mohagheghi,et al.Particle swarm optimization:basic concepts,variants and applications in power systems.IEEE Transactions on Evolutionary Computation,2008,12(2):171-195.

    [17]D.Graham,R.C.Lathrop.The synthesis of optimum transient response:criteria and standard forms.Transactions of the American Institute of Electrical Engineers-Part II:Applications and Industry,1953,72(5):273-288.

    [18]H.Chen,M.Pallapa,W.Sun,et al.Sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes.International Conference on Manipulation,Manufacturing and Measurement on the Nanoscale.Xi'an:IEEE,2012:234-239.

    21 February 2014;revised 28 March 2014;accepted 31 March 2014

    DOI10.1007/s11768-014-0022-4

    ?Corresponding author.

    E-mail:jyeow@uwaterloo.ca.Tel.:+86-13826040831;fax:+1 519-746-4791.

    This work was supported by National Natural Science Foundation of China(No.61374036)and the Fundamental Research Funds for the Central Universities(No.SCUT 2014ZM0035).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Zhou ZHENGreceived his B.S.degree in Automation from Wuhan University of Technology in 2012.He is currently working toward his M.S.degree at South China University of Technology.His main research interests include modeling and control of micro-electro-mechanical system.E-mail:weasonlife@126.com.

    Weijie SUNis a lecturer in South China University of Technology.His research interests include control theory and applications,robotics and automation,dynamical analysis and design of micro/nano devices.E-mail:auwjsun@scut.edu.cn.

    Hui CHENreceived his B.S.degree in Automation and M.S.degree in Control Theory and Control Engineering,both from the Henan Polytechnic University in 2002 and 2007,respectively.He received a scholarship from China Scholarship Council and was a visiting scholar in the Advanced Micro/Nano Devices Lab.at University of Waterloo from 2011 to 2013.He is a Ph.D.candidate at South China University of Technology.His current research interests include control and applications of micro/nano devices.E-mail:huichenscut@gmail.com.

    John T.W.YEOWreceived the B.S.degree in Electrical and Computer Engineering,and M.A.S.and Ph.D.degrees in Mechanical and Industrial Engineering from the University of Toronto,Toronto,ON,Canada,in 1997,1999,and 2003,respectively.He is currently a professor in the Department of Systems Design Engineering at University of Waterloo,Waterloo,ON,Canada.His current research interests are in the field of developing miniaturized biomedical instruments.He is a Canada Research Chair in Micro/Nanodevices.He is the Editor-in-Chief of the IEEE Nanotechnology Magazine,and an Associate Editor of the IEEE Transactions on Nanotechnology.E-mail:jyeow@uwaterloo.ca.

    69人妻影院| 国产人妻一区二区三区在| 大片免费播放器 马上看| 五月玫瑰六月丁香| av在线蜜桃| 亚洲三级黄色毛片| videossex国产| 久久精品久久久久久噜噜老黄| 国产在线男女| 亚洲婷婷狠狠爱综合网| 亚洲自拍偷在线| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 哪个播放器可以免费观看大片| 丝袜美腿在线中文| 美女大奶头视频| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 国产精品三级大全| 国产免费一级a男人的天堂| 狠狠精品人妻久久久久久综合| 男人舔女人下体高潮全视频| 亚洲精华国产精华液的使用体验| 久久久色成人| 色综合亚洲欧美另类图片| 99久久精品一区二区三区| av在线播放精品| 纵有疾风起免费观看全集完整版 | 最后的刺客免费高清国语| 亚洲伊人久久精品综合| 18+在线观看网站| 少妇人妻精品综合一区二区| 乱人视频在线观看| 日韩一本色道免费dvd| 秋霞伦理黄片| 亚洲国产色片| 九色成人免费人妻av| 国产黄色免费在线视频| 午夜免费男女啪啪视频观看| 亚洲国产精品成人久久小说| 日本wwww免费看| 成人综合一区亚洲| 18禁裸乳无遮挡免费网站照片| xxx大片免费视频| 特级一级黄色大片| 国产在视频线在精品| 美女cb高潮喷水在线观看| 日本午夜av视频| 国产精品99久久久久久久久| 国产av码专区亚洲av| av免费在线看不卡| 人妻制服诱惑在线中文字幕| av黄色大香蕉| 亚洲婷婷狠狠爱综合网| 国产精品一及| 伦理电影大哥的女人| 联通29元200g的流量卡| 亚洲av成人精品一区久久| 亚洲精品国产av成人精品| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| 国产午夜福利久久久久久| 网址你懂的国产日韩在线| 久久鲁丝午夜福利片| 高清视频免费观看一区二区 | 五月伊人婷婷丁香| 亚洲成人中文字幕在线播放| 少妇被粗大猛烈的视频| 亚洲精品成人久久久久久| 亚洲自拍偷在线| 亚洲精品日韩av片在线观看| 男人舔女人下体高潮全视频| 国产精品女同一区二区软件| 国产精品伦人一区二区| 日韩,欧美,国产一区二区三区| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 男插女下体视频免费在线播放| 亚洲图色成人| 黄色日韩在线| 久久这里只有精品中国| 69人妻影院| 99热这里只有是精品在线观看| 秋霞伦理黄片| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 丰满少妇做爰视频| av线在线观看网站| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 亚洲国产欧美人成| 最近的中文字幕免费完整| 男女那种视频在线观看| 1000部很黄的大片| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 午夜免费男女啪啪视频观看| 街头女战士在线观看网站| a级毛片免费高清观看在线播放| 精品一区二区三区视频在线| 国产在线男女| 亚洲自拍偷在线| 亚洲av电影在线观看一区二区三区 | 久久久国产一区二区| 久久久久久久久久人人人人人人| 人妻制服诱惑在线中文字幕| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添av毛片| 亚洲无线观看免费| av在线亚洲专区| 联通29元200g的流量卡| 观看免费一级毛片| 日韩欧美一区视频在线观看 | 插逼视频在线观看| 国产精品久久久久久久电影| 在线天堂最新版资源| 国产精品一区二区性色av| 久久精品人妻少妇| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 亚洲av一区综合| 色播亚洲综合网| 日日干狠狠操夜夜爽| 18+在线观看网站| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 少妇丰满av| 国产亚洲91精品色在线| 国产欧美另类精品又又久久亚洲欧美| 国产黄a三级三级三级人| 一边亲一边摸免费视频| 我的女老师完整版在线观看| 五月玫瑰六月丁香| 99九九线精品视频在线观看视频| 久久精品久久精品一区二区三区| 亚洲婷婷狠狠爱综合网| 国产中年淑女户外野战色| 亚洲国产成人一精品久久久| 丝袜喷水一区| 久久精品熟女亚洲av麻豆精品 | 欧美区成人在线视频| 午夜福利在线在线| 黄片wwwwww| 国产精品av视频在线免费观看| 热99在线观看视频| 男人舔女人下体高潮全视频| 草草在线视频免费看| 婷婷色综合www| 最近手机中文字幕大全| 毛片女人毛片| 特大巨黑吊av在线直播| 91狼人影院| 我的老师免费观看完整版| 亚洲综合色惰| 观看美女的网站| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 午夜视频国产福利| 国产精品一区二区性色av| 久久99蜜桃精品久久| 七月丁香在线播放| 最近视频中文字幕2019在线8| 插阴视频在线观看视频| 久热久热在线精品观看| 特级一级黄色大片| 国产一区二区三区av在线| 午夜亚洲福利在线播放| 久久99热6这里只有精品| 国产精品不卡视频一区二区| 午夜福利在线在线| 亚洲av电影在线观看一区二区三区 | 五月伊人婷婷丁香| 丰满乱子伦码专区| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 日韩不卡一区二区三区视频在线| 嫩草影院入口| 亚洲国产成人一精品久久久| 黄色配什么色好看| 街头女战士在线观看网站| 日韩成人av中文字幕在线观看| 又爽又黄无遮挡网站| 免费看光身美女| 国产黄频视频在线观看| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 免费少妇av软件| 国产男女超爽视频在线观看| 五月伊人婷婷丁香| 淫秽高清视频在线观看| 中文乱码字字幕精品一区二区三区 | 极品少妇高潮喷水抽搐| 国产成人一区二区在线| 国产爱豆传媒在线观看| 亚洲av.av天堂| 国精品久久久久久国模美| 99热6这里只有精品| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 观看美女的网站| 国产乱来视频区| 亚洲国产日韩欧美精品在线观看| 亚洲精品日韩av片在线观看| 久久6这里有精品| 女人被狂操c到高潮| 日韩欧美一区视频在线观看 | 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 校园人妻丝袜中文字幕| 免费少妇av软件| av国产免费在线观看| 日韩欧美精品免费久久| 天天一区二区日本电影三级| 床上黄色一级片| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 欧美zozozo另类| 日韩电影二区| 97超视频在线观看视频| 亚洲图色成人| av免费观看日本| 毛片女人毛片| 少妇熟女aⅴ在线视频| 国产av不卡久久| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 丰满少妇做爰视频| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 只有这里有精品99| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 99视频精品全部免费 在线| 嫩草影院精品99| videos熟女内射| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 久久久久久久久久人人人人人人| av在线播放精品| 亚洲av中文字字幕乱码综合| 最近最新中文字幕免费大全7| 麻豆av噜噜一区二区三区| 色网站视频免费| 欧美性猛交╳xxx乱大交人| 国产成人精品一,二区| 哪个播放器可以免费观看大片| 男人爽女人下面视频在线观看| 国产黄片美女视频| 国产高清国产精品国产三级 | 91精品国产九色| 久久久久久九九精品二区国产| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱| 国产亚洲91精品色在线| 国产色爽女视频免费观看| 婷婷色综合大香蕉| 天堂俺去俺来也www色官网 | 天天躁日日操中文字幕| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 久久久久久久久大av| 91精品国产九色| 日韩精品青青久久久久久| 97热精品久久久久久| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久 | 国产有黄有色有爽视频| 一夜夜www| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 亚洲av电影不卡..在线观看| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 欧美xxxx性猛交bbbb| 国产av码专区亚洲av| 久久97久久精品| 中文字幕av在线有码专区| 国产一区亚洲一区在线观看| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件| 国产69精品久久久久777片| 午夜福利高清视频| 午夜爱爱视频在线播放| 男的添女的下面高潮视频| 亚洲综合精品二区| 99视频精品全部免费 在线| 成人午夜高清在线视频| 搞女人的毛片| 久久综合国产亚洲精品| 秋霞伦理黄片| 亚洲精品色激情综合| 直男gayav资源| 亚洲精品成人久久久久久| 三级国产精品片| 两个人的视频大全免费| 毛片女人毛片| 永久网站在线| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 久久久久国产网址| 嫩草影院新地址| 国产成人午夜福利电影在线观看| 久久久久久国产a免费观看| 国产成人a区在线观看| 亚洲国产精品专区欧美| 国产久久久一区二区三区| 国产真实伦视频高清在线观看| 99热6这里只有精品| 日韩欧美 国产精品| 一本久久精品| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 18+在线观看网站| 国产精品三级大全| 波多野结衣巨乳人妻| 久久久国产一区二区| 真实男女啪啪啪动态图| 精品一区二区免费观看| 亚洲av在线观看美女高潮| 日韩精品有码人妻一区| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 美女高潮的动态| 男女边摸边吃奶| 在线 av 中文字幕| 麻豆久久精品国产亚洲av| 一区二区三区乱码不卡18| 国产精品.久久久| 日本爱情动作片www.在线观看| 91狼人影院| 国产视频首页在线观看| 18+在线观看网站| 久久久精品94久久精品| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 国产精品不卡视频一区二区| 国产综合精华液| 91狼人影院| 青春草亚洲视频在线观看| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 男人舔奶头视频| 国产免费视频播放在线视频 | 国语对白做爰xxxⅹ性视频网站| 一个人看的www免费观看视频| 丝袜美腿在线中文| 久久久久久久久久久免费av| 嫩草影院入口| 欧美+日韩+精品| av又黄又爽大尺度在线免费看| 99久国产av精品| 精品人妻视频免费看| 女人被狂操c到高潮| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| av免费观看日本| 蜜桃亚洲精品一区二区三区| 又大又黄又爽视频免费| 亚洲精品乱码久久久v下载方式| 日韩不卡一区二区三区视频在线| av黄色大香蕉| 亚洲av福利一区| 成人综合一区亚洲| 丰满乱子伦码专区| 麻豆成人av视频| 搡老妇女老女人老熟妇| 欧美激情国产日韩精品一区| 丝袜美腿在线中文| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 国产精品一区二区性色av| 在线免费十八禁| 国产永久视频网站| 99热全是精品| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 美女大奶头视频| 蜜桃亚洲精品一区二区三区| 亚洲美女视频黄频| 日本一本二区三区精品| 一边亲一边摸免费视频| 高清在线视频一区二区三区| 人人妻人人澡欧美一区二区| 免费观看的影片在线观看| 欧美人与善性xxx| 欧美精品国产亚洲| 青春草国产在线视频| 国产高清不卡午夜福利| 精品久久久久久久久av| 日韩欧美国产在线观看| 97人妻精品一区二区三区麻豆| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 午夜福利视频精品| 欧美日本视频| 午夜激情久久久久久久| 亚洲图色成人| 五月伊人婷婷丁香| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 美女cb高潮喷水在线观看| 国产精品一区二区在线观看99 | 午夜免费激情av| 国产午夜精品论理片| 亚洲国产av新网站| 一级av片app| 91午夜精品亚洲一区二区三区| 春色校园在线视频观看| 一个人看的www免费观看视频| 亚洲av电影在线观看一区二区三区 | 欧美激情在线99| 精品一区二区三卡| 少妇丰满av| 亚洲精品成人av观看孕妇| 欧美区成人在线视频| 视频中文字幕在线观看| 秋霞伦理黄片| av免费在线看不卡| 成人亚洲精品av一区二区| 国产av在哪里看| 久久久久网色| 人人妻人人澡人人爽人人夜夜 | 欧美 日韩 精品 国产| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 波野结衣二区三区在线| 久久6这里有精品| 伦精品一区二区三区| 久久久久久久午夜电影| 久久久久久久亚洲中文字幕| 亚洲美女视频黄频| 久久久久久久大尺度免费视频| 日韩精品青青久久久久久| 日韩一区二区三区影片| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 国产在线男女| 久久6这里有精品| 高清午夜精品一区二区三区| 国产精品美女特级片免费视频播放器| 亚洲欧美精品专区久久| 久久精品国产亚洲av天美| 日韩大片免费观看网站| 人人妻人人看人人澡| 亚洲国产欧美人成| 日韩电影二区| 国产成年人精品一区二区| 国产综合懂色| av免费在线看不卡| 日韩欧美一区视频在线观看 | 亚洲av二区三区四区| 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 99久国产av精品| 七月丁香在线播放| 看黄色毛片网站| 久久99热这里只频精品6学生| 国产精品1区2区在线观看.| 好男人在线观看高清免费视频| 2022亚洲国产成人精品| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 激情 狠狠 欧美| 伦理电影大哥的女人| 男插女下体视频免费在线播放| 男女边摸边吃奶| 亚洲国产成人一精品久久久| 亚洲18禁久久av| 中文资源天堂在线| videossex国产| 国产永久视频网站| 欧美极品一区二区三区四区| 亚洲av成人av| 国产精品99久久久久久久久| 亚洲综合精品二区| 国产亚洲5aaaaa淫片| 狠狠精品人妻久久久久久综合| 国产精品人妻久久久影院| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区成人| 大话2 男鬼变身卡| 男人狂女人下面高潮的视频| 爱豆传媒免费全集在线观看| 91狼人影院| 欧美日韩国产mv在线观看视频 | 国内精品美女久久久久久| 少妇熟女欧美另类| 亚洲av成人精品一二三区| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 国产日韩欧美在线精品| 在线观看美女被高潮喷水网站| 成人亚洲欧美一区二区av| 国产精品嫩草影院av在线观看| av在线观看视频网站免费| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 91狼人影院| 日韩成人av中文字幕在线观看| 日韩国内少妇激情av| 97热精品久久久久久| 男人舔奶头视频| 别揉我奶头 嗯啊视频| 夫妻午夜视频| 国产精品一区二区三区四区免费观看| 久久久久网色| 黄片wwwwww| 日韩电影二区| 免费观看无遮挡的男女| ponron亚洲| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 免费大片黄手机在线观看| 国内精品宾馆在线| eeuss影院久久| 十八禁国产超污无遮挡网站| 一级毛片久久久久久久久女| 亚洲电影在线观看av| 国产乱来视频区| 我的女老师完整版在线观看| 亚洲性久久影院| 男插女下体视频免费在线播放| av播播在线观看一区| 丝袜喷水一区| 国产黄色小视频在线观看| 国产一级毛片七仙女欲春2| 亚洲精品456在线播放app| 亚洲av福利一区| 久久鲁丝午夜福利片| 麻豆成人午夜福利视频| 久久久久精品久久久久真实原创| 国产淫语在线视频| 亚洲欧美日韩卡通动漫| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| 国产高清国产精品国产三级 | 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 国产不卡一卡二| 午夜精品一区二区三区免费看| 91在线精品国自产拍蜜月| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| a级毛片免费高清观看在线播放| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 九九久久精品国产亚洲av麻豆| 波多野结衣巨乳人妻| 欧美日韩国产mv在线观看视频 | 国内少妇人妻偷人精品xxx网站| 午夜福利成人在线免费观看| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 成年免费大片在线观看| 国产男人的电影天堂91| 成人高潮视频无遮挡免费网站| 中文乱码字字幕精品一区二区三区 | 成人av在线播放网站| 搡女人真爽免费视频火全软件| 欧美高清成人免费视频www| 丰满少妇做爰视频| 亚洲国产精品sss在线观看| 欧美一级a爱片免费观看看| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 高清毛片免费看| 亚洲av电影在线观看一区二区三区 | 久久久亚洲精品成人影院| 久久精品国产亚洲av天美| 成人漫画全彩无遮挡| 欧美三级亚洲精品| 91精品国产九色| 国国产精品蜜臀av免费| 插逼视频在线观看| 又爽又黄无遮挡网站| 精品久久久久久久久av| 久久久久久久久久人人人人人人| 成人鲁丝片一二三区免费| 777米奇影视久久| 三级经典国产精品| 韩国av在线不卡| 97超视频在线观看视频| 国产成人精品福利久久| 99热全是精品| 国产精品一区二区三区四区久久| 亚洲色图av天堂| 99热全是精品| 国产亚洲91精品色在线| 黄色日韩在线| 久久99热6这里只有精品| 一级片'在线观看视频| 国产精品.久久久| 国产亚洲一区二区精品| 欧美精品国产亚洲| av天堂中文字幕网| 欧美3d第一页| 国产黄a三级三级三级人| 人体艺术视频欧美日本| 久久久久久久大尺度免费视频|