• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Capital injections with negative surplus and delays:models and analysis

    2014-12-07 08:00:22ZhuoJINGeorgeYIN
    Control Theory and Technology 2014年2期

    Zhuo JIN,George YIN

    1.Centre for Actuarial Studies,Department of Economics,The University of Melbourne,VIC 3010,Australia;

    2.Department of Mathematics,Wayne State University,Detroit,Michigan 48202,U.S.A.

    Capital injections with negative surplus and delays:models and analysis

    Zhuo JIN1?,George YIN2

    1.Centre for Actuarial Studies,Department of Economics,The University of Melbourne,VIC 3010,Australia;

    2.Department of Mathematics,Wayne State University,Detroit,Michigan 48202,U.S.A.

    This work develops a new model to deal with the scenario that some companies can still run business even the surplus falls below zero temporarily.With such a scenario in mind,we allow the surplus process to continue in this negative-surplus period,during which capital injections will be ordered to assist in the stabilization of financial structure,until the financial status becomes severe enough to file bankruptcy.The capital injections will be modeled as impulse controls.By introducing the capital injections with time delays,optimal dividend payment and capital injection policies are considered.Using the dynamic programming approach,the value function obeys a quasi-variational inequality.With delays in capital injections,the company will be exposed to the risk of bankruptcy during the delay period.In addition,the optimal dividend payment and capital injection strategies should balance the expected cost of the possible capital injections and the time value of the delay periods.This gives rise to a stochastic control problem with mixed singular and delayed impulse controls.Under general assumptions,the lower capital injection barrier is determined,where bankruptcy occurs.The closed-form solution to the value function and corresponding optimal policies are obtained.

    Stochastic control;Capital injection;Dividend policy;Delayed impulse control;Singular control

    1 Introduction

    Designing dividend payment policies has long been an important issue in finance and actuarial sciences.Because of the nature of their products,insurers tend to accumulate relatively large amounts of cash,cash equivalents,and investments in order to pay future claims and avoid insolvency.The payment of dividends to shareholders may reduce an insurer's ability to survive adverse investment and underwriting experience.A practitioner will manage the reserve and dividend payment against asset risks so that the company can satisfy itsminimum capital requirement.

    Stochastic optimal control problems on dividend strategies for an insurance corporation have drawn increasing attention since the introduction of the optimal dividend payment model proposed in[1].There have been increasing efforts on using advanced methods of stochastic control to study the optimal dividend policy;see[2-4].As an extension of the previous work,dividend is assumed to be paid out with the constraint that a transaction cost must be paid.The studies related to optimal dividend problems with transaction costs and compound Poisson process can be referred to[5].To maximize the expected total discounted dividend payments,the company will bankrupt almost surely if the dividend payment is paid out as a barrier strategy.In practice,reference[6]suggested that capital injections can be taken into account to maintain the business when cashflow is insufficient.Furthermore,penalty will be paid when surplus falls below zero,which can be considered as the transaction cost of capital injection;see also[7-9].Whenever the company is on the verge of bankruptcy,the company has the opportunity to raise sufficient funds to survive.A natural payoff function is to maximize the difference between the expected total discounted dividend payment and the capital injections with costs until bankruptcy under the optimal controls.

    In this work,we develop a model to deal with the scenario that some companies are not necessary to file bankruptcy with temporary negative surplus.In our model,negative surplus is not the end,and the shareholder will evaluate if it is profitable enough to rescue the company.If the financial deficit is severe enough,the shareholders will let the company go to bankruptcy to cut the losses.Otherwise,strategies will be taken to save the company such as capital injections,refinancing,or merger etc.With such a practice in mind,we distinguish between temporary deficit and bankruptcy,where bankruptcy occurs at a sufficiently low capital level.Recently,there have been surging work related to the optimal dividend and refinance policies after ruin.Reference[10]analyzed the absolute ruin probabilities in a jump diffusion risk,where companies will be not allowed to continue their business when surplus is below certain negative critical value.Reference[11]introduced the Omega model to distinguish between ruin and bankruptcy.Companies can still run the business normally until the financial status is severe enough to file bankruptcy.Reference[12]determined the expected discounted value of a penalty at bankruptcy and computed the probability of bankruptcy under the assumption of Brownian motion for the surplus.On the other hand,there have been resurgent efforts devoted to the study of time delay on stochastic models.Reference[13]considered the problem of a bank's optimal strategy of recapitalization with a fixed delay period.Reference[14]proposed a direct solution method for delayed impulse control problems of one-dimensional diffusions and solve an optimal labor force problem with firing delay.Reference[15]studied the optimal reinsurance strategy under fixed cost and delay.Considering such a delay in the capital injection makes our formulation more general and realistic.

    With the classical capital injection policies,the company could run the business in the absence of risk of bankruptcy.However,empirical studies indicate that traditional surplus models with capital injections fail to capture the impact of regulatory processes of capital raising transactions.To better reflect reality,we have to consider the factor that the transactions of capital injections need certain amount of time to be carried out after the decision of injecting extra capitals is made.The time needed can be modeled by using delays.In the real world,the capital injections can never happen instantaneously.Time delays cannot be ignored and are unavoidable.

    Time delays occur naturally in insurance decisionmaking problems such as improving the capital reserve to a nonnegative capital buffer level by capital injections.Many corporations face regulatory delays(e.g.,preparatory and administrative work),which need to be taken into account when the corporations make decisions under uncertainty of insolvency during the delays.The problem of finding the optimal strategy under the condition of delayed capital injections involves a stochastic delay system with impulse controls.In the presence of delay,the corporations will be exposed to a strictly positive probability of bankruptcy during the waiting period.The threshold of bankruptcy can be determined by the barrier where payoff function approaches zero.In addition,the dividend payment is not allowed during this waiting period.Unlike the models where capital injections can be implemented instantaneously to avoid the bankruptcy completely,the positive probability of liquidation risk in our model leads to the decision of capital injections with delays more realistic but more complicated.

    This paper reveals clearly the difference of the strategies with and without delays for our model.In traditional models,negative surplus is not allowed,and capital injections without delays will only be implemented when surplus hits 0.The size of the capital injections is always a constant to increase the surplus to a positive capital buffer level,and payoff function will be positive even with zero initial surplus(see[9]).However,when temporary negative-surplus situation is allowed,capital injections without delays could always improve the surplus status instantaneously to avoid severe financial condition.Thus,payoff function or value function will always be positive and bankruptcy will never occur.

    One of the novel contributions of the current paper is:Taking into account of the time delays,the impulse controls of capital injections depend on the surplus and can be very large.Together with the unrestricted dividend payment policy,using a quasi-variational inequality approach,we demonstrate that these state-dependent capital injections lead to the formulation of a free boundary problem.Under general assumptions,the analytic solution to the free boundary problem and the optimal statedependent 'threshold' strategies are obtained in this paper.Comparing with work of[13],our work further considers the case of negative reserve,which is naturally proposed when capital injections are included.The lower barrier of the capital injection region is a negative free parameter,which shows that the surplus status can only worsen up to atolerable status.With aflexible 'capital injection stop'-barrier,we fix the 'call for help'-state at 0 surplus.Choosing the newly constructed strategies will significantly effect the capital injection sizes and termination thresholds.

    In addition,one of the new findings indicates that capital injections with delays are crucial in our model.Note that for the case of capital injection without delays,bankruptcy can be completely avoided.Thus,the company could run the business with negative capital reserve forever,which is not realistic.When delays are considered,the threshold of the bankruptcy can be determined and when surplus approaches the threshold of bankruptcy,the optimal capital injection goes to zero.It demonstrates that even capital injections are available,the insurance company will be unlikely to avoid the bankruptcy due to the delay when the surplus is sufficiently low.To the best of our knowledge,this has not been considered to date.

    The model we constructed involves the consideration of an important factor-the delay in the capital injection process.It can be clearly seen that the delay factor leads to state-dependent optimal strategies,which provide insights for the insurance company in their decision making process and risk analysis.Not only are such results theoretically sound,but they are crucial in the insurance practice.Capital injections and dividend payment policies with transaction costs are introduced as impulse and singular stochastic controls.The imposed time delay on the capital injections makes the problem more complicated.By adopting a diffusion model,we obtain a quasi-variational inequality(QVI)in this paper.The closed-form solution to the QVI is obtained under certain general assumptions.The value function is verified to be a concave function and defined separately in three regions,which are capital injection region,continuation region,and dividend payment region.The capital injection barrier and dividend payment barrier are also given.The threshold of bankruptcy is also the lower barrier of capital injection region.Finally,the optimal capital injection and dividend payment strategies are obtained.

    The rest of the paper is organized as follows.A formulation of optimal capital injection strategies and dividend payment policies is presented in Section 2.Section 3 deals with the construction of the value function and dividend payment strategy.Section 4 deals with the verification of the solution to the value function.Some limiting case of the solution is also considered.Finally,Section 5 gives some further remarks to conclude the paper.

    2 Formulation

    The surplus process is described by a Brownian motion.That is,

    wherexis the initial surplus,μ is the expected return rate,σ represents the volatility,andW(t)is a standard Brownian motion.We are working with a filtered probability space(Ω,F,{Ft},P),where Ftis the σ-algebra generated byandis the associated filtration.

    A dividend strategyZ(.)is an Ft-adapted process{Z(t):t≥0}corresponding to the accumulated amount of dividends paid up to timetsuch thatZ(t)is a nonnegative and nondecreasing stochastic process that is right continuous with left limits.Throughout the paper,we use the convention thatZ(0-)=0.The jump size ofZat timet≥0 is denoted by

    denotes the continuous part ofZ(t).In this work,we assume the company could still work in the negativesurplus situation.That is,while the company is short of capital,the company is still able to run the business until bankruptcy occurs.When the surplus hits the threshold of disastrous financial status,bankruptcy is unavoidable.Note that the surplus levelX(t)=x0describes the severe financial condition leading to 'certain bankruptcy'.

    On the other hand,capital injections will trigger the improvement of the capital structure.For the time cost of the money,extra capital will only be injected until surplus process falls below zero.LetX(t)=x0for allt> τx0,where τx0=inf{t≥ 0:X(t)

    for allt<τx0.

    We assume that the shareholders need to payK+ζ to meet the capital injection of ζ.K>0 is the fixed transaction costs.We omit the fixed transaction costs in the dividends payout process.Denote byr>0 the discounting factor.For an arbitrary admissible pairu=(Z,L),the performance function is

    The pairu=(Z,L)is said to be admissible ifZandLsatisfy

    i)Z(t)andL(t)are nonnegative for anyt≥0;

    ii)Zis c`adl`ag(that is,it is right continuous and has left limits),nondecreasing and adapted to Ft;

    iii)τnis a sequence of stopping time w.r.t.Ft,and 0≤ τ1<...< τn<...a.s.;

    iv)ζnis measurable w.r.t.Ft;

    vi)J(x,u)<∞for anyxand admissible pairu=(Z,L),whereJis the functional defined in(3).

    In addition,we assume the admissible controlusatisfies

    b)dZ(t)=0 for allt∈ [τn,τn+ Δ],n≥ 1.

    Condition a)tells us a new capital injection should not be placed during the waiting period of the previous capital injection.Condition b)states the dividends may not be paid during the waiting periods of the capital injections.

    Suppose that A is the collection of all admissible pairs.Define the value function as

    When the surplus hits barrierthe financial condition is too severe to maintain the business and extra capital injections are useless.We imposex0=inf{x:V(x)≥0}.Intuitively,in the absence of time delay,on the boundary of the capital injection region,the value function obeys

    then the optimal payoff or the value functionV(x)will not be 0 with the instantaneous capital injections,which could always guarantee the stability of the company's capital structure.However,with the capital injection delays,the company will violate the capital adequacy if the capital injection is hold while the surplus hits 0.Thus,taking into account the delay of the capital injection,the value of theV(x)on the boundary can be obtained as

    For alldefine an operator L by

    whereVxandVxx(x)denotes the first and second derivatives with respect tox.Define another capital injection operator M by

    whereXΔis the value at time Δ ofXdefined by dX(t)= μdt+σdW(t),withX(0)=x.If the value functionVdefined in(4)is sufficiently smooth,by applying the dynamic programming principle([16]),we formally derive the following QVI:

    Similar to[9],we divide the set of the surplus to three regions i)continuation region:C:{LV(x)-rV(x)=0,1

    Boundary conditionsThe capital injection will be taken into account when there is not enough solvency capital to maintain the business.To make the company run continuously,the capital injections will definitely occur at the moments whenx<0.In addition,the capital injections also occur whenever the surplus is sufficiently low.The impulse control of the capital injections depends on the surplus states and leads to a free boundary of the capital injection region.We consider the dividend payout strategy with the delayed capital injection.Combing(9)and(6),the QVI with the boundary conditions follows

    Remark 1The value functionV(x)is not necessarily smooth.In fact,the second derivative of the value function is not always continuous.In the absence of a classical solution to the QVI,one alternative definition for a solution to the quasi-variational inequalities(10)is the notion of a viscosity solution.However,we can interpret the differential generator in terms of left or right derivatives;see[13].

    3 Value function and dividend strategy

    To solve the quasi-variational inequality,we guess the form of a solution and verify the validation of the constructed solution in a general case.The solution can be formulated based on the strategies in each of the regions.Referring to[17],we consider the dividend payout strategy with the capital injection as a band strategy.The decision maker will take no action until the surplus hits 0,where an impulse control of capital injection will be taken.The dividend will be paid out immediately when the surplus reaches the upper barrier.Furthermore,the capital injections will only be considered withX(t)≥x0.That is,suppose there exist three thresholdsx0,0 andb0separating the four regions,where-∞

    To proceed,we construct the solutions in the continuation region when the equality holds.Denoting the candidate solution in the continuation region byf(x).The equality in the continuation region then becomes

    The solution to(11)is

    Letg(x)be the solution to(13).It can easily be obtained that

    whereacan be determined by the boundary condition of the dividend payment region.Based on the form of the solution,b0is the threshold to separate the continuation region and dividend payout region.Thus,the solution should satisfy both(11)and(13)atb0.On the other hand,the twice continuous differentiability ofg(x)atb0requires thatfx(b0)=1 andfxx(b0)=0.Imposing these boundary conditions on(12)yields

    where

    Note that we have usedf(x;b0)to denote the dependence on the parameterb0.Furthermore,substitutingfx(b0)=1 andfxx(b0)=0 into(11)yields

    Moreover,subject to the boundary condition atb0,ais determined andg(x)becomes

    Finally,we need only construct the solution in capital injection region.Assume a concave function denoted bythat satisfiesand(16).Because of the concavity of the functionh(x;b0),the supremum is achieved whens=b0-XΔ.Thus,(8)is simplified to

    where τρ+x0represents the hitting time of ρ+x0.That is,

    Define a Markov transition probability density functionp(Δ,x+ ρ,y)withy∈ [x0,∞),which is the density of the processthat starts atx+ ρ.Then,we have

    Hence,(19)follows

    Finally,we obtain the constructed function as follows:

    where Φ(.)and φ(.)are the cumulative standard normal distribution and its density function,respectively.It is obvious that

    On the other hand,the boundary condition ofh(x;x0,b0)on the boundary of the capital injection regionx0can be formulated as

    The explicit expression of the region boundariesx0andb0are not easy to obtain because of the nonlinearity of the QVI.However,the existence ofx0andb0will be verified in the next section under conditions.Combining(15),(17)and(21),given the existence ofx0andb0,the value functionV(x)can be written as

    4 Properties of the solution

    4.1 Verification theorem

    In this section,we will first verify the existence the boundaries of the capital injection and continuation regionsx0andb0.Under the general conditions,sufficient conditions of the existence ofx0andb0will be given.Moreover,the value functionV(x)defined in(24)will be verified as the solution to(10).Some limiting cases will also be discussed at last.

    Lemma 1Letwe have

    Proof

    Hence,the equality is obtained.

    Lemma 2If ρ+x0≥ 0,then ?x>0,we have that the constructed function in(21)follows

    ProofIn view of(19),we have

    For the first and second order derivatives ofh(x;x0,b0),we have

    Sinceits derivatives satisfy

    We obtain that

    when ρ>-x0.This lemma shows the concavity of the value function in the capital injection region,which means the new capital issues can be optimized when ρ+x0>0.

    Now,we will consider the barrier of continuation region.Define the functionas

    Denoted a positive barrierb1which satisfies0.The we can deduce that

    ProofDifferentiating(25)onb,we obtain

    Moreover,it is shown that

    Lemma 4If

    ProofReferring to(18),by using Lemmas 1 and 2,we have

    Thus,the inequality is verified.

    Define a two component function?h(x,b)∈R+XR+as

    Proof

    Step 1In view of the expression(27),we haveAlso,from the definition.Suppose the conditionit implies that there exist some pointsuch thatOn the other hand,from Lemma 4,substitutinginwe haveThis shows thatmust crossfrom above at some pointx2in the interval(x0,b1).

    Step 2For allsincewe haveIn addition,by Lemma 4.From(25)and(27),we getBy Lemma 2,ρ+x0≥ 0 implies thatis increasing and concave,so iswith respect tois also increasing inx.Thus,combining the previous inequality,we can always find a positiveb0in the interval(x0,b1)such that

    Step 3In view of the results in Steps 1 and 2,following from the continuity ofandwith respect toxandb,there will exist ab0in the intervalsuch thatfor somewherefor allFor the(b2,b0)we have chosen,the continuous differentiability ofandwith respect toxyieldsThe equality is established because the two continuously differentiable lines have the same derivative if they coincide but not cross at some point.On the other hand,the capital will be injected with surplus hitting 0.Thus,b2=0.In view of the definition of the two functionsandwe find that(22)and(23)holds.

    Theorem 1Assume a solution to(22)and(23)as defined in Lemma 5 exists andV(x)is defined in(24).ThenV(x)is a concave solution to(10).

    ProofWe will prove the concavity ofV(x)in the three regions,respectively.In the dividend payout region,Vxx(x)= 0.In the capital injection region,h(x;x0,b0)is concave following from Lemma 2.In the continuation region,differentiatingf(x;b0)three times,it is shown thatonx∈[0,b0).Combining with the value of the second order derivative on the boundary thatwe havefxx(b0;b0)<0 for allx∈[0,b0).Hence,V(x)is concave in the continuation region[x0,b0).Thus,V(x)is concave.

    To proveV(x)satisfying(10),we have four steps.

    Step 1

    Step 2Forx∈ [b0,∞),Vx(x)=1 by construction.Forx∈[0,b0),Vx(x)>1 following from the concavity ofV(x).

    Step 3forx∈[x0,0)by construction.Forx∈[0,b0),we havefollowing from Lemma 5.Finally,forx∈ [b0,∞),we haveHence,V(x)≥M(x)globally.

    Step 4ForDenote τ?= τε∧efor somee>0 such thatandFollowing from Dynkin's formula,we have

    Thus,in the capital injection regionx∈[x0,0),we obtain

    Taking the limit yields

    whereForby construction.Forthen we have

    4.2 Limiting case

    In this section,we analyze the limiting case of immediate capital injections.That is,Δ=0.In the absence of any capital delays,the optimal dividend payout strategy is a barrier strategy,where the extra surplus will be paid out as dividend beyond some barrier level.To maximize the performance,the capital injection time will be postponed as much as possible because the capital injections can be effective immediately and always guarantee the continuity of the business even with the sufficient low surplus.Thus,the threshold of bankruptcy will be arbitrarily low if bankruptcy only occurs when payoff function hits zero.

    Since the capital injection region is reduced to one arbitrarily low point,we only have one barrier in this limiting case.This barrier will separate the continuation region and dividend payout region.The value function is concave and monotone increasing.Furthermore,starting as a curve,the value function increases linearly after some barrier level,which means that the extra surplus will all be paid out as the dividend reaching certain barrier.

    5 Conclusions

    In this paper,we studied the optimal dividend and capital injection strategies with constant time delays.The time delay in this work is crucial not only because of its reality in modeling the capital injection process but also it provides practical criteria to determine the bankruptcy threshold.Under general assumptions,a closed-form solution to the value function and the optimal strategies are obtained.

    The delayed capital injections are studied in this work.The time delays describe the regulatory process when extra capital is ordered to improve the company's financial status.Although the delay duration is generally uncertain and varies for different capital sources,the time delay is unlikely to vary in large range.We aim to find the closed-form solutions and ignore the impact of time-varying character of the delays in this paper.Treating time-varying delays is both theoretically interesting and practically useful.Considering a time-varying delay will make the model more realistic and versatile but more complicated,resulting in essential difficulty in finding the analytic solutions.The current paper focuses on obtaining closed-form solutions,whereas treating timevarying delay requires developing appropriate numerical algorithms,which is an important topic in the future study.

    In addition to delayed capital injections,to better reflect the reality,regime-switching models for the asset can be considered.The regime-switching models are known to able to capture the extreme price movement such as market changes,which can be described by a continuous-time Markov chain.Using the dynamic programming approach,the value function obeys a coupled system of quasi-variational inequalities.Thus,the model becomes more versatile but more complicated.Together with the time delays of the impulse control,it is virtually impossible to obtain a closed-form solution.Nevertheless,numerical approximation can provide a viable alternative.

    [1]B.De Finetti.Su un 'impostazione alternativa della teoria collettiva del rischio.Proceedings of Transactions of the 15th International Congress of Actuaries.New York:The Econometric Society,1957:433-443.

    [2]S.Asmussen,M.Taksar.Controlled diffusion models for optimal dividend pay-out.Insurance:Mathematics and Economics,1997,20(1):1-15.

    [3]G.Yin,Z.Jin,H.Yang.Asymptotically optimal dividend policy for regime-switching compound poisson models.Acta Mathematicae Applicatae Sinica(English Series),2010,26(4):529-542.

    [4]Z.Jin,G.Yin,C.Zhu.Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation.Automatica,2012,48(8):1489-1501.

    [5]S.Thonhauser,H.Albrecher.Optimal dividend strategies for a compound Poisson process under transaction costs and power utility.Stochastic Models,2011,27(1):859-889.

    [6]D.C.M.Dickson,H.R.Waters.Some optimal dividends problems.ASTIN Bulletin,2004,34(1):49-74.

    [7]S.P.Sethi,M.Taksar.Optimal financing of a corporation subject to random returns.Mathematical Finance,2002,12(2):155-172.

    [8]N.Kulenko,H.Schimidli.Optimal dividend strategies in a Cramer-Lundberg model with capital injections.Insurance:Mathmatics and Economics,2008,43(2):270-278.

    [9]D.Yao,H.Yang,R.Wang.Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs.European Journal of Operational Research,2011,211(3):568-576.

    [10]H.Gerber,H.Yang.Absolute ruin probabilities in a jump diffusion risk model with investment.North American Actuarial Journal,2007,11(3):159-169.

    [11]H.Albrecher,H.Gerber,S.Shiu.The optimal dividend barrier in the Gamma-Omega model.European Actuarial Journal,2011,1(1):43-55.

    [12]H.Gerber,E.Shiu,H.Yang.The Omega model:from bankruptcy to occupation times in the red.European Actuarial Journal,2012,2(2):259-272.

    [13]S.Peura,J.Keppo.Optimal bank capital with costly recapitalization.Journal of Bussiness,2006,79(4):2163-2201.

    [14]E.Bayraktar,M.Egami.The effects of implementation delay on decision-making under uncertainty.Stochastic Processes and Their Applications,2007,117(3):333-358.

    [15]M.Egami,V.Young.Optimal reinsurance strategy under fixed cost and delay.Stochastic Process and their Applications,2009,119(3):1015-1034.

    [16]W.Fleming,H.Soner.Controlled Markov Processes and Viscosity Solutions.New York:Springer-Verlag,2004.

    [17]Z.Jin,H.Yang,G.Yin.Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections.Automatica,2013,49(8):2317-2329.

    22 April 2013;revised 26 February 2014;accepted 27 February 2014

    DOI10.1007/s11768-014-0061-x

    ?Corresponding author.

    E-mail:zjin@unimelb.edu.au.Tel.:+61 3 8344 4655;fax:+61 3 8344 6899.

    The research of Z.Jin was supported by the Faculty Research Grant of University of Melbourne,and the research of G.Yin was partially supported by the National Science Foundation(No.DMS-1207667).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Zhuo JINreceived the B.S.degree in Mathematics from the Huazhong University of Science and Technology in 2005,and Ph.D.in Mathematics from Wayne State University in 2011.He joined the Centre for Actuarial Studies,Department of Economics,The University of Melbourne as a Lecturer in September2011.His research interests include numerical methods for stochastic systems,actuarial science and mathematical finance.Email:zjin@unimelb.edu.au.

    George YINjoined Wayne State University in 1987 and became a professor in 1996.Working on stochastic systems,he is Chair of SIAM Activity Group in Control and Systems Theory and is one of the Board of Directors of American Automatic Control Council.He was Co-Chair of SIAM Conference on Control&Its Application,2011,Co-Chair of 1996 AMS-SIAM Summer Seminar and 2003 AMS-IMS-SIAM Summer Research Conference,Coorganizer of 2005 IMA Workshop on Wireless Communications.He chaired the SIAM W.T.and Idalia Reid Prize Committee,the SIAG/Control and Systems Theory Prize Committee,and the SIAM SICON Best Paper Prize Committee.He is an associate editor of Control Theory and Technology,SIAM Journal on Control and Optimization,and on the editorial board of many other journals and book series.He was an associate editor of Automatica and IEEE T-AC.He was President of Wayne State University's Academy of Scholars.He is a Fellow of IEEE.Email:gyin@math.wayne.edu.

    黑人猛操日本美女一级片| 黄色 视频免费看| 国产淫语在线视频| 天天添夜夜摸| 69精品国产乱码久久久| 色视频在线一区二区三区| 久久国产精品影院| 日韩精品免费视频一区二区三区| 最近最新免费中文字幕在线| 大片电影免费在线观看免费| 欧美性长视频在线观看| 久久国产精品男人的天堂亚洲| 俄罗斯特黄特色一大片| 国产成人欧美在线观看 | 午夜两性在线视频| 国产不卡av网站在线观看| 大型av网站在线播放| 久久这里只有精品19| 高清av免费在线| 亚洲精品美女久久久久99蜜臀| 搡老岳熟女国产| 热re99久久精品国产66热6| 国产精品一区二区精品视频观看| 妹子高潮喷水视频| 日本精品一区二区三区蜜桃| 在线观看一区二区三区激情| 新久久久久国产一级毛片| 欧美在线黄色| 久久亚洲精品不卡| 日韩欧美三级三区| tube8黄色片| 91九色精品人成在线观看| 亚洲精品粉嫩美女一区| 天堂动漫精品| 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 亚洲七黄色美女视频| 久久人妻熟女aⅴ| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕人妻丝袜制服| 国产精品二区激情视频| 人人妻人人澡人人爽人人夜夜| 一夜夜www| 国产成人影院久久av| 麻豆国产av国片精品| 夜夜夜夜夜久久久久| 一级片'在线观看视频| 国产亚洲午夜精品一区二区久久| 国产黄频视频在线观看| 久久久久久久精品吃奶| 亚洲九九香蕉| 亚洲国产精品一区二区三区在线| 亚洲国产欧美一区二区综合| 国产熟女午夜一区二区三区| 黑人猛操日本美女一级片| 精品少妇内射三级| 午夜激情av网站| 亚洲国产欧美日韩在线播放| 黄片播放在线免费| 一本大道久久a久久精品| 怎么达到女性高潮| 法律面前人人平等表现在哪些方面| 亚洲 欧美一区二区三区| 亚洲午夜理论影院| 成年版毛片免费区| 超碰97精品在线观看| 丝瓜视频免费看黄片| 悠悠久久av| 大型黄色视频在线免费观看| 午夜福利视频在线观看免费| 丝袜喷水一区| 99re在线观看精品视频| 蜜桃在线观看..| 亚洲男人天堂网一区| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 美女高潮喷水抽搐中文字幕| 美女午夜性视频免费| 久久精品国产亚洲av高清一级| 一夜夜www| 99re6热这里在线精品视频| 亚洲,欧美精品.| 69av精品久久久久久 | 久久久久久人人人人人| 久久毛片免费看一区二区三区| 99精国产麻豆久久婷婷| 国产单亲对白刺激| 五月天丁香电影| 久久久久久久国产电影| 国产精品一区二区在线观看99| 制服诱惑二区| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 国产有黄有色有爽视频| 国产精品免费大片| 久久热在线av| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 国产男女内射视频| 性少妇av在线| 香蕉丝袜av| 成人亚洲精品一区在线观看| 亚洲中文av在线| 国产一区二区三区综合在线观看| 美女高潮到喷水免费观看| 一本一本久久a久久精品综合妖精| 精品亚洲成a人片在线观看| 亚洲av成人不卡在线观看播放网| 亚洲精品一卡2卡三卡4卡5卡| 欧美乱码精品一区二区三区| 色94色欧美一区二区| 国产亚洲精品一区二区www | 亚洲av片天天在线观看| 国产精品 国内视频| 色94色欧美一区二区| 国产91精品成人一区二区三区 | 欧美乱妇无乱码| 欧美日韩亚洲综合一区二区三区_| 99久久人妻综合| 777米奇影视久久| 欧美日韩成人在线一区二区| 亚洲av电影在线进入| 亚洲少妇的诱惑av| 亚洲国产精品一区二区三区在线| av天堂久久9| 激情视频va一区二区三区| 人妻一区二区av| 一区二区三区精品91| 天堂8中文在线网| 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 欧美成狂野欧美在线观看| 色视频在线一区二区三区| 飞空精品影院首页| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 精品国产亚洲在线| 精品国产一区二区三区久久久樱花| 国产区一区二久久| 在线观看66精品国产| 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 国产99久久九九免费精品| 在线亚洲精品国产二区图片欧美| 免费观看av网站的网址| 最新美女视频免费是黄的| 国产精品免费视频内射| 岛国毛片在线播放| 亚洲国产欧美在线一区| 亚洲欧美激情在线| 国产精品自产拍在线观看55亚洲 | 香蕉久久夜色| 国产精品影院久久| 美国免费a级毛片| 人妻一区二区av| 黑人巨大精品欧美一区二区mp4| 国产成人av教育| 夜夜爽天天搞| 99国产综合亚洲精品| 久热这里只有精品99| 亚洲成人国产一区在线观看| 无人区码免费观看不卡 | 啦啦啦 在线观看视频| 国产麻豆69| 亚洲专区字幕在线| 亚洲,欧美精品.| 日本一区二区免费在线视频| 激情在线观看视频在线高清 | 十八禁人妻一区二区| 少妇猛男粗大的猛烈进出视频| 丁香欧美五月| 亚洲一卡2卡3卡4卡5卡精品中文| 色老头精品视频在线观看| 一本一本久久a久久精品综合妖精| 菩萨蛮人人尽说江南好唐韦庄| 欧美激情久久久久久爽电影 | 美国免费a级毛片| 国产精品久久久人人做人人爽| 久久香蕉激情| 水蜜桃什么品种好| 亚洲性夜色夜夜综合| svipshipincom国产片| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 青青草视频在线视频观看| av天堂在线播放| 波多野结衣一区麻豆| 高清av免费在线| 国产精品亚洲一级av第二区| 精品国产乱码久久久久久男人| 国产精品一区二区在线不卡| 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区精品| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 国产片内射在线| 亚洲全国av大片| 高清黄色对白视频在线免费看| 黄色a级毛片大全视频| 免费看a级黄色片| 国产成人影院久久av| 国产成人精品久久二区二区免费| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看www视频免费| 久久中文字幕人妻熟女| xxxhd国产人妻xxx| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 五月天丁香电影| 亚洲熟妇熟女久久| 男女高潮啪啪啪动态图| 色在线成人网| av福利片在线| 亚洲成人免费电影在线观看| 人成视频在线观看免费观看| 91精品国产国语对白视频| 在线观看人妻少妇| 久久人妻熟女aⅴ| 这个男人来自地球电影免费观看| 国产淫语在线视频| 亚洲精品粉嫩美女一区| 久久九九热精品免费| 好男人电影高清在线观看| 国产不卡av网站在线观看| 少妇猛男粗大的猛烈进出视频| 久久久精品区二区三区| 日本黄色日本黄色录像| 一二三四在线观看免费中文在| 免费在线观看影片大全网站| 欧美在线黄色| 亚洲av电影在线进入| 中文欧美无线码| 色综合欧美亚洲国产小说| 脱女人内裤的视频| 欧美精品亚洲一区二区| 丝袜喷水一区| 90打野战视频偷拍视频| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 少妇 在线观看| 人妻 亚洲 视频| 国产成人精品无人区| 首页视频小说图片口味搜索| 黄片播放在线免费| 亚洲成人免费电影在线观看| 欧美黑人精品巨大| 老鸭窝网址在线观看| 精品欧美一区二区三区在线| 曰老女人黄片| avwww免费| 美女主播在线视频| 动漫黄色视频在线观看| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 成在线人永久免费视频| 在线观看免费高清a一片| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 亚洲一区二区三区欧美精品| 一区二区三区乱码不卡18| 国产精品二区激情视频| 成人影院久久| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 丝瓜视频免费看黄片| 黄片大片在线免费观看| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 国产在线精品亚洲第一网站| av视频免费观看在线观看| 一本—道久久a久久精品蜜桃钙片| 美女视频免费永久观看网站| 亚洲人成电影观看| 黄色成人免费大全| 欧美精品一区二区大全| 高清欧美精品videossex| 国产欧美日韩一区二区三| bbb黄色大片| 侵犯人妻中文字幕一二三四区| 久久中文字幕人妻熟女| 9191精品国产免费久久| 国产在线免费精品| 一级毛片女人18水好多| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 欧美精品高潮呻吟av久久| 国产精品美女特级片免费视频播放器 | 色综合婷婷激情| 高清视频免费观看一区二区| 两个人看的免费小视频| 国产精品免费一区二区三区在线 | 两个人看的免费小视频| 亚洲精品一二三| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 手机成人av网站| 久久中文字幕一级| 美女福利国产在线| 国产免费现黄频在线看| 精品高清国产在线一区| 人人妻人人澡人人爽人人夜夜| 我的亚洲天堂| 欧美黄色片欧美黄色片| 最新美女视频免费是黄的| 国产高清激情床上av| 777米奇影视久久| 亚洲美女黄片视频| e午夜精品久久久久久久| 欧美 日韩 精品 国产| 国产黄频视频在线观看| 亚洲精品在线美女| 久久九九热精品免费| 又紧又爽又黄一区二区| a在线观看视频网站| 国产精品98久久久久久宅男小说| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| videosex国产| 啦啦啦视频在线资源免费观看| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 美女午夜性视频免费| 一本色道久久久久久精品综合| 99久久人妻综合| 99热国产这里只有精品6| 国产成人欧美| 69精品国产乱码久久久| 国产高清视频在线播放一区| 一进一出抽搐动态| 成人av一区二区三区在线看| 黄频高清免费视频| 国产欧美日韩一区二区精品| 国产精品.久久久| 桃红色精品国产亚洲av| 人人澡人人妻人| 亚洲精品在线观看二区| a在线观看视频网站| 咕卡用的链子| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 99九九在线精品视频| 日韩欧美一区二区三区在线观看 | 欧美老熟妇乱子伦牲交| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 黄片大片在线免费观看| 国产精品久久久久久精品古装| 国产色视频综合| 丰满饥渴人妻一区二区三| 久久精品成人免费网站| 建设人人有责人人尽责人人享有的| 最近最新免费中文字幕在线| 女同久久另类99精品国产91| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 三上悠亚av全集在线观看| 国产欧美日韩一区二区精品| 久久人人97超碰香蕉20202| 最黄视频免费看| 亚洲国产欧美日韩在线播放| 视频区图区小说| www.自偷自拍.com| 无人区码免费观看不卡 | www.精华液| 日韩欧美一区视频在线观看| 亚洲精品一二三| 色尼玛亚洲综合影院| 精品视频人人做人人爽| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频| 亚洲色图综合在线观看| 精品久久久久久久毛片微露脸| 王馨瑶露胸无遮挡在线观看| 亚洲九九香蕉| 国产精品熟女久久久久浪| 国产福利在线免费观看视频| 亚洲精品一卡2卡三卡4卡5卡| 一级片免费观看大全| 精品福利观看| 国产成人影院久久av| 丰满饥渴人妻一区二区三| 制服诱惑二区| www.自偷自拍.com| 成人国语在线视频| 男女无遮挡免费网站观看| 熟女少妇亚洲综合色aaa.| 精品视频人人做人人爽| 91大片在线观看| 亚洲第一青青草原| 精品国内亚洲2022精品成人 | 高清黄色对白视频在线免费看| 成年人午夜在线观看视频| 夜夜爽天天搞| 精品国产超薄肉色丝袜足j| 青草久久国产| 久久久久久人人人人人| 国产区一区二久久| av欧美777| www.熟女人妻精品国产| 国产精品二区激情视频| 丝袜美足系列| 18禁美女被吸乳视频| 亚洲色图av天堂| 中国美女看黄片| 在线观看www视频免费| 午夜精品久久久久久毛片777| 好男人电影高清在线观看| aaaaa片日本免费| 国产一区有黄有色的免费视频| 高清av免费在线| 久久毛片免费看一区二区三区| 9色porny在线观看| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 亚洲三区欧美一区| bbb黄色大片| 亚洲成人免费av在线播放| 人妻久久中文字幕网| 另类亚洲欧美激情| 国产精品电影一区二区三区 | 两人在一起打扑克的视频| 亚洲成人免费av在线播放| 国产亚洲欧美精品永久| 欧美黄色片欧美黄色片| 亚洲成人手机| 18禁美女被吸乳视频| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| av天堂在线播放| 欧美成人免费av一区二区三区 | 亚洲中文av在线| 天天躁日日躁夜夜躁夜夜| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 人人妻人人澡人人看| 一个人免费看片子| 一级毛片电影观看| 99在线人妻在线中文字幕 | 亚洲美女黄片视频| 久久久精品94久久精品| 久久久久精品人妻al黑| 搡老熟女国产l中国老女人| 国产免费福利视频在线观看| 亚洲三区欧美一区| 日本wwww免费看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 欧美亚洲| 99re6热这里在线精品视频| 99国产精品99久久久久| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣av一区二区av| 亚洲欧洲日产国产| 99re6热这里在线精品视频| 王馨瑶露胸无遮挡在线观看| 夜夜爽天天搞| 免费在线观看影片大全网站| 久久久久视频综合| 国产一卡二卡三卡精品| 大片免费播放器 马上看| 亚洲欧美一区二区三区黑人| 激情视频va一区二区三区| 久久久精品国产亚洲av高清涩受| 天堂中文最新版在线下载| 脱女人内裤的视频| 国产午夜精品久久久久久| 91老司机精品| 99精品欧美一区二区三区四区| 法律面前人人平等表现在哪些方面| 亚洲国产毛片av蜜桃av| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 国产成人精品无人区| 黄色毛片三级朝国网站| 日本黄色日本黄色录像| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 亚洲avbb在线观看| 亚洲国产毛片av蜜桃av| 亚洲免费av在线视频| 精品亚洲成a人片在线观看| 99热网站在线观看| 人人妻,人人澡人人爽秒播| 国产精品秋霞免费鲁丝片| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频| 丝袜在线中文字幕| av福利片在线| 三上悠亚av全集在线观看| av又黄又爽大尺度在线免费看| 亚洲,欧美精品.| 在线观看舔阴道视频| 老鸭窝网址在线观看| 午夜视频精品福利| av又黄又爽大尺度在线免费看| avwww免费| 色尼玛亚洲综合影院| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 天堂动漫精品| 免费在线观看日本一区| 亚洲精品粉嫩美女一区| 在线观看免费高清a一片| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 天堂动漫精品| 国产99久久九九免费精品| 99在线人妻在线中文字幕 | 精品少妇内射三级| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 一个人免费在线观看的高清视频| 精品国产国语对白av| 丝袜美腿诱惑在线| 成人永久免费在线观看视频 | 欧美性长视频在线观看| 最近最新中文字幕大全免费视频| 亚洲一区中文字幕在线| 电影成人av| 黑人巨大精品欧美一区二区mp4| 汤姆久久久久久久影院中文字幕| 午夜两性在线视频| 桃红色精品国产亚洲av| 久久久久久免费高清国产稀缺| 99热网站在线观看| 国产主播在线观看一区二区| av一本久久久久| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 久久久精品免费免费高清| 大片电影免费在线观看免费| 国产免费av片在线观看野外av| 免费久久久久久久精品成人欧美视频| 一个人免费看片子| 熟女少妇亚洲综合色aaa.| h视频一区二区三区| 亚洲综合色网址| av视频免费观看在线观看| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人 | 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 婷婷丁香在线五月| 精品一品国产午夜福利视频| 国产片内射在线| 欧美黑人欧美精品刺激| 久久 成人 亚洲| 国内毛片毛片毛片毛片毛片| 老司机亚洲免费影院| 又大又爽又粗| 妹子高潮喷水视频| 日本一区二区免费在线视频| 色在线成人网| 在线播放国产精品三级| 久久中文字幕一级| 国产成人欧美| √禁漫天堂资源中文www| 免费高清在线观看日韩| 激情视频va一区二区三区| 日韩中文字幕视频在线看片| 国产午夜精品久久久久久| 亚洲欧美精品综合一区二区三区| 操美女的视频在线观看| 精品少妇黑人巨大在线播放| 成年版毛片免费区| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美三级三区| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 欧美变态另类bdsm刘玥| 国产成+人综合+亚洲专区| 久9热在线精品视频| 久久狼人影院| 亚洲成人手机| 久久性视频一级片| 国产精品香港三级国产av潘金莲| 精品卡一卡二卡四卡免费| 中文欧美无线码| 男女无遮挡免费网站观看| 亚洲国产欧美网| a在线观看视频网站| 日本欧美视频一区| 亚洲 欧美一区二区三区| 麻豆av在线久日| 一个人免费看片子| 日日摸夜夜添夜夜添小说| 丝袜人妻中文字幕| 久久国产精品男人的天堂亚洲| 男男h啪啪无遮挡| 大香蕉久久成人网| 精品视频人人做人人爽| 亚洲欧美一区二区三区久久| 国产欧美日韩一区二区精品| 欧美变态另类bdsm刘玥| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻 亚洲 视频| 午夜福利影视在线免费观看| 亚洲五月婷婷丁香| 亚洲精品在线观看二区| 国产精品欧美亚洲77777| 成人亚洲精品一区在线观看| 久久久久久免费高清国产稀缺| av又黄又爽大尺度在线免费看|